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ABSTRACT

Tear film, the outermost layer of the eye, is a complex and dynamic structure responsible for tear production. The
tear film lipid layer is a vital component of the tear film that provides a smooth optical surface for the cornea and
wetting the ocular surface. Dry eye syndrome (DES) is a symptomatic disease caused by reduced tear production,
poor tear quality, or excessive evaporation. Its diagnosis is a difficult task due to its multifactorial etiology. Out of
several clinical tests available, the evaluation of the interference patterns of the tear film lipid layer forms a potential
tool for DES diagnosis. An instrument known as Tearscope Plus allows the rapid assessment of the lipid layer. A
grading scale composed of five categories is used to classify lipid layer patterns. The reported work proposes the
design of an automatic system employing light weight convolutional neural networks (CNN) and nature inspired
optimization techniques to assess the tear film lipid layer patterns by interpreting the images acquired with the
Tearscope Plus. The designed framework achieves promising results compared with the existing state-of-the-art
techniques.
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1 Introduction

The eyes are the most delicate and complex organs that a human being possesses. The ocular
surface represents the eye’s outer surface, which consists of the cornea and the conjunctiva. Moreover,
this outer surface has a complex and dynamic covering called tear film, which acts as an interface
between the eye and the external environment. The tear film is a three-layer structure consisting of
the innermost mucous layer, the middle aqueous layer and a delicate anterior lipid layer. The tear film
lipid layer, composed of polar and non-polar lipids, provides a smooth covering for the cornea and
impedes evaporation from the ocular surface. The abnormal conditions of the tear film due to poor
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tear quality, reduced tear production, or excessive tear evaporation lead to the cause of Evaporative
Dry Eye (EDE) syndrome in the eyes.

Dry eye syndrome is a symptomatic disease that affects a wide range of the population. Disease-
related difficulties are most common in persons over 50 years old, but they are also on the rise
among young adults, which experts point out the ubiquity of smart phones and computers. The
prolonged wearing of contact glasses may also contribute to the prevalence of dry eyes among the
young population [1]. A recent survey established the usage of face-masks against the spread of SARS-
CoV-2, reported symptoms of dry eye-related issues in the general population [2]. There exist several
clinical tests for its diagnosis due to its multifactorial etiology. The evaluation of the interference
patterns in the images of the tear film lipid layer could provide diagnostic information of this disease.
Tearscope Plus allows clinicians to rapidly assess the lipid layer thickness and grade these patterns into
one of the five categories.

The International Dry Eye Workshop (DEWS) established that dry eye syndrome (DES) is a
multifactorial disease with distinct manifestations [3]. The symptoms include visual disturbance,
discomfort in the eyes, and tear film instability leading to potential damage to the ocular surface.
Moreover, the disorder causes an increased osmotic concentration of the tear film and inflammation
of the ocular surface. The statistics show that the disease is prevalent among 5%–50% of the general
population [1].

The lipid layer plays a significant role in restricting evaporation during the inter-blink period
and affects tear film stability. The Tearscope Plus, an instrument designed by Guillon, allows the
evaluation of lipid layer thickness using five primary grades of interference patterns: Color Fringe,
Open Mesh-work, Wave, Closed Mesh-work, and Amorphous. The visual appearance and colour
of the interference patterns provide prognostic features of the structural regularity and thickness of
the lipid layers. The manual screening of tear film images for identifying different patterns is very
cumbersome. Moreover, direct observation of the tear film is complex and poses great difficulties in
diagnosing DES. In this paper, an assessment of tear film stability through the lipid layer pattern
analysis is reported. We aim to design an automatic system to classify four different tear film lipid layer
patterns, namely Color Fringe, Open Mesh-work, Wave and Closed Mesh-work, defined by Guillon
[4]. The Amorphous category images are not used in the study as it rarely appears during disease
diagnosis [5]. In the tear film images captured using Tearscope Plus, we employ deep learning (DL)
techniques to classify the lipid layer patterns into four categories. To the best of our knowledge, this is
the first work in literature that uses DL-based techniques for tear film classification.

In Table 1, we provide the characteristic features of the four interference patterns used in the
present study.

2 Related works

Literature features a large volume of research works on eye imaging. When compared to retina-
based blood vessel segmentation studies [6–9], the amount of research publications on tear film
imaging is very less. The research contributions [5,10,11] published by VARPA group are the only
reference available for this study. The works reported were based on machine learning techniques
employing hand-crafted features. The published results used experiments with different colour chan-
nels, feature descriptors and feature selection techniques. The major work reported in [5], used texture
and colour features extracted from RGB, grayscale and L*a*b color components. The texture features
were generated using Gabor filters, Butterworth filters, Markov Random Fields, Discrete Wavelet
Transform, and co-occurrence matrix. The feature selection is performed using the consistency-based
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filter, Correlation-Based Feature Selection, and INTERACT, followed by classification using the SVM
classifier. The remaining works [10,11] were only subsidiary of [5] and hence, they were not discussed
again.

