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ABSTRACT

To maximize energy profit with the participation of electricity, natural gas, and district heating networks in the
day-ahead market, stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and
wind resources, has been carried out. This has been done using a new meta-heuristic algorithm, improved artificial
rabbits optimization (IARO). In this study, the uncertainty of solar and wind energy sources is modeled using
Hang’s two-point estimating method (TPEM). The IARO algorithm is applied to calculate the best capacity of hub
energy equipment, such as solar and wind renewable energy sources, combined heat and power (CHP) systems,
steam boilers, energy storage, and electric cars in the day-ahead market. The standard ARO algorithm is developed
to mimic the foraging behavior of rabbits, and in this work, the algorithm’s effectiveness in avoiding premature
convergence is improved by using the dystudynamic inertia weight technique. The proposed IARO-based schedul-
ing framework’s performance is evaluated against that of traditional ARO, particle swarm optimization (PSO),
and salp swarm algorithm (SSA). The findings show that, in comparison to previous approaches, the suggested
meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity, gas,
and heating markets by satisfying the operational and energy hub limitations. Additionally, the results show that
TPEM approach dependability consideration decreased hub energy’s profit by 8.995% as compared to deterministic
planning.
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1 Introduction

Consumers in the commercial, industrial, and residential sectors are all linked to energy networks
[1] those that provide electricity, natural gas, and district heating or cooling. To this point, several
studies have been conducted in connection with energy infrastructures. Combining these systems may
profit from the combined and flexible qualities of these systems, and this combination has been the
subject of different research. Natural gas distribution networks offer the potential to store energy
straightforwardly and cost-effectively [2,3]. On the other side, the power system can transport energy
from great distances with only a moderate amount of energy being lost in the process. Therefore,
merging these two networks and making use of the assets of each will result in an improvement in the
system’s efficiency and reliability as well as optimum performance [2,3]. To understand the impact that
the combination of different energy carriers has on the economic and technical indicators associated
with energy systems, such structural and operational flexibility necessitates the existence of an all-
encompassing framework. In recent years, a general framework known as a hub has been proposed
in [4,5]. This framework, which combines a variety of energy carriers and performs conversion and
storage in them to supply the required load on the consumer side, was developed as a result of research
conducted in recent years. An energy hub is a unit that, upon receiving various energy carriers at
its input and carrying out the required energy conversion or storage, provides, at its output, either
the final energy required by the local consumer load or the input energy required by an independent
energy distributor. This is accomplished by the energy hub receiving various energy carriers at its input
and performing the necessary energy conversion or storage [6,7]. The combined heat and power (CHP)
equipment, distributed generation, renewable energy sources, electrical and heating energy storage and
boilers, and active loads are all components that might be included in an energy hub model. On the
other hand, simultaneous and coordinated planning of all energy equipment at the point of use may
increase network performance and system flexibility in conjunction with a variety of different kinds
of electric, gas, and heating networks [8,9].

Several investigations on the concept of an energy center have been carried out. In [10], the energy
hub has a variety of sources, such as cogeneration units, steam boilers, renewable resources, electric
chiller, absorption chiller, and electric, heating, and cooling energy storage devices. The purpose of
these varied sources is to increase the adaptability of energy hubs. The findings demonstrated that,
in contrast to the balance-based methods, which do not guarantee the optimality of the response, the
operation of a multi-carrier local distribution system had been done in the case of islands that are
separated from the main grid because of significant incidents or faults [11]. The results of this study
can be found here [11]. This network is made up of three energy hubs, each of which, while aiming
to satisfy their demand as efficiently as possible, can keep their operational expenses to a minimum
by exchanging energy with the other energy hubs in the network. Using electricity-to-gas converters,
the reference [12] presented a framework for the optimal operation of interconnected energy hubs
with the goals of lowering costs, meeting the energy requirements of consumers, cutting greenhouse
gas emissions, and improving the interaction between electricity and gas networks. A framework for
decentralized energy management has been established, and it is based on the interaction that permits
coordination amongst energy hubs. This framework may be found in [13]. A trading platform that
would assist the integrated energy hub system’s self-organized trade has been developed as part of this
study to enhance the economic performance of the integrated energy hub system. This was done to
achieve the goal. In [14], a bi-level scheduling approach is presented for isolated microgrids considering
multi-stakeholders to minimize the operational cost using Jaya-interior point method. In [15], a bi-
level scheduling framework is developed to participate in electric vehicle battery swapping stations to
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regulate the isolated microgrid economic operation with the objective of net costs minimization and
maximization of the profits.

