
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.022308

ARTICLE

Application of Zero-Watermarking for Medical Image in Intelligent Sensor
Network Security

Shixin Tu, Yuanyuan Jia, Jinglong Du* and Baoru Han*

Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China

*Corresponding Authors: Jinglong Du. Email: jldu@cqmu.edu.cn; Baoru Han. Email: baoruhan@cqmu.edu.cn

Received: 03 March 2022 Accepted: 30 August 2022

ABSTRACT

The field of healthcare is considered to be the most promising application of intelligent sensor networks. However,
the security and privacy protection of medical images collected by intelligent sensor networks is a hot problem that
has attracted more and more attention. Fortunately, digital watermarking provides an effective method to solve
this problem. In order to improve the robustness of the medical image watermarking scheme, in this paper, we
propose a novel zero-watermarking algorithm with the integer wavelet transform (IWT), Schur decomposition
and image block energy. Specifically, we first use IWT to extract low-frequency information and divide them into
non-overlapping blocks, then we decompose the sub-blocks by Schur decomposition. After that, the feature matrix
is constructed according to the relationship between the image block energy and the whole image energy. At the
same time, we encrypt watermarking with the logistic chaotic position scrambling. Finally, the zero-watermarking
is obtained by XOR operation with the encrypted watermarking. Three indexes of peak signal-to-noise ratio,
normalization coefficient (NC) and the bit error rate (BER) are used to evaluate the robustness of the algorithm.
According to the experimental results, most of the NC values are around 0.9 under various attacks, while the BER
values are very close to 0. These experimental results show that the proposed algorithm is more robust than the
existing zero-watermarking methods, which indicates it is more suitable for medical image privacy and security
protection.
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1 Introduction

With the increasing maturity of intelligent sensor network technology and the continuous
improvement of hospital information construction, intelligent sensor network technology is more
and more widely used in hospital information systems by combining wide area networks (WAN),
wireless networks and other network fields [1]. Most of the data collected by the hospital intelligent
sensor network terminal itself belongs to sensitive medical information. Once the information is
leaked or maliciously modified, it will bring irreparable losses to the hospital. At the same time,
medical information will involve patient information in the process of network transmission. If patient
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information is leaked, it will bring a huge threat to the patient’s personal privacy, property security,
and information security [2]. Therefore, it is necessary to ensure the security of patient information.

In the current field of healthcare, more and more medical information is collected and transmitted
through intelligent sensor networks. Among them, medical images provide a visual way for clinicians
to diagnose the condition of patients. An increasing number of medical images are transmitted among
different positions through the network. Most of these medical images contain personal privacy
details, which may be maliciously intercepted and tampered with by some illegal elements during the
transmission. Therefore, the digital watermarking technique has been gradually applied to protect the
security of the medical image [3]. It embeds specified information that cannot be visually detected
and in the digital carrier without affecting the transmission, which plays a role in copyright protection
[4]. The digital watermarking method can be implemented in spatial and transform domains. The
spatial domain algorithm is simple and lightweight. In contrast, the transform-based method has
better transparency and robustness, so it has become mainstream in the field of digital watermarking.

In the spatial domain, the least significant bit (LSB) is a commonly-used technique [5,6]. For
example, Wang et al. proposed a fragile watermarking method based on the LSB, hash functions
and chaotic sequences [7]. The commonly-used method in the transform domain is discrete cosine
transform (DCT), discrete wavelet transform (DWT), discrete Fourier transform (DFT) and so on
[8–10]. In addition, many techniques based on the geometric moment of image watermarking are also
widely used [11]. A technique of embedding the scrambled binary watermarking into a host color image
by adapting the fractional-order multi-channel orthogonal exponent moments (MFrEMs) magnitudes
was proposed by Hosny et al. [12]. Besides, some algorithms divide medical images into regions of
interest (ROI) and regions of non-interest (RONI) to accurately extract the features matrix [13–15].
However, the division of ROI regions often requires manual evaluation and distinguishing, which
limits the application situation of these algorithms. However, most of the above methods construct
the watermarking by making some changes to the original image [16].

To solve this problem, Wen et al. proposed a zero-watermarking algorithm to construct the
watermarking according to the characteristic information of the image itself, which could solve
the contradiction between the perceptibility and robustness of digital watermarking [17]. This type
of zero-watermarking algorithm is widely used in the copyright protection of medical images.
Aditi et al. designed a multiple watermarking algorithm using DWT, DCT and singular value decom-
position (SVD) which used medical block image watermarking, doctor signature and patient diagnosis
information as text watermarking [18]. Similarly, Liu et al. [19] proposed a medical image zero-
watermarking algorithm based on dual-tree complex wavelet transform and discrete cosine transform.
Then, the zero-watermarking was encrypted by a Logistic map. Hu et al. [20] proposed a robust
medical image zero-watermarking algorithm combining bi-dimensional empirical mode decomposi-
tion (BEMD) with SVD, which could effectively detect image tampering and protect the copyright
of medical images. Xia et al. [21] extended the integer-order radial harmonic Fourier moments
(IoRHFMs) to fractional-order radial harmonic Fourier moments (FoRHFMs), and then proposed
a FoRHFM-based medical image zero-watermarking algorithm, which improved the calculation
accuracy of IoRHFMs and effectively alleviated the problem of numerical instability. Dai et al. [22]
proposed a hybrid reversible zero-watermarking (HRZW), in which the authors combined the zero-
watermarking and reversible watermarking to generate the ownership shares through the characteris-
tics and watermarking information of the nearest neighbor gray residue (NNGR), and then reversibly
embed the generated ownership shares based on slantlet transform, singular value decomposition and
quantization index modulation (SLT-SVD-QIM). For medical images, a robust zero-watermarking
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algorithm by fusing Dual-Tree Complex Wavelet Transform (DTCWT), Hessenberg decomposition,
and Multi-level Discrete Cosine Transform (MDCT) was proposed by Huang et al. [23].