Table 1: Examples of representative images obtained from VARPA dataset along with the typical
characteristics of each class, namely open mesh-work, closed mesh-work, Wave, and Color Fringe

Pattern Features Thickness Example image

Open mesh-
work

The pattern of thin coverage
that may not form contin-
uously over the ocular sur-
face. It represents a very thin,
poor and minimal lipid layer
stretched over the ocular sur-
face. It is a gray, marble-like
pattern, prone to evaporative
dry eye

13–15 nm

Closed
mesh-work

The most stable tear film lies
within the corneal surface
area. Lipid layer with a gray,
marble-like pattern

30–50 nm

Wave
Thicker than meshwork with
wavy, gray streak effect

50–70 nm

Color
Fringe

Lipid layer with mix of brown
and blue fringes

90–180 nm

The proposed framework achieves classification efficiency via two stages. First, rather than
using highly complex neural network architectures for training, our proposed technique employs
a lightweight CNN architecture inspired by two light weight pre-trained mobile CNNs, namely
EfficientnetB0 [12] and MobilenetV2 [13], that is simple enough to reduce computational loads while
still providing high accuracy when trained on tearscope images. Moreover, deployment of network in
mobile devices is possible with light CNNs. Second, instead of relying on an end to end deep learning
framework for classifying tear film lipid layer patterns, we employ machine learning techniques
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to classify concatenated features extracted from the light-weight CNN architecture. The following
sections provide a detailed explanation of the technique, which includes the method for generating
features and then classifying them into different lipid pattern groups.

To summarize, the research works present in the literature for classifying Tearscope images use
texture features derived from various colour channels. In addition, for reducing the processing time, the
extracted feature set is passed through feature selection algorithms before it is finally fed to a classifier.
In our work, instead of using handcrafted features, we employ convolutional neural networks for tear
film classification. The main contributions are:

i. A novel deep learning framework for the classification of tear film images.

ii. The proposed design integrates light weight convolutional neural networks (CNN) with Marine
Predator algorithm, a nature-inspired optimization technique, for the classification.

iii. The proposed framework utilized graph cut segmentation to extract the region of interest
(ROI) from the Tearscope images, whereas state-of-the-art techniques employed complex
segmentation algorithms requiring manual interventions.

3 Materials Used

The image datasets used in the present study were obtained from the Faculty of Optics and
Optometry, University of Santiago De Compostela, Spain. The images were captured using an
instrument named Tearscope Plus, and the annotations were made by a group of optometrists. The
datasets are publicly available for research on the website of the VARPA1 research group. The dataset
features are elaborated on below:

1. VOPTICAL V_l1 dataset: The VOPTICAL l1 (V_l1) dataset contains 105 images of the
preocular tear film taken over optimum illumination conditions, and acquired from healthy
subjects with dark eyes and aged from 19 to 33 years. The dataset includes 29 Open Mesh-
work, 29 Closed Mesh-work, 25 Wave, and 22 Color Fringe images. All the images have a
spatial resolution of 1024 × 768 pixels and have been acquired with the Tearscope Plus.

2. VOPTICAL L dataset: The VOPTICAL L (V_L) dataset contains 108 images of the preocular
tear film taken over optimum illumination conditions, and acquired from healthy subjects aged
from 19 to 33 years. The dataset includes 30 Open Mesh-work, 28 Closed Mesh-work, 27 Wave
and 23 Color Fringe images. All the images have a spatial resolution of 1024 × 768 pixels and
have been acquired with the Tearscope Plus.

4 Method

The architecture of the proposed framework is shown in Fig. 1. The Tearscope eye images are
initially passed through a graph cut segmentation module, which removes the region outside the iris
for extracting the ROI. The segmented ROI is then applied to a combination of the two light weight
pre-trained mobile CNNs, namely EfficientnetB0 [12] and MobilenetV2 [13]. The features extracted
from the last fully connected layers of EfficientnetB0 and MobilenetV2 are applied as input to the
marine predator algorithm for feature selection. The selected features are finally used to train a k-
nearest neighbor (KNN) classifier which classifies the images into four categories. The various stages
of the proposed framework are explained in the following sections.

1tinyurl.com/5cdf8cep.

tinyurl.com/5cdf8cep 
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Figure 1: Architecture of the proposed DL framework for the classification lipid tear film patterns.
From the input image, the ROI is initially segmented followed by feature extraction and prediction

4.1 Segmentation
The segmentation of ROI in the tearscopic images is accomplished using the graph cut technique

[14,15]. The tear film area is effectively segmented out from the remaining anatomical structures
present in an image. The segmentation procedure involves the generation of a network flow graph
based on the input image. The image is represented as a graph structure with each pixels forming a
vertex or node. Each pixel is connected by edges weighted by the affinity or similarity between its two
vertices. The algorithm cuts along weak edges, achieving the delineation of objects in the image. The
user needs to specify background and foreground seeds to perform the segmentation of the intended
ROI. We used the publicly available graph cut implementation in the MATLAB Image Segmenter2

application to segment the ROI present in a given image. Fig. 2 shows few sample images and their
corresponding segmented counterpart.