A fresh paradigm for the efficient administration of energy hubs is described in reference [16].
As a result of this foundation, each energy hub is responsible for the management of its production
resources to plan the supply and demand to lower the cost as well as the emission of pollutants. In
[17], a hybrid robust energy management approach is presented for multi-energy microgrids including
electric, heat, hydrogen and gas sub-networks considering uncertainties of renewable resources gen-
eration, and load demand. In [18], the linear approximation method is used to simplify the model
of an interconnected system that includes three energy hubs, to reduce the computational costs; the
study that was done in [19] provides a two-level optimization model of optimal planning. References
[18,19] both aimed to reduce the costs associated with computation. An active distribution system
can offer its excess power to the market and is used daily. This system is made up of DGs as well
as various energy hubs. The hierarchical game approach is provided in reference [20], where it is
used to discuss the development of an integrated energy system that includes the involvement of
the customer in addition to electricity, gas, and several smart energy hubs. An ideal planning model
that is based on dependability is described in [21] to link energy hubs employing multi-carrier energy
infrastructures. This model is offered to connect energy hubs. In [22], an optimal and stochastic energy
management framework for a energy hub plant is developed for solving the unit commitment problem
considering for maximizing energy hub profit, minimizing the carbon emission, and mitigation of the
uncertainties risk. In [23], a hierarchical energy management system is presented in the local network
consisting of various residential energy hubs to minimize the cost and peak shaving of the upstream
network. Both papers aim to minimize the cost of energy supply and greenhouse gas emissions. In
[24], planning of energy hubs includes combined energy and heat sources, hydrogen storage systems,
electric vehicles, and controllable loads is performed to minimize the cost of power generation as well
as the spread of environmental pollution. An optimization strategy for energy hubs is provided in
reference [25] in the context of the demand response energy market. The water wave optimization
(WWO) algorithm is used to present the planning model for the performance of energy sources and
energy storage by satisfying the constraints of the electricity and natural gas network while taking
into consideration the responsive load. This is done by satisfying the requirements of the energy
network. Quantum particle swarm optimization (QPSO) is used in [26] to investigate energy hub
system planning using wind and photovoltaic sources with optimal interaction between different
sources to supply different system loads. The overall goal of this investigation is to minimize the
total system cost. Wind and photovoltaic sources are used as sources. Energy planning in a storage-
based residential system is presented in reference [27] based on a multi-criteria optimization method
with the participation of the demand side to minimize production costs and maximize the level of
consumer satisfaction using the shuffled frog leaping algorithm. This was done to achieve both goals
(SFLA). Using VlseKriterijumska Optimizacija I Kompromisno Resenje, Lu et al. [28] presented the
optimization of the energy hub to minimize operating cost, carbon emission, and energy efficiency
based on a multi-objective optimization model. The goal of this optimization is to maximize energy
efficiency (VIKOR). Using an ant-lion optimizer and krill herd optimization (ALO-KHO) algorithm,
AkbaiZadeh et al. [29] developed hub energy management with the participation of electricity, gas, and
heating networks to minimize the cost of operation in the presence of energy and storage resources.
This is done to achieve the goal of minimizing the cost of operation.

The review of previous studies has shown that the planning of energy hubs requires a stochastic
approach that is implemented in terms of implementation and has a low computational cost. In
addition, this presented a stochastic approach based on the market model for energy hubs should
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be able to maximize their revenue in day-ahead electricity, gas and heating markets. According to the
literature evaluation, most of the stochastic programming is presented by the Monte Carlo simulation
method. This method depends on the probability distribution function of the inputs and has a
very high computational cost. On the other hand, efficient and coordinated planning of hub energy
equipment in cooperation with all types of electricity, gas and heating networks requires a strong solver
due to the non-linear and multi-dimensional nature of the problem. In addition, methods for one-
dimensional and multi-dimensional approximations for the linearization of non-convex functions of
natural gas transmission, generator cost and compressor performance are presented in the literature,
these linearizations are not required when using meta-heuristic algorithms. Therefore, the review of
the literature shows that there is a need for a stochastic energy hub planning framework with easy
implementation and low computational cost in cooperation with day-ahead electricity, gas and heating
markets for energy economic analysis with the aim of maximizing energy profit. This paper uses
the two-point estimation method along with a meta-heuristic algorithm that has high computational
power and optimization, and can provide the conditions to achieve maximum profit from an energy
hub in the conditions of uncertainty of energy resources production.