The current focus of the watermarking algorithm research is on the robustness of this algorithm
under various attacks. However, these algorithms are less robust against high-intensity conventional
and geometric attacks, especially Gaussian noise, scaling attacks, and cropping attacks. And most
algorithms do not test the robustness of multiple attacks.

To address these issues, in this paper, we propose a zero-watermarking algorithm based on IWT,
Schur decomposition and image block energy. Specifically, we use IWT to extract low-frequency
regions from the original medical image and divide them into non-overlapping blocks, which are
subsequently decomposed by the Schur decomposition. Then, we extract the feature matrix by
comparing the energy of the image block and the whole image. Finally, we adopt the XOR operation
on the encrypted watermarking image and the feature matrix to generate the zero-watermarking. To
summarize, we make the following contributions in this work:

(1) We use IWT to avoid the defect of quantization error introduced in the medical image
calculation process;

(2) We improve the robustness and stability using the Schur decomposition with vector scale
invariance and quantum space invariance;

(3) We utilize the relationship between the block energy of the transform domain and the
average energy of medical images to construct the zero-watermarking, which can achieve good
robustness against various attacks even with multiple attacks.

2 Theoretical Basis
2.1 Integer Wavelet Transform (IWT)

Sweldens et al. proposed a lifting scheme which accelerates the speed of fast wavelet transform
[24]. Afterward, Calderbank et al. proposed IWT on the basis of a lifting scheme [25]. The coefficients
of this algorithm are all integers after transformation, so IWT not only retains the characteristics
of wavelet transform but also speeds up the operation. The transformation process of the algorithm
includes the following three steps: (1) Splitting: splitting the original data set into two disjoint subsets,
an even subset and an odd subset. (2) Prediction: on the basis of the original data and based on the
relationship between the data, a prediction operator is constructed, and the even subset sequence is
used to predict the odd subset sequence. The error between the predicted value and the original odd
subset will generate error data. (3) Update: to make the even subset generated in the splitting step
always retain some characteristics of the original data set, an update operator is constructed to update
the even subset.

The IWT is the same as the traditional wavelet transform. The original image is still decomposed
into four sub-bands after a wavelet transform. A schematic diagram of the 2-level IWT decomposition
is shown in Fig. 1. It is the low-frequency component LL of the original image in the horizontal
and vertical direction; LH is the low frequency in the horizontal direction and the high frequency
in the vertical direction; HL is the high frequency in the horizontal direction and the low frequency
in the vertical direction; and HH is the high-frequency component in the horizontal and vertical
directions. Among them, the LL sub-band is the low-frequency sub-band containing the features of
the original image. If the multi-level transformation is to be carried out, only the low-frequency sub-
band is further decomposed. Compared with the traditional wavelet transform, the IWT algorithm is
faster and simpler, suitable for parallel processing and takes up less memory.
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Figure 1: Schematic diagram of the 2-level IWT decomposition

2.2 Schur Decomposition
Schur decomposition is a common matrix decomposition, which is similar to SVD. SVD can be

derived from Schur decomposition. Schur decomposition’s theorem is as follows:

For any matrix A ∈ Rn×n, then there exists a unitary matrix U ∈ Rn×n and an upper triangular
matrix T ∈ Rn×n such that A = UTUT , the principal diagonal element of T in the formula is the
eigenvalue of A [26], where UT denotes the conjugate transpose matrix U .

The time complexity of SVD is bigger than the time complexity of Schur decomposition [27].
Thus, it can be seen that Schur decomposition can reduce the computational complexity and save a
lot of computing time compared with SVD.

2.3 Image Blocking Energy
Each image has its overall energy, but in the zero-watermarking algorithm, the fact that the

original image can effectively resist all kinds of attacks shows that the features constructed by the
algorithm are very robust. So, on the basis of the overall image energy, choose to block the image to
calculate the energy of the block image. The original image is divided into x × y sized blocks, and the
average energy E of each block is expressed as:

E =
x∑

i=1

y∑
j=1

I
(
i, j)2/(x × y

)
(1)

where I(i, j) is the pixel value of the original medical image and x, y represents the length and width
of the original image or chunks, respectively.

In [28], the natural image is used to test the relationship between the overall average energy
and the average energy when the original image is attacked by different attacks. While this paper
studies the medical image, there are some differences in imaging principles and inherent characteristics
between medical images and natural images. Therefore, this paper chooses the MRI image with
a size of 128 × 128 as the original image and divides it into 2 × 2 blocks for testing. When the
original image is attacked by Gaussian noise (10%), JEPG compression (50%), median filtering (3 × 3),
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counterclockwise rotation (5°) and scaling (0.25), the relationship between the overall average energy
of the medical image and the block average energy is shown in Table 1.

Table 1: Relationship between overall energy and block energy of medical images

Attack type T0 T1 PSNR

None 2543 1553 —
Gaussian noise (10%) 2549 1547 12.1322
JPEG compression (50%) 2545 1551 29.5967
Median filtering (3 × 3) 2520 1576 20.9100
Rotation (5°) (anticlockwise) 2561 1535 15.5834
Scaling (0.25, 4) 2495 1601 17.8888

As shown in Table 1, T0 represents the number of blocks whose average energy is greater than the
overall average energy, while T1 indicates that the average energy of blocks is less than the number
of blocks with overall average energy. And peak signal-to-noise ratio (PSNR) is an objective index to
evaluate image quality. After different attacks, except that the value of PSNR fluctuates greatly, but
the ratio between T0 and T1 is not large, so it has strong robustness. It can be seen that this feature
extraction method is also suitable for the construction of zero-watermarking in medical images.

3 Proposed Method

The medical image watermarking algorithm proposed in this paper can be divided into the process
of zero-watermarking construction and extraction, as shown in Fig. 2.

Figure 2: The flow chart of the proposed zero-watermarking construction and extraction process

3.1 Zero-Watermarking Construction
The collected medical images are transmitted to the data center by an intelligent sensor network.