4.2 Feature Extraction
The proposed model utilizes two light weight pre-trained mobile CNNs, MobilenetV2 [13] and

EfficientnetB0 [12] for feature extraction. Mobile CNNs are having fewer parameters and are faster
than the conventional CNNs. Deployment of networks in mobile devices is possible with light weight
CNNs [16]. Both the models accept images of size 224 × 224 × 3 as input. MobilenetV2 uses depth-
wise separable convolutions as its basic building block. In addition, the network uses linear bottleneck
between layers to remove nonlinearities. Shortcut connections are used between the bottlenecks to
provide faster training and improve performance.

EfficientnetB0 developed by Tan et al. [12] has the mobile inverted bottleneck as its main
building block. The model used a compound scaling method which balances network width, depth
and resolution for better performance. Both the CNNs were pre-trained on Imagenet database [17]
which has images belonging to 1000 different classes. 1000 features were extracted from the last fully
connected layer of each CNNs. The concatenated feature set consisting of 2000 features is passed to
nature inspired marine predator algorithm for feature selection.

2https://tinyurl.com/2p89v8k6.

https://tinyurl.com/2p89v8k6
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Figure 2: Sample images obtained from the VARPA datasets and their corresponding ROI images
extracted using graph-cut technique. The first and third row corresponds to the raw sample images
obtained from V_l1 and V_L datasets, respectively. Similarly, the second and fourth row corresponds
to the extracted ROI images using the graph-cut technique. (a, e, i, m) represent Closed Mesh-work,
(b, f, j, n) Color Fringe, (c, g, k, o) Open Mesh-work and (d, h, l, p) Wave tear film pattern images

4.3 Feature Selection
The selection of relevant features is done using an optimization technique namely, Marine

Predator Algorithm (MPA) [18]. Among the marine predators and prey, the predators use the major
strategy called the Brownian and Levy random movement in foraging. This technique is adopted in
MPA. Similar to most of the metaheuristics, MPA is a population based method, in which the initial
solution is uniformly distributed over the search space as the first trial [18]. A set of n members of the
prey is selected to be the initial population. The upper and the lower bound in the solution space is
calculated using the following equation.
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�vi = vmin + rand(0, 1)
⊗

(vmax − vmin), i = 1, 2, ...n (1)

where �vi denotes the initial position of the ith member in the population, �vmax and �vmin represent points
corresponding to upper and lower bounds and �rand describe a d-dimensional vector of random
numbers with a uniform distribution in the range [0, 1]. The operator

⊗
denotes the entry-wise

multiplications. A fitness score is assigned for each member in the population using a fitness function.
The member with the highest fitness score is selected and replicated n times to form a matrix termed as
elite matrix and a prey matrix is also created as in [18]. The two important aspects of the MPA are the
elite (E) and prey (P) matrices. The entire optimization process depends on these matrices. The MPA
has three important phases depending on the velocity of prey and predator. The three phases are high-
velocity ratio, unit velocity ratio and low-velocity ratio. In the high-velocity phase, the predator is not
moving at all while in the unit velocity phase it is moving in Brownian and finally in the low-velocity
phase, it shows Levy strategy.

4.3.1 High-Velocity Ratio

This phase is where the velocity of the prey is greater than that of the predator [18]. At each
iteration in this phase, P is updated as follows:

�Pi = �Pi + P × �(r)⊗ �Si (2)

where �Si is calculated as

�Si = �RB

⊗ ( �Ei − �RB

⊗ �Pi

)
(3)

4.3.2 Unit Velocity Ratio

In this phase, both predator and prey have the same velocity. This phase includes both exploration
(Predator) and exploitation (Prey) [18]. The rule used in this phase is that when the velocity is unity,
the prey moves following the Levy strategy and the predator moves using the Brownian strategy. The
mathematical representation of the rule is as follows:

�Si = �RL

⊗ ( �Ei − �RL

⊗ �Pi

)
, i = 1, 2, ...n/2 (4)

where �Pi is calculated as

�Pi = �Pi + P × �(r)⊗ �Si (5)

4.3.3 Low-Velocity Ratio

In this phase, the predator is moving faster than the prey and is associated with high exploitation
capability [18]. In this phase, the predator follows Levy strategy while the prey is moving in either
Brownian or Levy. The updation is as follows:

Si = �RL

⊗ ( �RL

⊗ �Ei − �Pi

)
, i = 1, 2, ...n (6)

where �Pi is calculated as

�Pi = �Ei + P × �(r)⊗ �Si (7)
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4.4 Classification Using KNN
The k-nearest neighbor (KNN) classifier has been extensively used in the classification of biomed-

ical data. Classification is carried out by comparing a given test data with training data of similar
nature. The training samples are defined by n attributes and each sample represents a point in an n-
dimensional space. The KNN classifies an unknown sample x0, by searching for the k training samples
that are the closest to the unknown sample x0 [19]. These k training samples represent the k nearest
neighbours of x0. The new sample will be assigned the most frequent class label associated with the
k-nearest neighbours. Closeness of the unknown sample x0 with training instances is determined using
the Euclidean distance metric [19]. Euclidean distance for computing the distance of k neighbours is
evaluated as

ED(M, N) =
√√√√

F∑
j=1

(
Nj − Mj

)2
(8)

where Nj and Mj represent specific attribute in a given sample and j represents a variable from 1 to F
where F is the number of used attributes [20]. The value of k is set empirically (k = 3) in the proposed
method.