In this article, the stochastic scheduling of the energy hub using an approach called Hang’s two-
point estimation method (TPEM) is presented. The goal of the paper is to achieve the maximum
possible profit from the production of energy in the future market. Participants include networks for
the distribution of electricity, natural gas, and district heating. According to NFL theory [30], a meta-
heuristic algorithm may function well in addressing certain optimization issues, but the same algorithm
cannot give an optimum solution in solving other problems. This is because some optimization
problems are more complex than others. On the other hand, enhancing the performance of meta-
heuristic algorithms by the use of specialized approaches might help avoid the algorithms’ premature
convergence and improve their capacity to arrive at the global optimum solution promptly. In light of
this fact, the author of this research employs a brand-new meta-heuristic method known as artificial
rabbits optimization (IARO) in order to tackle the issue of energy hub schedules. The behavior of
rabbits as they search for food served as the basis for the artificial rabbit’s optimization (ARO)
algorithm [31]. The artificial rabbits optimization algorithm was developed because the traditional
method suffers from premature convergence when applied to problems with high levels of complexity.
In this work, the dynamic inertia weight technique [32] is used to increase the performance of standard
ARO in dealing with these types of situations. In this investigation, a comparison is made between
the effectiveness of the suggested IARO in resolving the stochastic energy hub scheduling issue and
the performance of the classic ARO, PSO, and SSA approaches. The goal of this investigation is to
maximize profits. The daily power and profit fluctuations for various energies in the markets for
electricity, heating, and gas, as well as the influence of varying load levels, and also equipment exit rate,
have all been analyzed for their impact on the profit from the sale of energy. The novelty of the paper
is to present a combined approach of the two-point estimation method (PEM) and the meta-heuristic
improved artificial rabbits optimization algorithm for the optimal planning of the energy hub. The
two-point estimation method is applied for uncertainty modeling and the meta-heuristic algorithm is
used to determine the optimal size of the hub energy equipment in the day-ahead market.

The major contributions of this paper are listed below:

1) Providing a stochastic scheduling framework including photovoltaic and wind energy sources,
CHP, boiler, and energy storage based on Hang’s two-point estimation method.

2) Maximization of energy profit due to participation in electricity, natural gas, and heating
markets based on optimal scheduling framework of an energy hub.
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3) Evaluation of changes in load levels and the forced output rate of renewable energy resources
and CHP equipment in solving the problem of hub scheduling and energy profit.

4) A new meta-heuristic algorithm called the improved ARO algorithm based on dynamic inertia
weight for solving energy hub schedules.

5) Comparing the performance of the optimal energy hub scheduling framework based on IARO
with the traditional methods of ARO, PSO, and SSA.

The paper is organized in such a way that in Section 2, the formulation of the problem including
the profit function and the operation and hub constraints are presented. In Section 3, Hang’s two-
point estimation method is described and the proposed meta-heuristic algorithm and how to solve the
problem by it are described in Section 4. In Section 5, simulation results and Section 6, study findings
are concluded.

2 Problem Formulation

The day-ahead market, with the aim function of maximizing energy profit, and with the restric-
tions of network operation and hubs are all taken into consideration in this section’s stochastic
scheduling presentation for participation in the electricity, natural gas, and district heating networks.
The energy hub model and analytical approach are discussed in the paragraphs that follow.

2.1 Hub Energy System
Fig. 1 illustrates the stochastic scheduling framework for energy hub scheduling in the day-ahead

market for electricity, gas, and heating. In order to increase the energy hub’s profit in the electricity,
gas, and district heating day-ahead markets, it is equipped with solar energy sources, wind sources,
CHP, boilers, storage components, and electric parking lots based on electric vehicles (EVs).

Figure 1: The presented framework of optimal energy scheduling of the energy hub
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2.2 Objective Function
In this research, to maximize profits, hub energy stochastic scheduling utilizing Hang’s two-

point estimate method (TPEM) is given in the market confronting electricity, natural gas, and district
heating. The sale of active and reactive power in the electricity market, as well as the revenue of the hub
energy in the day-ahead natural gas and district heating markets, are all included in the goal function
of profit maximization of the energy hub. This objective function is described as follows:

Max Profit =
∑
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t
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2.3 Limitations of the Problem
2.3.1 Power Flow Constraint

The power flow constraints in electricity, natural gas, and district heating networks are presented
below [27–29]:

• The active and reactive power balance in different buses
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• Active and reactive power flow of lines
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• Voltage angle in the base bus

The voltage angle in the base buses are set at zero, i.e., δe,t = 0, ∀ e∈Slackbus.