Then upload the medical image to the medical cloud platform according to the requirements of medical
information management. In order to protect patient information disclosure or authentication, the
medical image stored in the data center is used as the original image to construct a zero-watermarking.
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We use the logistic chaotic scrambling method to encrypt the binary watermarking image W with
size N ×N to generate the scrambled watermarking image W1. The μ0 and x0 are chaotic initial values.
It is expressed as:

W1 ← logistics(W , μ0, x0) (2)

where Logistics(·) is the logistic chaotic scrambling function.

To construct the zero-watermarking, we adopt the IWT to extract the feature matrix from the
original image features [29]. The IWT not only retains the characteristics of the wavelet transform
but also is faster, which meets the requirements of accuracy and accurate decomposition of medical
images. Therefore, we utilize the 2-level IWT to extract the low-frequency part of the original medical
image I with size M × M, which can be obtained as:

I_LL2 ← liftwavedec2(I) (3)

where liftwavedec2(·) denotes the two-level IWT function.

Schur decomposition is a commonly-used matrix decomposition method, which is similar to
SVD operation [27]. Compared with SVD, it can reduce computational complexity and save a lot
of computing time. In addition, Schur decomposition also has vector scaling invariance and quantum
space invariance, so it can effectively resist scaling attacks. These important characteristics make the
zero-watermarking algorithm faster, more robust and stable. The low-frequency part of the original
medical image is divided into non-overlapping blocks. Then decomposes the blocks by the Schur
decomposition. The specific realization process can be written as:

Aij ← Block(I_LL2, m, m) (4)

Tij ← schur(Aij) (5)

where m = √
N, n = M/4

√
N and i, j ∈ (1, 2, 3, · · · , m).

Each image has its overall energy, but in the zero-watermarking algorithm, the fact that the
original image can effectively resist all kinds of attacks shows that the features constructed by the
algorithm are very robust. Because the relationship between the overall average energy of the medical
image and the average energy of each block has strong robustness. The calculation of the overall
original medical image I energy is given by:

E =
M∑

i=1

M∑
j=1

I(i, j)2/(M × M) (6)

On the basis of the overall image energy, we choose to block the image to calculate the energy of
the split image. The original image is divided into n×n sized blocks, and the average energy Ek of each
block is expressed as:

Ek =
n∑

i=1

n∑
j=1

T(i, j)2/(n × n), k ∈ (
1, 2, 3, · · · , n2

)
(7)

Based on the overall average energy and block average energy of the carrier image calculated in
the above steps, the method of constructing the feature matrix can be represented as:

Tk =
{

1 E ≥ Ek

0 other
(8)



CMES, 2023, vol.136, no.1 299

Finally, the zero-watermarking Z is generated by the exclusive XOR operation of the feature
matrix T and the scrambled watermarking image W1, therefore we can get:

Z = XOR(T , W1) (9)

The final zero-watermarking Z is registered in the copyright authentication center. The construc-
tion process is shown in Fig. 2. The specific steps are as Algorithm 1.

3.2 Zero-Watermarking Extraction
The zero-watermarking extraction is similar to the above-described construction process. The

difference is that the feature matrix obtained from the attacked medical image is XOR with the zero-
watermarking from the copyright authentication center, and then inverse scrambling is carried out
to the extraction watermarking image W ′. The process of zero-watermarking extraction is shown
in Fig. 2. The detailed steps are as Algorithm 2. Here, we use the PSNR, normalization coefficient
(NC) and the bit error rate (BER) between the extraction watermarking image W ′ and the original
watermarking image W to measure the robustness of the watermarking algorithm, which can be
written as:

PSNR = 10 × log

⎛
⎜⎜⎜⎝ (2n − 1)2(

M∑
i=1

M∑
j=1

(I ′(i, j) − I(i, j))2

)
/(M × M)

⎞
⎟⎟⎟⎠ (10)

NC =

N∑
i=1

N∑
j=1

W(i, j) × W ′(i, j)√
N∑

i=1

N∑
j=1

W 2(i, j) ×
N∑

i=1

N∑
j=1

W ′2(i, j)

(11)

BER = Number_err
Number

× 100% (12)

In formula (10) and formula (11), M is the length and width of the original medical image, N is
the length and width of the watermarking image. In formula (12), Number_err represents the error bit
generated in transmission, Number represents the total number of bits transmitted.

Algorithm 1
Input: original image I (M × M), watermarking image W (N × N)
Output: zero-watermarking Z
W1 = logistics(W , μ0, x0) //generate the scrambled watermarking image
I_LL2 ← liftwavedec2(I)
Ak ← Block(I_LL2, N) //k ∈ (1, 2, 3, · · · , N)

Tk ← schur(Ak)

E =
M∑

i=1

M∑
j=1

I(i, j)2
/(M × M)

Ek =
n∑

i=1

n∑
j=1

Tk(i, j)2
/(n × n) // n = M/4

√
N

(Continued)
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Algorithm 1 (Continued)
for k = 1, 2, 3, · · · , N do

if E >= Ek then
B(k) = 0

else B(k) = 1
end if

end for
Z = XOR(B, W1)

4 Experiments and Results
4.1 Experimental Setting

In the experiment, we implement the construction and extraction of zero-watermarking using the
MATLAB R2018a platform. The original medical images include the brain, lung, chest and hand
with the size of 128 × 128 are used as the original carrier images, as shown in Figs. 3a–3d. The original
watermarking images with the size of 64 × 64 are given in Figs. 3e–3f.