5 Results and Discussion

The main objective of our work is to develop a general-purpose technique that can be tweaked and
used in a variety of contexts. Despite the fact that our technique is similar to a number of existing deep
learning classification techniques, we focus on reducing computational complexity and memory space
requirements by using lightweight CNN frameworks, which could also result in improved classification
efficiency. Our goal is to propose a method for accurately classifying lipid layer patterns while lowering
the amount of computational operations (such as convolution, pooling, batch normalisation, and
activations) and the amount of memory required to run the system–two key factors affecting the
computational complexity of deep learning-based systems. A framework that produces positive results
along these lines can be adapted for a range of scenarios, including deployment in mobile devices.
Further exploration of the current approach in each context, however, was deemed outside the scope
of the current study.

The experiments were performed on a 6 GB GPU machine with Intel Core i7 CPU, 16 GB RAM
and NVidia GTX 1060, using MATLAB software. For the performance evaluation of the proposed
pipeline we computed accuracy, precision, recall, F1-score, and kappa score.

To perform the experiments, we randomly partitioned the data into two folds, each containing
50% of the data for training and validation. The proposed model comprising of EfficientnetB0,
MobilenetV2, Marine predator feature optimization and KNN classifier showed an accuracy of
98.08% and 98.15% in datasets V_l1 and V_L, respectively. The confusion matrix and the various
performance measures are displayed in Fig. 3 and Table 2, respectively.
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Figure 3: (a) Confusion Matrix corresponding to dataset V_l1, (b) Confusion Matrix corresponding
to dataset V_L

Table 2: The optimum performance obtained for the proposed pipeline. The result obtained for the
framework composed of MobilenetV2, EfficientnetB0, marine predator algorithm and KNN classifier

Dataset Class Precision Recall F1-score Kappa score Accuracy

V_l1

Closed Mesh-work 1.0 0.93 0.97

0.974 98.08
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 1.0 0.97
Wave 1.0 1.0 1.0

V_L

Closed Mesh-work 1.0 0.93 0.97

0.975 98.15
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.94 1.0 0.97
Wave 1.0 1.0 1.0

The proposed architecture is selected based on the extensive experiments conducted on the
VARPA data sets. In the following, the performance evaluation metrics of the different experiments
are shown, which underlines the effectiveness of the proposed pipeline.

5.1 Comparison of Results Achieved Using Various CNNs
In the proposed study, instead of using traditional CNN frameworks we used light weight CNNs

for feature extraction. The use of light weight CNN reduces both the computational complexity as well
as model parameters of the proposed system. The combination of EfficientnetB0 and MobilenetV2
was selected based on experimental analysis using various light CNNs. First, we performed experi-
ments using 4 different light-weight CNNs (MobilenetV2, EfficientnetB0, Shufflenet, NasnetMobile).
The best performing CNNs were MobilenetV2 and EfficientnetB0. Then we combined features
extracted using MobilenetV2 and EfficientnetB0. The combination of features from MobilenetV2
and EfficientnetB0 showed an improvement over the performance of various CNNs when used
individually.
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The experiments were performed using the V_l1 and V_L dataset. The results achieved using
various pretrained CNNs are shown in Table 3. Fig. 4 shows the comparison of accuracy achieved
using various pre-trained CNNs in both datasets.

Table 3: Result of the proposed pipeline using various CNNs

Dataset CNN Class Precision Recall F1-score Kappa score Accuracy

V_l1 MobilenetV2

Closed Mesh-work 0.93 0.93 0.93

0.95 96.15
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 0.93 0.93
Wave 1.0 1.0 1.0

V_L MobilenetV2

Closed Mesh-work 1.0 0.88 0.93

0.926 94.44
Color Fringe 0.91 1.0 0.95
Open Mesh-work 0.88 1.0 0.93
Wave 1.0 0.93 0.96

V_l1 EfficientnetB0

Closed Mesh-work 0.93 0.93 0.93

0.95 96.15
Color Fringe 1.0 1.0 1.0
Open Mesh-work 1.0 0.94 0.97
Wave 0.92 1.0 0.96

V_L EfficientnetB0

Closed Mesh-work 0.93 0.93 0.93

0.925 94.44
Color Fringe 0.91 1.0 0.95
Open Mesh-work 1.0 1.0 1.0
Wave 0.92 0.86 0.89

V_l1 Shufflenet

Closed Mesh-work 0.64 0.75 0.69

0.793 84.62
Color Fringe 0.82 1.0 0.90
Open Mesh-work 1.0 0.75 0.86
Wave 0.92 1.0 0.96