• Balance of gas power and flow

The balance of gas power in different buses and gas flow through the pipeline at hour t are as
follows:
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• The heating power balance in buses
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• Heat power flow

Heat power flow through a pipeline at time t is as follows:

Fh
h,j,t = ch,jṁh,j

(
Th,t − Tj,t

) ∀h, j, t (9)

DSp, DSq, GS, and HS represent the power of different stations assuming they are connected to the
base bus or connected to a bus in different networks.

2.3.2 Network’s Operation Constraints

The operating restrictions in the networks for electricity, natural gas, and district heating are
discussed in this section. Eqs. (10)–(18) define these limitations.

• Voltage range of buses

V min
e ≤ Ve,t ≤ V max

e ∀e, t (10)

• Allowed capacity of lines and stations√(
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e,j,t

)2 + (
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e,j ∀e, j, t (11)
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DSq

e,t
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• Bus pressure limit

πmin
g ≤ πg,t ≤ πmax

g ∀g, t (13)

• The capacity of gas pipes and station

− Fg,max
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g,j,t ≤ Fg,max
g,j ∀g, j, t (14)

− GSmax
g ≤ GSg,t ≤ GSmax

g ∀g, t (15)

• The thermal limit of buses

Tmin
h ≤ Th,t ≤ Tmax

h ∀h, t (16)

• The capacity of the station and heating pipeline

− Fh,max
h,j ≤ Fh

h,j,t ≤ Fh,max
h,j ∀h, j, t (17)

− HSmax
h ≤ HSh,t ≤ HSmax

h ∀h, t (18)

2.3.3 Hub Energy Constraints

The hub energy in this research consists of solar and wind renewable energy sources, storage,
electric parking, CHP, and a boiler, and it is linked to the regional heating network to deliver and
receive energy. Eqs. (19)–(22) are used to compute the active gas production and hub heating powers
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Hp
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Eq. (23) presents the power balancing equation for CHP while taking into account the CHP power
limit in the gas network, the electricity network, and the heating network.
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Based on Eqs. (27)–(32), the storage system’s limitations are stated. These limitations are based
on the range of stored energy (Eq. (25)), the charge and discharge range (Eqs. (28) and (29)), the range
of primary energy (Eq. (30)), the range of stored energy (Eq. (31)), and the charger’s limit (Eq. (32)).
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Eqs. (33)–(38), which are stated as restrictions on EV parking, are given [27–30]. The equation is
used to determine the amount of energy kept in EV batteries (33). Eqs. (34) and (35) define the charging
and discharging capability of EVs. Eqs. (36) and (37) provide the energy value of the batteries at the
time of arrival and departure, while Eq. (38) describes the capacity of the EV charger.

EEV
m,t+1 = EEV

m,t + ηEV ,chEp,ch
m,t − Ep,dch

m,t

ηEV ,dch
∀m, t (33)
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0 ≤ EEV ,p,ch
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Also, the boiler power balance equation and capacity constraints are defined based on Eqs. (39)
and (40) [19].

BOg
m,t = BOh

m,t

ηBO
∀m, t (39)

0 ≤ BOg
m,t ≤ BOmax

m ∀m, t (40)

where CREV/DREV is equivalent to
∑N1t

i=1 CRev
i /

∑N1t
i=1 DRev

i that DRev, CRev and N1t are, respectively, the
charging rate of the EVs, the discharging rate of the EVs, and the number of EVs in the parking lot at
hour t. EV max is equivalent to

∑N1t
i=1 CCev

i indicate CCev is the charging capacity of the EVs. Earr/Edep is
equivalent to

∑N2t
i=1 SOCiBCi/

∑N3t
i=1 BCi which SOC expresses the state of charge and BC is the battery

capacity of any EVs. N2t and N3t also refers to the arrival and departure times of EVs.