Figure 3: The original carrier medical image and the watermarking image used in the experiment

Algorithm 2
Input: attacked medical image I ′ (M × M), zero-watermarking Z (N × N)
Output: the decrypted watermarking W2

I ′_LL2 ← liftwavedec2(I ′)
A′

k ← Block(I ′_LL2, m, m) // k ∈ (1, 2, 3, · · · , N)

T ′
k ← schur(A′

k)

(Continued)
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Algorithm 2 (Continued)

E ′ =
M∑

i=1

M∑
j=1

I ′(i, j)2
/(M × M)

E ′
k =

n∑
i=1

n∑
j=1

Tk
′
(i, j)2

/(n × n) // n = M/4
√

N

for k = 1, 2, 3, · · · , N do
if E ′ >= E ′

k then
B′(k) = 0

else B′(k) = 1
end if

end for
W ′ = inverse_logistics(XOR(B′, Z), μ0, x0)

In this paper, we simulate conventional attacks (Gaussian noise, salt & pepper noise, speckle noise,
JPEG compression and median filtering, average filtering and Gaussian filtering), geometric attacks
(scaling, cropping, rotation, and translation) and combination attacks to evaluate our proposed
medical watermarking algorithm. Here, PSNR is used to measure the distortion of the original medical
image after being attacked. Besides, we use the NC value given in formula (11) and the BER given in
formula (12) to measure the similarity between the extracted watermarking image and the original
watermarking image. Due to a large amount of data in the experimental results, only the experimental
data of watermarking image Fig. 3e are listed in Tables 2–4.

Table 2: Detection results of medical images after conventional attack

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

Gaussian
noise

5% PSNR 14.7642 15.1995 14.0572 12.3400
NC 1.0000 1.0000 0.9877 0.9627
BER 0 0 0.0156 0.0469

10% PSNR 12.0866 12.5372 11.7086 9.9068
NC 1.0000 1.0000 0.9502 0.9502
BER 0 0 0.0625 0.0625

15% PSNR 10.7126 10.8986 10.5340 8.7046
NC 1.0000 0.9877 0.9376 0.9121
BER 0 0.0156 0.0781 0.1094

20% PSNR 9.7727 10.1506 9.6248 7.8319
NC 0.9877 0.9629 0.8994 0.8993
BER 0.0156 0.0469 0.1248 0.1248

25% PSNR 9.1073 9.3068 9.1064 7.3490
NC 0.9753 0.9504 0.8865 0.8863
BER 0.0313 0.0625 0.1406 0.1404

(Continued)
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Table 2 (continued)

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

Salt &
pepper
noise

5% PSNR 16.7578 17.0762 18.0804 15.8647
NC 1.0000 1.0000 1.0000 0.9877
BER 0 0 0 0.0156

10% PSNR 13.6868 13.7390 14.5451 13.0412
NC 1.0000 1.0000 0.9877 0.9753
BER 0 0 0.0156 0.0313

15% PSNR 11.7907 12.0737 12.8125 11.0732
NC 1.0000 1.0000 0.9753 0.9502
BER 0 0 0.0313 0.0625

20% PSNR 10.7667 10.8368 11.7323 10.1200
NC 1.0000 0.9629 0.9502 0.9376
BER 0 0.0469 0.0625 0.0781

25% PSNR 9.7068 9.7819 10.6847 8.9041
NC 0.9877 0.9502 0.9249 0.9122
BER 0.0156 0.0625 0.0938 0.1091

Speckle
noise

5% PSNR 21.1982 21.4382 17.7929 22.2242
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

10% PSNR 18.2521 19.0031 15.1206 19.1629
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

15% PSNR 16.6040 17.4271 13.5238 17.5106
NC 1.0000 1.0000 0.9877 0.9877
BER 0 0 0.0156 0.0156

20% PSNR 15.5492 16.3898 12.4485 16.2019
NC 1.0000 1.0000 0.9877 0.9877
BER 0 0 0.0156 0.0156

25% PSNR 14.7916 15.6281 11.5182 15.3433
NC 1.0000 1.0000 0.9502 0.9877
BER 0 0 0.0625 0.0156

JPEG
compression

5% PSNR 22.0045 23.9372 26.7095 26.8927
NC 1.0000 1.0000 0.9753 0.9877
BER 0 0 0.0315 0.0153

10% PSNR 23.8912 26.9916 29.8869 29.6461
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

15% PSNR 24.9075 28.465 31.7934 31.1542
NC 1.0000 1.0000 0.9877 0.9877
BER 0 0 0.0156 0.0156

(Continued)
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Table 2 (continued)

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

20% PSNR 25.8223 29.5188 32.9327 32.1163
NC 1.0000 1.0000 0.9877 0.9877
BER 0 0 0.0156 0.0156

25% PSNR 26.7087 30.3743 33.8355 32.8303
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

Median
filtering

3 × 3 PSNR 23.5681 29.2442 37.9383 35.8022
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

5 × 5 PSNR 19.4000 23.9270 32.2365 31.9462
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

7 × 7 PSNR 17.3484 22.2896 28.8159 28.9450
NC 1.0000 1.0000 0.9753 1.0000
BER 0 0 0.0313 0

9 × 9 PSNR 15.8117 21.3870 26.6631 25.8972
NC 1.0000 1.0000 0.9753 0.9627
BER 0 0 0.0313 0.0469

11 × 11 PSNR 14.8774 20.5817 25.1021 23.4141
NC 1.0000 1.0000 0.9628 0.9627
BER 0 0 0.0469 0.0469

Average
filtering

3 × 3 PSNR 21.3212 26.6291 29.4174 30.8675
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

5 × 5 PSNR 18.4333 22.3107 25.9712 27.4251
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

7 × 7 PSNR 17.0003 20.2281 23.8956 25.2664
NC 1.0000 1.0000 0.987 0.9877
BER 0 0 0.0156 0.0156

9 × 9 PSNR 16.1408 18.8448 22.4341 23.4856
NC 1.0000 1.0000 0.9877 0.9753
BER 0 0 0.0156 0.0313

11 × 11 PSNR 15.6052 17.7630 21.3092 22.0736
NC 1.0000 0.9879 0.9877 0.9753
BER 0 0.0154 0.0156 0.0313

(Continued)
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Table 2 (continued)

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

Gaussian
filtering

3 × 3 PSNR 21.4444 26.7688 29.5766 31.0254
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

5 × 3 PSNR 18.7563 22.7303 26.3948 27.8346
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

7 × 3 PSNR 17.5649 20.9820 24.7006 26.0922
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