V_L Shufflenet

Closed Mesh-work 0.93 0.65 0.76

0.777 83.33
Color Fringe 0.82 1.0 0.90
Open Mesh-work 0.75 1.0 0.86
Wave 0.85 0.85 0.85

V_l1 NasnetMobile

Closed Mesh-work 0.93 0.93 0.93

0.871 90.38
Color Fringe 0.82 1.0 0.90
Open Mesh-work 0.93 0.93 0.93
Wave 0.92 0.79 0.85

V_L NasnetMobile

Closed Mesh-work 0.93 0.72 0.81

0.802 85.19
Color Fringe 1.0 0.85 0.92
Open Mesh-work 0.75 0.92 0.83
Wave 0.77 1.0 0.87

(Continued)
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Table 3 (continued)

Dataset CNN Class Precision Recall F1-score Kappa score Accuracy

V_l1
MobilenetV2
+EfficientnetB0

Closed Mesh-work 1.0 0.93 0.97

0.974 98.08
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 1.0 0.97
Wave 1.0 1.0 1.0

V_L
MobilenetV2
+EfficientnetB0

Closed Mesh-work 1.0 0.93 0.97

0.975 98.15
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.94 1.0 0.97
Wave 1.0 1.0 1.0

Figure 4: Comparison of accuracy achieved using various pre-trained CNNs in dataset V_l1 and
dataset V_L

The proposed network has an improvement in accuracy of about 2% in V_l1 data set and 4% in
V_L data set. Similar improvement can be seen in all other performance metric we considered. The
importance of an accurate diagnosis cannot be underestimated, because diagnostic errors cause delays
and mistakes in treatment that can be fatal. An accurate diagnosis is critical to prevent wasting precious
time on the wrong course of treatment.

5.2 Comparison of Results Achieved Using Various Feature Selection Methods
A set of experiments were also conducted to evaluate the performance of the marine predator

feature selection algorithm. The results suggest that the proposed MPA-KNN strategy is capable of
selecting the most relevant and optimal characteristics. It outperformed the well-known metaheuristic
algorithms we put to the test. The performance of five commonly used optimization algorithms
for feature selection, namely Particle Swarm Optimization (PSO), Cuckoo Search Algorithm (CS),
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Artificial Butterfly Optimization (ABO) and Harmony Search (HS) were compared against MPA.
Table 4 and Fig. 5 illustrate the performance of various feature selection techniques in combination
with the proposed multi-CNN and KNN classifier. The results achieved using MPA outperform other
techniques in both the datasets.

Table 4: Results achieved using various feature selection methods

Dataset Feature selection Class Precision Recall F1-score Kappa score Accuracy

V_l1 MPA

Closed Mesh-work 1.0 0.93 0.97

0.974 98.08
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 1.0 0.97
Wave 1.0 1.0 1.0

V_L MPA

Closed Mesh-work 1.0 0.93 0.97

0.975 98.15
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.94 1.0 0.97
Wave 1.0 1.0 1.0

V_l1 PSO

Closed Mesh-work 0.86 0.86 0.86

0.897 92.31
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 0.88 0.90
Wave 0.92 1.0 0.96

V_L PSO

Closed Mesh-work 1.0 0.93 0.97

0.95 96.3
Color Fringe 0.91 1.0 0.95
Open Mesh-work 0.94 1.0 0.97
Wave 1.0 0.93 0.96

V_l1 ACO

Closed Mesh-work 0.86 0.86 0.86

0.897 92.31
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 0.88 0.90
Wave 0.92 1.0 0.96

V_L ACO

Closed Mesh-work 1.0 0.93 0.97

0.926 94.44
Color Fringe 0.91 0.91 0.91
Open Mesh-work 0.94 1.0 0.97
Wave 0.92 0.92 0.92

V_l1 CS

Closed Mesh-work 0.93 0.87 0.90

0.923 94.23
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 0.93 0.93
Wave 0.92 1.0 0.96

V_L CS

Closed Mesh-work 1.0 0.88 0.93

0.925 94.44
Color Fringe 0.91 1.0 0.95
Open Mesh-work 0.94 1.0 0.97
Wave 0.92 0.92 0.92

V_l1 ABO

Closed Mesh-work 0.79 0.85 0.81

0.871 90.38
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 0.82 0.88
Wave 0.92 1.0 0.96

(Continued)
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Table 4 (continued)

Dataset Feature selection Class Precision Recall F1-score Kappa score Accuracy

V_L ABO

Closed Mesh-work 0.93 0.81 0.87

0.876 90.74
Color Fringe 0.91 1.0 0.95
Open Mesh-work 0.88 1.0 0.93
Wave 0.92 0.86 0.89

V_l1 HS

Closed Mesh-work 0.93 0.93 0.93

0.948 96.15
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 0.93 0.93
Wave 1.0 1.0 1.0

V_L HS

Closed Mesh-work 1.0 0.88 0.93

0.95 96.3
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.94 1.0 0.97
Wave 0.92 1.0 0.96