3 Two-Point Estimate Method and Implementation

Hong’s two-point estimate method (TPEM), an approximation approach for calculating the
uncertainty of solar and wind energy sources, is utilized in this article. Using the TPEM approach,
certain representative points (s points for each variable) have been identified under the heading of
concentrations based on the data supplied by the center of moments. Using the answers found for
the representative points, these points were utilized to solve the model and the statistical data of the
random output variable [33].

Consider that X {x1, x2, . . . , xl, . . . , xm} represents a random variable with mean μxl
and standard

deviation σxl
values. Also, Z is a random function of X (Z = F (X)). Each focus s of variables xl can be

defined as a pair consisting of a location xl,s and a weight wl,s. The presented method is called Hong’s
two-point estimate method (HTPEM). According to the HTPEM method, the F function should be
determined only s times for each random input variable xl in the points created at the same place from
the random input variable xl and the average value of the remaining input variables (μxl

). Therefore,
the total number of evaluations is 2 m. The location xl,s is defined as follows [33]:

xl,s = μxl
+ ξl,s × σxl

(41)

where ξl,s represents the standard location of the random variable xl. Standard locations and weights
of random variables xl are defined as follows:



2172 CMES, 2023, vol.137, no.3
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where λl,3 refers to the skewness of the random variable xl:

λl,3 =
E

[(
xl − μxl

)3
]

(
σxl

)3 (46)

The power of solar and wind renewable resources, in addition to loads, has been represented
arbitrarily in the energy management issue. For each emphasis, the key element of energy management,
the energy hub, must be used. The following is thought of as the problem’s solution:

Zl,s = F
{

x1,1, xl,2, . . . , xl,s, . . . , xm,s

}
(47)

where Zl,s defines the vector of random output variables related to the concentration of the random
input variable and refers to the non-linear relationship between input and output variables in the
problem of energy hub management. The raw moments of the output random variables are defined as
follows:

E (Z) ∼= E (Z) +
∑

s

wl,s × Zl,s (48)

The flowchart of the proposed stochastic methodology based on PEM and IARO is depicted in
Fig. 2. Also, implementation steps to solve the problem are as follows:

Step 1) Setting the first and second moments of random output variables to 0: E (Z) = 0.

Step 2) In this step, the random input variable xl is selected.

Step 3) λl,3, ξl,s and wl,s values are computed using Eqs. (41)–(46).

Step 4) In this step, two estimated positions xl,s are determined.

Step 5) The hub energy management problem is solved for each focus.

Step 6) In this step, the raw moments of the output variables are updated.

Step 7) Steps 2 to 6 are repeated until all concentrations of input random variables are considered.
If all concentrations and variables are considered, go to Step 8, and otherwise go to Step 2.

Step 8) Stop the algorithm and save the random output variables.
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Figure 2: Flowchart of proposed stochastic methodology based on PEM and IARO
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4 Proposed Optimization Method

In this study, an improved artificial rabbits optimization (IARO) is applied for optimal program-
ming of the energy hub to maximize the energy profit in partnership with electricity, natural gas and
district heating networks in the day-ahead market considering the uncertainty of photovoltaic and
wind resource production. The role of the presented optimization algorithm is as a solver to determine
the optimal capacity of hub energy equipment including photovoltaic and wind renewable energy
sources, combined heat and power (CHP) system, boiler, energy storage and electric vehicles in the
day-ahead market, as the profit of the system is maximized (Eq. (1)). Therefore, the presented meta-
heuristic algorithm optimally determines the decision variables by considering the profit objective
function and the constraints of network operation and hub energy in order to provide the best network
performance. Providing an optimization algorithm with excellent exploration and exploitation power
by achieving accurate scheduling of energy hub equipment as well as optimal energy management will
lead to achieving more energy profit. Of course, the uncertainty of resources is also included in the
presented stochastic planning.

4.1 Overview of the ARO
The ARO algorithm is based on rabbits’ natural habitat survival techniques [31]. To tackle the

optimization issue, the ARO algorithm employs foraging and hiding methods while minimizing the
energy exchanged between these strategies.