9 × 3 PSNR 16.9531 20.0162 23.7148 24.9039
NC 1.0000 1.0000 0.9877 0.9753
BER 0 0 0.0156 0.0313

11 × 3 PSNR 16.6365 19.4445 23.1469 24.1661
NC 1.0000 1.0000 0.9877 0.9753
BER 0 0 0.0156 0.0313

Table 3: Detection results of medical images after geometric attack

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

Scaling

0.125, 8 PSNR 15.6243 17.6118 24.5495 22.0149
NC 1.0000 1.0000 0.9877 0.9627
BER 0 0 0.0157 0.0469

0.25, 4 PSNR 17.8888 21.8774 29.2038 28.1517
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0157 0

0.5, 2 PSNR 21.5809 27.0624 35.8517 32.9718
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

2, 0.5 PSNR 30.2404 38.8692 47.1327 43.5692
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

4, 0.25 PSNR 30.5191 39.1329 47.5906 43.8283
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

5% PSNR 90.1377 22.2412 19.0604 25.2433
NC 1.0000 1.0000 0.9628 1.0000
BER 0 0 0.0469 0

(Continued)



CMES, 2023, vol.136, no.1 305

Table 3 (continued)

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

10% PSNR 90.1377 18.4078 14.7486 22.0753
NC 1.0000 0.9752 0.9376 0.98766
BER 0 0.0313 0.0781 0.0156

Cropping 15% PSNR 56.9175 16.1173 12.4962 20.5341
NC 1.0000 0.9752 0.8865 0.9877
BER 0 0.0313 0.1406 0.1563

20% PSNR 25.9643 14.8096 11.1329 19.3096
NC 1.0000 0.9376 0.8603 0.9753
BER 0 0.0779 0.1719 0.0312

25% PSNR 19.9237 13.9273 10.3298 17.7532
NC 1.0000 0.92476 0.8603 0.9753
BER 0 0.0935 0.1719 0.0313

Rotation

3°
PSNR 18.2249 19.3431 20.3276 21.9927
NC 1.0000 1.0000 0.9753 1.0000
BER 0 0 0.0313 0

5° PSNR 15.5834 16.6031 17.3382 18.9684
NC 1.0000 0.9877 0.9501 0.9627
BER 0 0.0156 0.0625 0.0469

10° PSNR 12.9947 13.2794 13.7619 15.9034
NC 1.0000 0.9753 0.8994 0.8993
BER 0 0.0313 0.1248 0.1250

15° PSNR 12.2902 11.4540 11.9394 14.9546
NC 0.9501 0.9252 0.7984 0.8863
BER 0.0625 0.0938 0.2498 0.1406

20° PSNR 12.0683 10.1806 10.8055 14.3554
NC 0.9376 0.8347 0.7277 0.8465
BER 0.0781 0.2031 0.3279 0.1873

Translation

1%
PSNR 17.8600 20.2850 25.4793 30.1726
NC 1.0000 0.9877 0.9877 1.0000
BER 0 0.0156 0.0156 0

3% PSNR 13.2478 14.1042 19.4053 24.0885
NC 0.9753 0.9877 0.9627 1.0000
BER 0.0313 0.0156 0.0469 0

5% PSNR 11.9854 11.0666 15.9737 20.6979
NC 0.9503 0.8473 0.9251 1.0000
BER 0.0625 0.1875 0.0938 0

7% PSNR 11.8748 9.8692 14.6068 19.2970
NC 0.9503 0.7799 0.9125 0.9877
BER 0.0625 0.2656 0.1094 0.0156

(Continued)
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Table 3 (continued)

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

9% PSNR 11.6587 8.8945 13.0342 17.7887
NC 0.9247 0.7249 0.8732 0.9376
BER 0.0938 0.3281 0.1563 0.0781

Table 4: Detection results of medical images after combination attack

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

Gaussian
noise and
median
filtering

5%, 3 × 3
PSNR 19.1489 20.9061 20.7881 18.8019
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

10%, 5 × 5 PSNR 17.5993 20.1135 20.6786 19.1843
NC 1.0000 1.0000 1.0000 1.0000
BER 0 0 0 0

15%, 7 × 7 PSNR 16.3756 19.0191 20.0520 18.9095
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

20%, 9 × 9 PSNR 15.6893 18.1736 18.7612 18.4873
NC 1.0000 1.0000 0.9877 0.9877
BER 0 0 0.0156 0.0156

25%,
11 × 11

PSNR 15.2340 17.1140 17.8346 17.9449
NC 1.0000 1.0000 0.9753 0.9877
BER 0 0 0.0313 0.0156

JPEG com-
pression
and median
filtering

5%, 3 × 3
PSNR 21.1295 24.5684 27.3012 27.5828
NC 1.0000 1.0000 0.9753 0.9877
BER 0 0 0.0313 0.0156

10%, 5 × 5 PSNR 19.2976 24.1588 29.7951 29.1742
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

15%, 7 × 7 PSNR 17.4761 22.3819 28.3498 27.9810
NC 1.0000 1.0000 0.9753 0.9877
BER 0 0 0.0313 0.0156

20%, 9 × 9 PSNR 16.0470 21.4425 26.4696 25.7769
NC 1.0000 1.0000 0.9753 0.9627
BER 0 0 0.0313 0.0469

25%,
11 × 11

PSNR 15.1197 20.6040 25.0580 23.6894

(Continued)
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Table 4 (continued)

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

NC 1.0000 1.0000 0.9628 0.9627
BER 0 0 0.0469 0.0469

Cropping
and median
filtering

5%, 3 × 3
PSNR 23.5681 21.4882 19.0059 24.8774
NC 1.0000 1.0000 0.9628 1.0000
BER 0 0 0.0469 0

10%, 5 × 5 PSNR 19.4000 17.4241 14.6643 21.6490
NC 1.0000 0.9752 0.9376 0.9877
BER 0 0.0313 0.0781 0.0156

15%, 7 × 7 PSNR 17.3443 15.2166 12.3925 19.9473
NC 1.0000 0.9503 0.8865 0.9752
BER 0 0.0623 0.1406 0.0313

20%, 9 × 9 PSNR 15.5347 13.9957 11.0146 18.4451
NC 1.0000 0.9376 0.8603 0.9753
BER 0 0.0779 0.1719 0.0313

25%,
11 × 11

PSNR 14.1811 13.1628 10.1960 16.7092
NC 1.0000 0.9248 0.8735 0.9877
BER 0 0.0935 0.1563 0.0156

JPEG com-
pression
and scaling

5%, 0.125
PSNR 15.5163 17.4607 24.2929 21.7789
NC 1.0000 1.0000 0.9753 0.9627
BER 0 0 0.0313 0.0469

10%, 0.25 PSNR 17.7903 21.7549 28.5464 27.5526
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