MPA PSO ACO CS ABO HS
0.8

0.85

0.9

0.95

A
cc

ur
ac

y

dataset V_l1
dataset V_L

Figure 5: Comparison of accuracy achieved using various feature selection techniques in dataset V_l1
and dataset V_L

5.3 Analysis of Computational Complexity
Table 5a shows the computational time taken for feature extraction followed by feature selection

and classification (in seconds) in each of the networks. Even though the results achieved using the
proposed network is better, computational time is higher than the other networks. Table 5b provides
the execution time taken by various feature selection techniques. All the techniques except ACO took
a very less amount of time for feature selection.
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Table 5a: Execution time using various networks

Network Dataset Time (s)

MobilenetV2
V_l1 15.18
V_L 16.06

EfficientnetB0
V_l1 20.23
V_L 25.28

Shufflenet
V_l1 13.63
V_L 13.47

NasnetMobile
V_l1 21.20
V_L 20.17

Proposed
V_l1 30.50
V_L 32.00

Table 5b: Execution time using various feature selection techniques

Selection technique Dataset Time (s)

MPA
V_l1 10.59
V_L 11.88

PSO
V_l1 7.95
V_L 8.55

ACO
V_l1 95.69
V_L 95.82

CS
V_l1 12.37
V_L 12.73

HS
V_l1 6.59
V_L 6.86

The proposed framework is a combination of two lightweight CNNs, namely MobilenetV2 and
EfficientnetB0. Hence, it is obvious that the feature vector size is classified as having a large dimension
as it contains the features derived using the two lightweight CNNs. With regard to processing time,
the light weight CNNs execution time is better when used singly than in combination. It is worth to
note that, even when used in combination, the execution time is only 30.50 s and 32 s, respectively
for the datasets V_l1 and V_L, which is a significantly shorter time when considered for real medical
applications.

5.4 Comparison of Results Achieved Using Various Classifiers
Next set of experiments was conducted to evaluate the performance of KNN against other

classifiers. WEKA tool was used for the classification using Naive Bayes (NB), Bayesnet, SVM and
Random Forest (RF). Features selected using MPA were passed to the classifiers. Default parameters
in WEKA were used for the classification. The results of the classification are displayed in Table 6 and
Fig. 6. The results show the superior performance of the KNN classifier.
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Table 6: Analysis of performance of various classifiers

Dataset Classifier Class Precision Recall F1-score Kappa score Accuracy

V_l1 KNN

Closed Mesh-work 1.0 0.93 0.97

0.974 98.08
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 1.0 0.97
Wave 1.0 1.0 1.0

V_L KNN

Closed Mesh-work 1.0 0.93 0.97

0.975 98.15
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.94 1.0 0.97
Wave 1.0 1.0 1.0

V_l1 SVM

Closed Mesh-work 0.857 0.75 0.8

0.7682 82.6923
Color Fringe 0.923 1 0.96
Open Mesh-work 0.733 0.846 0.786
Wave 0.8 0.727 0.762

V_L SVM

Closed Mesh-work 0.818 0.75 0.783

0.8495 88.8889
Color Fringe 0.9 0.9 0.9
Open Mesh-work 1 0.895 0.944
Wave 0.813 1 0.897

V_l1
Logistic
Regression

Closed Mesh-work 0.909 0.625 0.741

0.7699 82.6923
Color Fringe 0.923 1 0.96
Open Mesh-work 0.8 0.923 0.857
Wave 0.692 0.818 0.75

V_L
Logistic
Regression

Closed Mesh-work 0.9 0.75 0.818

0.8492 88.8889
Color Fringe 0.769 1 0.87
Open Mesh-work 0.947 0.947 0.947
Wave 0.917 0.846 0.88

V_l1
Naive
Bayes

Closed Mesh-work 1 0.563 0.72

0.6685 75.00
Color Fringe 0.833 0.833 0.833
Open Mesh-work 0.611 0.846 0.71
Wave 0.692 0.818 0.75

V_L
Naive
Bayes

Closed Mesh-work 0.643 0.75 0.692

0.7993 85.1852
Color Fringe 1 0.9 0.947
Open Mesh-work 1 0.895 0.944
Wave 0.786 0.846 0.815

V_l1
Random
Forest

Closed Mesh-work 0.611 0.688 0.647

0.4818 61.5385
Color Fringe 0.6 0.75 0.667
Open Mesh-work 0.8 0.615 0.696
Wave 0.444 0.364 0.4

(Continued)
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Table 6 (continued)

Dataset Classifier Class Precision Recall F1-score Kappa score Accuracy

V_L
Random
Forest

Closed Mesh-work 0.833 0.833 0.833

0.7025 77.7778
Color Fringe 0.75 0.9 0.818
Open Mesh-work 0.929 0.684 0.788
Wave 0.625 0.769 0.69

KNN SVM LR NB RF
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Figure 6: Comparison of accuracy achieved using various classifiers in dataset V_l1 and dataset V_L

5.5 Analysis of the Impact of ROI Segmentation
In addition to the experiments performed using various CNN frameworks and feature selection

techniques, we also checked the effect of ROI-segmentation on the performance evaluation. Initially,
the images were applied directly to the proposed network architecture without performing the
segmentation of ROI. In the second step, using graph-based segmentation, ROI is extracted from the
raw images and passed to the network. The experiments show that the best results are obtained for ROI
based analysis. Table 7 and Fig. 7 illustrate the impact of segmentation on the model’s performance.