4.1.1 Searching for Shortcut Food (Exploration)

In other words, they are not happy with the grass in their region and seek far afield, which is termed
detour foraging. Rabbits tend to explore for food in far-off locations, therefore they have little interest
in searching for food in their immediate surroundings. Within its territory, the ARO algorithm assigns
each rabbit a certain number (d) of hiding spots. When searching for food, rabbits may sometimes
take into account the location of other rabbits. In this technique, rabbits may receive enough food to
eat while they are hunting for more food by congregating around a food source. Therefore, “detour
foraging” refers to the practice of each searcher attempting to improve their position relative to the
other searchers by introducing a disruption. The following is an explanation of how the detour foraging
model is presented [31]:
→
vi (t + 1) = →

xj (t) + R.
(→

xi (t) − →
xj (t)

)
+ round (0.5. (0.05 + r1)) .n1,

i, j = 1, . . . , n and j �= i
(49)

R = L.c (50)

L =
(

e − e(
t−1
T )

2)
. sin (2πr2) (51)

c (k) =
{

1 if k == g(l), k = 1, . . . , d and l = 1, . . . , �r3.d	
0 else

(52)

g = rand perm(d) (53)

n1 ∼ N(0, 1) (54)
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where
→
vi (t + 1) denotes the ith candidate rabbit position at time t + 1,

→
xi (t) designates the ith rabbit

position at time t, n denotes the size of the rabbit population, d denotes the number of dimensions of
the problem, T denotes the maximum number of iterations, �.	 denotes the ceiling function, and rand
perm denotes the random order of integers 1 to d. Also, r1 to r3 denotes three random numbers in the
range (1, 0).

4.1.2 Random Hiding (Exploitation)

A rabbit creates many hiding sites (d) around each dimension of the search area in each iteration
and thinks about hiding in one of those locations. By doing this, it lessens the likelihood of hunting
itself. The following definition applies to the ith rabbit’s jth hiding spot [31]:
→
bi,j (t) = →

xi (t) + H.g.
→
xi (t) , i = 1, . . . , n and j = 1, . . . , d (55)

H = T − t + 1
T

.r4 (56)

n2 ∼ N(0, 1) (57)

g (k) =
{

1 if k == j, k = 1, . . . , d
0 else

(58)

A variety of hiding spots are created around a rabbit throughout each dimension d. H stands
for the hidden parameter, which linearly changes from 1 to 1/T depending on a random disturbance
occurring throughout the repetitions.

Rabbits are not interested in selecting one of the hiding locations at random in order to hide from
the hunter and avoid being pursued. According to this definition of random concealing behavior [31]:

→
vi (t + 1) = →

xi (t) + R.
(

r4.
→
bi,r (t) − →

xi (t)
)

, i = 1, . . . , n (59)

gr (k) =
{

1 if k == �r5.d	 , k = 1, . . . , d
0 else

(60)

→
bi,r (t) = →

xi (t) + H.gr.
→
xi (t) (61)

where
→
bi,r denotes hiding that is thought to be hidden from d hideouts at random, and r4 and r5 stand

for integers between 0 and 1, again at random. The i-th searcher attempts to update his location with
the random hideaway chosen from among the number of d hideouts following the equations above
refers to a hideout considered randomly to hide from d number of hideouts and r4 and r5 represent
numbers between 0 and 1, randomly. According to the above equations, the i-th searching person tries
to update his position concerning the random hideout considered from the number of d hideouts.

The position of the i-th rabbit is updated as follows [31]:
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→
xi (t + 1) =

⎧⎨
⎩

→
xi (t) f

(→
xi (t)

)
≤ f

(→
vi (t + 1)

)
→
vi (t + 1) f

(→
xi (t)

)
> f

(→
vi (t + 1)

) (62)

4.1.3 Energy Reduction (Transition from Exploration to Exploitation)

In the ARO algorithm, rabbits often engage in detour foraging, but as iterations go on, they also
engage in random hiding. As a result, the rabbit loses energy over time. The energy component is thus
given as follows [31]:

A (t) = 4
(

1 − t
T

)
ln

1
r

(63)

r stands for a number between 0 and 1. The rabbit engages in random exploration and detours
foraging when A(t) > 1. A(t) ≤ 1 results in random hiding since the rabbit is not motivated to use its
hiding sites at random. Fig. 3 depicts the search structure by factor A.