15%, 0.5 PSNR 21.2622 26.3763 32.6142 31.2318
NC 1.0000 1.0000 0.9877 0.9877
BER 0 0 0.0156 0.0156

20%, 2.0 PSNR 25.5233 30.0743 33.4944 32.5491
NC 1.0000 1.0000 0.9877 0.9877
BER 0 0 0.0156 0.0156

25%, 4.0 PSNR 26.2767 30.8143 34.4413 33.3297
NC 1.0000 1.0000 0.9877 1.0000
BER 0 0 0.0156 0

0.125, 5%
PSNR 15.7607 16.4132 18.1330 22.2645
NC 1.0000 1.0000 0.9628 0.9753
BER 0 0 0.0469 0.0313

0.25, 10% PSNR 18.0261 16.8881 14.7144 23.0562
NC 1.0000 0.9752 0.9376 0.9877
BER 0 0.0313 0.0781 0.0156

(Continued)
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Table 4 (continued)

Attack type Attack
intensity

Evaluation
index

Brain image Lung image Chest image Hand
image

Scaling and
cropping

0.5, 15% PSNR 21.7197 15.8221 12.5822 22.2321

NC 1.0000 0.9629 0.8865 0.9877
BER 0 0.0466 0.1406 0.0156

2, 20% PSNR 24.7837 14.7955 11.2348 21.2317
NC 1.0000 0.9376 0.8603 0.9753
BER 0 0.0779 0.1719 0.0313

4, 25% PSNR 19.7524 13.9171 10.4319 19.6812
NC 1.0000 0.9248 0.8603 0.9753
BER 0 0.0935 0.1719 0.0313

Rotation
and scaling

3°, 0.125 PSNR 15.7016 17.0976 21.9632 22.9540
NC 1.0000 1.0000 0.9753 0.9753
BER 0 0 0.0313 0.0313

5°, 0.25 PSNR 16.7363 17.5117 18.5239 21.7308
NC 1.0000 0.9877 0.9501 0.9627
BER 0 0.0156 0.0625 0.0469

10°, 0.5 PSNR 13.8861 13.5584 14.0713 18.0076
NC 0.9877 0.9753 0.8994 0.8993
BER 0.0156 0.0313 0.1248 0.1250

15°, 2.0 PSNR 12.5631 11.4826 12.0792 16.9252
NC 0.9501 0.9378 0.7954 0.8863
BER 0.0625 0.0781 0.2498 0.1406

20°, 4.0 PSNR 12.3288 10.2007 10.9375 16.3234
NC 0.9376 0.8347 0.7277 0.8465
BER 0.0781 0.2031 0.3279 0.1873

4.2 Robustness Experiments
4.2.1 Conventional Attacks

The first is to carry out some kinds of noise attacks. In this paper, Gaussian noise, salt & pepper
noise and speckle noise with different intensities (5%, 10%, 15%, 20% and 25%) are selected to attack
the four original medical images. The NC values of all four medical images under the Gaussian noise
attack are above 0.88 with the increasing noise intensity as shown in Table 2. Under salt & pepper
noise and speckle noise, the NC values of four medical images are greater than 0.9 under an intensity
of 25%. Especially under speckle noise attacks, the NC values are always greater than 0.91. And under
all three types of noise attacks, the BER values of the images are less than 0.15. As shown in Figs. 4–6,
when all kinds of medical images are attacked by three noises of intensity 15%, the NC values are
greater than 0.95 despite the serious distortion of the original images. It indicates that the proposed
algorithm is robust to noise attacks.
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Figure 4: Four medical images and extracted watermarking images with Gaussian noise attack intensity
of 15%

Figure 5: Four medical images and extracted watermarking images with salt & pepper noise attack
intensity of 15%

Figure 6: Four medical images and extracted watermarking images with speckle noise attack intensity
of 15%
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Similarly, the NC values of all four medical images are maintained above 0.97 and their BER
values are less than 0.04 through JPEG compression attacks of different intensities. When the strength
is 15%, the attack results of the four images are shown in Fig. 7, and we can still see the watermarking
pattern clearly through the naked eye. This demonstrates that our algorithm can effectively resist JPEG
compression attacks.

Figure 7: Four medical images and extracted watermarking images with JPEG compression attack
intensity of 15%

Three kinds of filtering attacks are also selected in this paper, namely, median filtering, average
filtering, and Gaussian filtering. As can be seen from Table 2, as the attack intensity increases, the NC
values of the brain image and lung image are almost 1, while the other two images have NC values
above 0.96, and the BER values are also very close to 0. As shown in Figs. 8–10, we can see that the
median filtering intensity and the mean filtering intensity are 7 × 7, and the Gaussian filtering intensity
is 7 × 3. The images have been very blurred, but the watermarking image is still relatively complete,
even the NC values of brain image and lung image are still equal to 1. The two observations mentioned
above verify the good performance against various filtering attacks. Overall, these results shown in
Table 2 demonstrated that the proposed algorithm has strong resistance to conventional attacks.

Figure 8: Four medical images and extracted watermarking images with median filtering attack
intensity of 7 × 7
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Figure 9: Four medical images and extracted watermarking images with average filtering attack
intensity of 7 × 7

Figure 10: Four medical images and extracted watermarking images with Gaussian filtering attack
intensity of 7 × 3

4.2.2 Geometric Attacks

Table 3 shows the results of our proposed method against geometric attacks. As the scaling attack
intensity increases, the NC and PSNR value increases gradually. Besides, no matter what the scaling
factor, the NC values of the brain image and lung image are always equal to 1.0 and the BER values
are almost always 0. Fig. 11 shows the experimental results when the scaling factors are 0.5 and 2. This
shows that the proposed algorithm has strong robustness under scaling attacks.