Table 7: Analysis of performance of the model after graph cut segmentation

Dataset Segmentation Class Precision Recall F1-score Kappa score Accuracy

V_l1
Before
segmentation

Closed Mesh-work 0.71 0.91 0.80

0.8708 90.38
Color Fringe 1.0 1.0 1.0
Open Mesh-work 1.0 0.79 0.88
Wave 0.92 1.0 0.96

V_L
Before
segmentation

Closed Mesh-work 0.79 0.73 0.76

0.7777 83.33
Color Fringe 1.0 0.85 0.92
Open Mesh-work 0.81 1.0 0.90
Wave 0.77 0.77 0.77

(Continued)
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Table 7 (continued)

Dataset Segmentation Class Precision Recall F1-score Kappa score Accuracy

V_l1
After
segmentation

Closed Mesh-work 1.0 0.93 0.97

0.974 98.08
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.93 1.0 0.97
Wave 1.0 1.0 1.0

V_L
After
segmentation

Closed Mesh-work 1.0 0.93 0.97

0.975 98.15
Color Fringe 1.0 1.0 1.0
Open Mesh-work 0.94 1.0 0.97
Wave 1.0 1.0 1.0

Before Segmentation After Segmentation
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0.85

0.9

0.95
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Figure 7: Analysis of the effect of segmentation on the model’s performance

5.6 Comparison with State-of-the-Art Methods
Table 8 shows the performance comparison of the proposed method with that of the state-of-the-

art methods. The method achieved superior performance than all other methods except [10]. However,
the results reported in [10] are solely based on the model’s performance in dataset V_l1 whereas, the
proposed pipeline achieved promising results in both datasets.

Table 8: Comparison of results with state-of-the-art methods

Work Method Dataset Number
of images

Accuracy

Proposed Light weight CNN+MPA V_l1 105 98.08
V_L 108 98.15

Remeseiro et al. [5] color and texture features+SVM V_l1 105 97.14
Remeseiro et al. [11] color and texture features+SVM V_l1 105 95.24

(Continued)
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Table 8 (continued)

Work Method Dataset Number
of images

Accuracy

Ramos et al. [21] color and texture features+SVM V_l1 105 91.43
Bolón-Canedo et al. [22] color and texture

features+ReliefF+SVM
V_l1 105 92.00

Remeseiro et al. [10] color and texture
features+PCA+SVM

V_l1 105 98.10

Peteiro-Barral et al. [23] MCDM+Rank Correlation V_l1 105 96.00
Remeseiro et al. [24] color and texture features+feature

selection+SVM
V_l1 105 94.29

color and texture features+feature
selection+SVM

V_L 108 91.67

5.7 Limitations and Future Scope
The major hindrance in DES research is the non-availability of standard datasets for checking

the developed algorithms. Even though the proposed method achieved promising results, the number
of images available in the dataset was less. Hence, to ensure robustness of the method, the proposed
algorithm needs to be tested in larger datasets. Another limitation of the study is the non-inclusion of
Amorphous images in the classification framework. It is worth noting that the Amorphous class of
images rarely occurs while diagnosing, and hence, similar research works also avoid the classification
of the Amorphous category of images.

The proposed architecture employs pre-trained CNNs, trained using non-medical images for the
classification of lipid layer patterns. As a future work, we propose to compile a dry eye disease dataset
sufficiently larger to train a CNN from scratch. A custom-made CNN trained using a larger dry-
eye disease dataset could provide better results. Deployment of the network in mobile devices is also
planned as a future work.

6 Conclusion

The study described in this paper presents a novel method integrating deep learning with nature
inspired feature selection techniques for the diagnosis of dry eye syndrome. Among the various pre-
trained CNNs, and nature inspired feature selection techniques, the combination of MobilenetV2 and
EfficientnetB0 with the Marine Predator algorithm demonstrated the best performance. The proposed
method achieved promising results in the experimented datasets. Even though the method produced
significant results, empirical studies on larger datasets are required for confirming the robustness of
the proposed technique. The method can be used as a computer-aided tool for assisting clinicians after
more trials.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



CMES, 2023, vol.136, no.1 105

References
1. Stapleton, F., Alves, M., Bunya, V. Y., Jalbert, I., Lekhanont, K. et al. (2017). TFOS DEWS II epidemiology

report. The Ocular Surface, 15(3), 334–365.
2. Boccardo, L. (2022). Self-reported symptoms of mask-associated dry eye: A survey study of 3,605 people.