Figure 3: Search structure according to factor A

As a result, the ARO creates a population of rabbits at random to serve as candidate answers in
the search space. The rabbit changes its location to a randomly selected rabbit from the population or
a randomly selected rabbit drawn from the hides with each iteration. Factor A undergoes a declining
process as the repetitions rise, forcing every rabbit in the population to carry out the transfer procedure.
To get the best response from the algorithm, it has been modified until it meets the convergence
condition. Fig. 4 displays the ARO algorithm’s pseudo-code.
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Figure 4: Pseudo code of ARO

4.2 Overview of IARO
The non-linear dynamic weight inertia [32] equation is introduced in this paper in order to enhance

dynamic control, achieve equilibrium between the phases of exploration and exploitation, as well as
enhance the local search capacity of the algorithm against premature convergence. The definition of
this inertia weight is as follows:

IW = IWmin + (IWmax − IWmin) × FVave,good − FV1

FVave,good − FVave,bad

(64)

Rabbits are grouped according to their fitness function values into good and bad rabbits. FVave,good

represents the average fitness value of good rabbits, while FVave,bad represents the average fitness value of
bad rabbits. It demonstrates that rabbits have a lower average fitness value than they do on average. By
balancing the exploration and exploitation phases, the suggested adaptive inertia weight may improve
the algorithm’s effectiveness and performance. Fig. 5 shows the IARO flowchart in action.
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Figure 5: Flowchart of IARO
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5 Simulation Results and Discussion

This section uses the HTPEM and IARO to demonstrate the results of stochastic hub energy
scheduling and management in various networks that are exposed to electricity, gas, and district
heating networks in day-ahead markets. In order to maximize hub profits, the hub energy scheduling
issue is treated as an optimization problem. In this work, the optimization issue is solved using the
IARO algorithm, and the performance of the algorithm is evaluated against that of the traditional
ARO, PSO, and SSA approaches. Each algorithm’s population, maximum iteration, and a number
of independent executions are chosen as 100, 200, and 25 accordingly. Each algorithm is executed 25
times and the best solution among all executions is selected as the final solution. Also, the performance
of the algorithms are evaluated using a statistical analysis including the Best, Mean and Worst, std
indices. The proposed method is implemented in Matlab software on a personal computer with Intel
Core i7-4510U, up to 3.1 GHz, 8 GB RAM, and Windows 10, 64-bit. Table 1 lists the control settings
for several methods. It should be mentioned that the values given by their authors in reference articles
serve as the control parameters for various approaches.

Table 1: Control parameters of different algorithms

Algorithm Parameter Value

ARO [31] – –
PSO [34] C1, C2 (personal and social constants) 2

Wmax and Wmin (maximum and minimum inertia weight) 0.9, 0.2
SSA [35] c2, c3 (random numbers) [0, 1]

5.1 System under Study and Data
The system under study consists of a 12-line electrical network with 9 buses, a gas network with 4

buses and 5 pipes, and an urban heating network with 9 buses and 9 pipelines (Fig. 6). Table 2 provides
line/pipeline statistics using 1 MW as the base power, 1 kV as the base voltage, 10 bar as the basis
pressure, and 100°C as the base temperature. The voltage, pressure, and temperature ranges are also
[0.9, 1.1] p.u. Table 3 contains information on the system load during the electric load peak hour.
During the other hours, the load percentage value is multiplied by the load value at 20:00. Fig. 7 depicts
the load curve (peak load %) for the electric and heating networks. Fig. 8 also displays the daily energy
pricing curve for electricity, gas, and district heating energy in the day-ahead market. Gas, electricity,
and heating stations are rated at 7, 11, and 3 p.u, respectively. Seven hubs make up the suggested test
system; their locations and details are shown in Fig. 6 and Table 4, respectively. Photovoltaic and wind
energy are two of Hub’s renewable energy sources; their estimated power is shown in Figs. 9 and 10,
respectively [36]. Additionally, 60 EVs are thought to be present in hubs 1, 2, 3, 5, 6, and 7. Every hour,
the information for battery SOC, BC, charge/discharge rate, EV efficiency, and the penetration rate is
taken into account [30,37]. Charge/discharge rate and efficiency are estimated to be 0.3 and 0.88 for an
electric storage system with a charger capacity of 0.5 p.u, and the minimum and the maximum capacity
of 0.5 and 2 p.u, respectively. Additionally, the power, gas, and heating networks’ CHP capacity is 2.5,
1, 1, with a combined efficiency of 0.8 [37]. The boiler system has a capacity and efficiency of 1 and
0.8, respectively.
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Figure 6: Schematic of the studied system

Table 2: Data of transmission lines, gas, and heating pipelines (p.u)

Electrical network Natural gas network District heating network
Line R X Fe,max Pipeline κ sign Fg,max Pipeline c × ṁ Fh,max