For medical images such as the chest radiograph, when subjected to a slightly stronger cropping
attack, the pixels of the extracted watermarking image are somewhat distorted, but the average value
of NC is still higher than 0.86. Fig. 12 shows the experimental results after cropping 15% along the
X-axis direction. Their NC values are greater than 0.88. It shows that this proposed algorithm can
effectively resist cropping attacks.
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Figure 11: Four medical images and extracted watermarking images with scaling attack intensity of
0.5 and 2

Figure 12: Four medical images and extracted watermarking images with cropping attack intensity of
15%

Image rotation is a common geometric attack that changes the position of image pixels. After
rotating 10 degrees counterclockwise, as shown in Fig. 13, the smallest NC value is 0.8993. The rotation
attack experimental data in Table 3 further verify that the proposed algorithm has a strong ability to
resist counterclockwise rotation attacks.

In the process of downward translation, the PSNR obtained from the original medical image
decreases gradually, but the NC values are high enough and the BER values are also close to 0. In
Fig. 14, when the translation attack intensity is 5%, their NC values are much greater than 0.84.
Therefore, for geometric attacks (scaling, cropping, rotation and translation downward), this proposed
algorithm also shows attractive robustness.
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Figure 13: Four medical images and extracted watermarking images with rotation attack intensity of
10°

Figure 14: Four medical images and extracted watermarking images with translation attack intensity
of 5%

4.2.3 Combination Attacks

Six combined attacks are selected in this paper. The first is the combination of two conventional
attacks. The first kind is the Gaussian noise attack on the medical image and then the median filtering
attack, and the second is the JPEG compression attack on the medical image and then the median
filtering attack. As can be seen in Table 4, under both attacks, despite the gradually decreasing PSNR
values of the four medical images, their NC values are consistently greater than 0.96. From Figs. 15
and 16, the NC values of the brain image and lung image are maintained at 1 under both attacks. In
addition, the overall BER values are below 0.05 for both attacks.
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Figure 15: Four medical images and extracted watermarking images with Gaussian noise attack
intensity of 5% and median filtering attack intensity of 3 × 3

Figure 16: Four medical images and extracted watermarking images with JPEG compression attack
intensity of 5% and median filtering attack intensity of 3 × 3

The second major category is the combination of conventional attacks and geometric attacks. The
first one cuts the image along the X-axis and then performs the median filtering attack. Compared
with the four images, the NC values of the chest image are slightly lower but still above 0.85, and the
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NC values of the other three images remain above 0.9. The second attack is the JPEG compression
attack on the image and then the scaling attack. In Figs. 17 and 18, when the medical images become
very blurred and distorted, the NC values of the four images are greater than 0.96, and the BER values
are also close to 0.

Figure 17: Four medical images and extracted watermarking images with cropping attack intensity of
5% and median filtering attack intensity of 3 × 3

Figure 18: Four medical images and extracted watermarking images with JPEG compression attack
intensity of 5% and scaling attack intensity of 0.125

The third category of attacks is two geometric attacks on images, namely, scaling attack combined
with cropping attack, and rotation attack combined with scaling attack. From the data in Table 4, only
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the chest image has the lowest NC value of 0.7277 under both attacks, while the other three images
have NC values above 0.83 under both attacks. In Figs. 19 and 20, under both attacks, it is obvious
that even if the image distortion is serious, the extracted watermarking image is very clearly visible.
From the overall results of these three types of attacks, the proposed algorithm can effectively resist
the attacks of different combinations.

Figure 19: Four medical images and extracted watermarking images with scaling attack intensity of
0.125 and cropping attack intensity of 5%

Figure 20: Four medical images and extracted watermarking images with rotation attack intensity of
3° and scaling attack intensity of 0.125
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4.3 Comparisons with Other Algorithms
To verify the advantage of our proposed algorithm, we used the same experiment condition to

compare it with other representative works [23,28,30,31]. In the contrast experiment, the 128 × 128
brain image shown Fig. 3a is selected as the original medical image, and the watermarking image is
shown in Fig. 3e. The specific experimental results are shown in Tables 5–9.

Table 5: NC values of different algorithms under conventional attacks

Attack type Attack
intensity

Proposed
algorithm

Algorithm
[23]

Algorithm
[28]

Algorithm
[30]

Algorithm
[31]

Gaussian
noise

5% 1.0000 0.9375 0.9749 0.6830 0.7366
10% 1.0000 0.9504 0.9514 0.6667 0.6671
15% 1.0000 0.9504 0.9199 0.6555 0.6447

JPEG
compression

5% 1.0000 0.9877 0.9863 0.5748 0.6738
10% 1.0000 0.9502 0.9882 0.6518 0.9863
15% 1.0000 0.9629 0.9935 0.7126 0.8530

Median
filtering

3 × 3 1.0000 0.9377 0.9888 0.7088 0.9969
5 × 5 1.0000 0.9123 0.9713 0.7511 0.9649
7 × 7 1.0000 0.9123 0.9532 0.7671 0.9579

Table 6: BER values of different algorithms under conventional attacks

Attack type Attack
intensity

Proposed
algorithm

Algorithm
[23]

Algorithm
[28]

Algorithm
[30]

Algorithm
[31]

Gaussian
noise

5% 0 0.0781 0.0332 0.5313 0.3127
10% 0 0.0625 0.0637 0.5469 0.4143
15% 0 0.0625 0.1028 0.6250 0.4263

JPEG
compression

5% 0 0.0156 0.0173 0.4844 0.3831
10% 0 0.0625 0.0149 0.4063 0.0173
15% 0 0.0469 0.0083 0.3438 0.1731