Contact Lens & Anterior Eye Association, 45(2), 101408.
3. Lemp, M. A., Foulks, G. N. (2007). The definition and classification of dry eye disease. The Ocular Surface,

5(2), 75–92.
4. Guillon, J. P. (1998). Non-invasive tearscope plus routine for contact lens fitting. Contact Lens and Anterior

Eye, 21, S31–S40.
5. Remeseiro, B., Bolon-Canedo, V., Peteiro-Barral, D., Alonso-Betanzos, A., Guijarro-Berdinas, B. et al.

(2013). A methodology for improving tear film lipid layer classification. IEEE Journal of Biomedical and
Health Informatics, 18(4), 1485–1493.

6. Abràmoff, M. D., Garvin, M. K., Sonka, M. (2010). Retinal imaging and image analysis. IEEE Reviews in
Biomedical Engineering, 3, 169–208.

7. Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R. et al. (2012). Blood vessel
segmentation methodologies in retinal images–A survey. Computer Methods and Programs in Biomedicine,
108(1), 407–433.

8. Sivakumar, R., Eldho, M., Jiji, C., Vinekar, A., John, R. (2016). Computer aided screening of retinopathy
of prematurity—A multiscale gabor filter approach. 2016 Sixth International Symposium on Embedded
Computing and System Design (ISED), IIT Patna, India, IEEE.

9. Ramachandran, S., Strisciuglio, N., Vinekar, A., John, R., Azzopardi, G. (2020). U-cosfire filters for vessel
tortuosity quantification with application to automated diagnosis of retinopathy of prematurity. Neural
Computing and Applications, 32(16), 12453–12468.

10. Remeseiro, B., Penas, M., Barreira, N., Mosquera, A., Novo, J. et al. (2013). Automatic classification of
the interferential tear film lipid layer using colour texture analysis. Computer Methods and Programs in
Biomedicine, 111(1), 93–103.

11. Remeseiro, B., Ramos, L., Penas, M., Martinez, E., Penedo, M. G. et al. (2011). Colour texture analysis for
classifying the tear film lipid layer: A comparative study. 2011 International Conference on Digital Image
Computing: Techniques and Applications, pp. 268–273. Noosa, Queensland Australia, IEEE.

12. Tan, M., Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. Interna-
tional Conference on Machine Learning, pp. 6105–6114. Long Beach, California, USA, PMLR.

13. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C. (2018). Mobilenetv2: Inverted residuals
and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4510–4520. Salt Lake City, UT, USA.

14. Rother, C., Kolmogorov, V., Blake, A. (2004). “Grabcut” interactive foreground extraction using iterated
graph cuts. ACM Transactions on Graphics, 23(3), 309–314.

15. Boykov, Y. Y., Jolly, M. P. (2001). Interactive graph cuts for optimal boundary & region segmentation of
objects in nd images. Proceedings Eighth IEEE International Conference on Computer Vision, vol. 1, pp.
105–112. IEEE.

16. Bouguettaya, A., Kechida, A., Taberkit, A. M. (2019). A survey on lightweight cnn-based object detection
algorithms for platforms with limited computational resources. International Journal of Informatics and
Applied Mathematics, 2(2), 28–44.

17. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K. et al. (2009). Imagenet: A large-scale hierarchical image
database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. Miami, FL,
IEEE.

18. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A. H. (2020). Marine predators algorithm: A
nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377.



106 CMES, 2023, vol.136, no.1

19. Subasi, A., Khateeb, K., Brahimi, T., Sarirete, A. (2020). Human activity recognition using machine learning
methods in a smart healthcare environment. In: Innovation in health informatics, pp. 123–144. Netherlands,
Elsevier.

20. El-Hasnony, I. M., Barakat, S. I., Elhoseny, M., Mostafa, R. R. (2020). Improved feature selection model
for big data analytics. IEEE Access, 8, 66989–67004.

21. Ramos, L., Penas, M., Remeseiro, B., Mosquera, A., Barreira, N. et al. (2011). Texture and color analysis
for the automatic classification of the eye lipid layer. International Work-Conference on Artificial Neural
Networks, pp. 66–73. Torremolinos, Spain, Springer.

22. Bolón-Canedo, V., Remeseiro, B., Sánchez-Maroño, N., Alonso-Betanzos, A. (2015). Real-time tear film
classification through cost-based feature selection. In: Transactions on computational collective intelligence
XX , pp. 78–98. Switzerland: Springer.

23. Peteiro-Barral, D., Remeseiro, B., Méndez, R., Penedo, M. G. (2017). Evaluation of an automatic dry eye
test using mcdm methods and rank correlation. Medical & Biological Engineering & Computing, 55(4),
527–536.

24. Remeseiro, B., Bolón-Canedo, V., Alonso-Betanzos, A., Penedo, M. G. (2015). Learning features on tear
film lipid layer classification. European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, pp. 195–200. Bruges, Belgium.


	A Novel Light Weight CNN Framework Integrated with Marine Predator Optimization for the Assessment of Tear Film-Lipid Layer Patterns
	1 Introduction
	2 Related works
	3 Materials Used
	4 Method
	5 Results and Discussion
	6 Conclusion