Median
filtering

3 × 3 0 0.0781 0.0142 0.3438 0.0039
5 × 5 0 0.1094 0.0361 0.2966 0.0442
7 × 7 0 0.1094 0.0586 0.2810 0.0505

Table 7: NC values of different algorithms under geometric attacks

Attack type Attack
intensity

Proposed
algorithm

Algorithm
[23]

Algorithm
[28]

Algorithm
[30]

Algorithm
[31]

Scaling 0.125, 8 1.0000 0.8746 0.9284 0.6690 0.8037
0.25, 4 1.0000 0.9628 0.9670 0.6989 0.8763
0.5, 2 1.0000 0.9753 0.9908 0.7372 0.9579

(Continued)
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Table 7 (continued)

Attack type Attack
intensity

Proposed
algorithm

Algorithm
[23]

Algorithm
[28]

Algorithm
[30]

Algorithm
[31]

Cropping 20% 1.0000 0.9753 0.9969 0.9754 0.9776
25% 1.0000 0.9377 0.9834 0.9377 0.9316
30% 1.0000 0.9502 0.9655 0.8998 0.9214

Rotation 5° 1.0000 0.9628 0.9441 0.6649 0.9492
10° 1.0000 0.9753 0.9089 0.6351 0.8890
15° 0.9501 0.9502 0.8901 0.6666 0.8619

Translation 5% 0.9503 0.9378 0.8996 0.7532 0.8840
10% 0.9247 0.9378 0.8819 0.7106 0.8371
15% 0.9118 0.9753 0.8548 0.6966 0.7920

Table 8: BER values of different algorithms under geometric attacks

Attack type Attack
intensity

Proposed
algorithm

Algorithm
[23]

Algorithm
[28]

Algorithm
[30]

Algorithm
[31]

Scaling 0.125, 8 0 0.1563 0.0891 0.3906 0.2388
0.25, 4 0 0.0469 0.0415 0.3591 0.1526
0.5, 2 0 0.0313 0.0117 0.3125 0.0530

Cropping 20% 0 0.0313 0.0039 0.0313 0.0283
25% 0 0.0781 0.0210 0.0781 0.0857
30% 0 0.0625 0.0435 0.1248 0.0984

Rotation 5° 0 0.0469 0.0698 0.3904 0.0637
10° 0 0.0313 0.1133 0.4216 0.1375
15° 0.0625 0.0625 0.1355 0.3904 0.1694

Translation 5% 0.0625 0.0781 0.1235 0.2966 0.1431
10% 0.0938 0.0781 0.1450 0.3435 0.1985
15% 0.1094 0.0313 0.1768 0.3591 0.2498

Table 9: Comparison of results of running time

Proposed
algorithm

Algorithm
[23]

Algorithm
[28]

Algorithm
[30]

Algorithm
[31]

Average times (sec) 0.9406 1.0975 0.9524 0.9540 1.3329

When carrying out conventional attacks, as shown in Tables 5 and 6, in the attack of Gaussian
noise, the NC value of both algorithm [30] and algorithm [31] is lower than 0.7. According to the
JPEG compression attack, the NC value of algorithm [30] appears below the value of 0.6. Under the
median filtering attack, except that the value of algorithm [30] is lower than 0.8, the NC value of
the other algorithms is greater than 0.9. Only in the algorithm [23,28] and the proposed algorithm,
the NC value is always above 0.9 under different degrees of three attacks, and the NC value of the
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proposed algorithm is always equal to 1. Moreover, the BER values of the algorithm under different
conventional attack intensities are equal to 0, while other algorithms have BER values greater than 0,
or even have values greater than 0.5. So far, it can be seen that under conventional attack, the proposed
algorithm has stronger stability and robustness than the compared algorithms [23,28,30,31].

As shown on the right in Table 7, when faced with the increased intensity of different geometric
attacks, the NC values of the algorithms showed in [23,28,30,31] all decrease, while the proposed
algorithm is almost maintained at 1.0 in terms of NC metric. When facing different degrees of
translation attacks, the NC values of the algorithms in [28,30,31] are lower than 0.9, and the algorithm
in [30] is even lower than 0.8, but the proposed algorithm and the algorithm [23] are still above 0.9.
Under the geometric attack, in Table 8, the largest BER value of the proposed algorithm is 0.1094,
and the remaining BER values are equal to 0, which are much smaller than the BER values of other
algorithms. From these observations, we can obviously see that the proposed algorithm is more robust
when it is subjected to geometric attack compared with the other algorithms [23,28,30,31].

To more comprehensively detect the algorithm’s performance, under the same experimental
environment, the computing time of the proposed algorithm and the literature [23,28,30,31] for
comparison, the average time for the 20 runs is displayed in Table 9. Table 9 shows that the computing
time of the proposed algorithm to construct zero-watermarking is low relative to the literature
[23,28,30,31]. This is because the IWT has high computational efficiency, and the computational
complexity of the Schur decomposition is lower than that of the SVD in [30,31], which effectively
enhances the algorithm’s execution efficiency.

5 Conclusion

Aiming to protect the security of the medical image and not damage original information, we
have proposed a new zero-watermarking algorithm in this work. Specifically, we used the IWT to
extract low-frequency information from the original medical image, which was then divided into blocks
by the Schur decomposition. After that, we constructed the feature matrix according to the relation
between image block energy. Meanwhile, we encrypted the watermarking information using logistic
position scrambling. Finally, zero-watermarking is generated via the XOR operation between the
scrambled watermarking information and the feature matrix. We compared our algorithm with other
representative works under a series of conventional attacks and geometric attacks in the experiment.
Experimental results show that the proposed algorithm could improve the robustness of the medical
image zero-watermarking, especially for the high-intensity of conventional attacks and geometric
attacks. This algorithm can efficiently ensure the safety and privacy of patients and the confidentiality
and reliability of medical images. However, this algorithm in this paper is aimed at 2D medical images.
It has not been applied to 3D medical images, our future work will consider applying the proposed
algorithm to the protection of 3D medical images, and we will attempt to design a robust zero-
watermarking algorithm that can protect 2D and 3D medical images.
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