1-2 0.02 0.06 0.90 1-2 3 1 1.1 1-2 15 1.00
1-5 0.05 0.12 0.50 1-3 3.5 1 3.0 1-3 18.5 1.30
2-3 0.05 0.12 0.65 1-4 4 1 1.2 2-3 17.5 0.20
2-4 0.06 0.08 0.75 2-3 4.5 −1 0.6 2-7 18.5 0.50
2-5 0.06 0.11 0.80 3-4 4.5 1 0.8 3-4 19.5 0.65
3-4 0.07 0.11 1.20 3-6 19 0.20
4-5 0.01 0.04 0.65 4-5 15 0.35

(Continued)
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Table 2 (continued)

Electrical network Natural gas network District heating network
Line R X Fe,max Pipeline κ sign Fg,max Pipeline c × ṁ Fh,max

4-7 0.01 0.03 0.90 5-6 19 0.10
5-6 0.02 0.05 1.10 6-7 19.5 0.20
6-9 0.10 0.09 0.30
7-8 0.02 0.07 1.30
8-9 0.08 0.12 0.35

Table 3: Demand data for electricity, gas, and heating during peak hours (p.u)

Electrical network Natural gas network District heating network
Bus LP Lq Node Lh Node Lg

1 0 0 1 0 1 0
2 0 0 2 0.8 2 0
3 0 0 3 0.7 3 0
4 0.9 0.3 4 0.9 4 0
5 0.7 0.5 5 0.6
6 1 0.2 6 0.5
7 0 0 7 0.7
8 0.5 0.5
9 0.3 0.3

Figure 7: The daily curve of network load percentage
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Figure 8: The daily curve of energy prices in the DA market

Table 4: Hub specifications

System Location RES Storage EVs CHP Boiler Load (p.u)

E G h HDP HDq HDh HDg

Hub 1 2 - - � � � 0.8 0.4 0 0
Hub 2 3 - - � � � 0.5 0.3 0 0
Hub 3 7 - - � � � 0.6 0.4 0 0
Hub 4 5 4 7 � � 0.2 0.1 0.3 0
Hub 5 8 - - � � � 0.4 0.2 0 0
Hub 6 6 3 6 � � � � � 0.4 0.2 0.2 0
Hub 7 9 2 5 � � � � � 0.4 0.2 0.2 0

Figure 9: The daily curve of irradiance
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Figure 10: The daily curve of wind speed

5.2 Results of Deterministic Scheduling
The implementation of a new meta-heuristic algorithm called IARO allows for the optimal and

deterministic scheduling of energy hubs without taking into account the unpredictability of renewable
energy sources with the goal of maximizing profits in the day-ahead markets in various electricity,
natural gas, and urban heating networks. The standard ARO, PSO, and SSA algorithms and the
IARO algorithm have also been compared for their effectiveness in handling the energy hub scheduling
issue. Fig. 11 depicts the convergence of several optimization techniques. It should be noticed that
the objective function has a negative sign in order to meet the profit maximization target owing to
the minimization in the Matlab program. It is clear that the suggested IARO approach outperformed
other methods in terms of achieving the global solution or the highest profit with a greater convergence
speed.

Figure 11: Convergence curve of different algorithms in solving the deterministic scheduling problem

Table 5 provides the numerical outcomes of hub energy scheduling based on the suggested
technique. It is clear that in the 12th iteration, the IARO technique made a profit of $509.40, but the
other methods were unable to do so since they were trapped in the local optimum. Additionally, it is
noted that although the conventional ARO technique’s upgraded version experienced premature con-
vergence with a profit value of $502.11, the traditional ARO method did not due to the performance
enhancement of the non-linear dynamic inertia weight approach. Also, the proposed method has a
lower computational cost compared to the other methods. The greater capacity of the IARO algorithm
has been validated in terms of attaining better statistical indicators, in addition to the statistical analysis
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carried out for various algorithms in Table 6. The findings demonstrated that by striking a balance
between the algorithm’s exploration and exploitation phases, energy hub scheduling based on IAR may
avoid premature convergence and reach the global optimum more quickly. The findings demonstrate
that by resolving the many operational and energy hub restrictions, a potent optimization technique
can guarantee the energy hub’s best economic performance.

Table 5: The numerical results of different methods in solving the deterministic scheduling problem

Algorithm/Item Convergence iteration Profit ($) Solution time (s) Algorithm status

IARO 12 509.40 152 Globally optimal
ARO 48 502.11 169 Locally optimal
PSO 47 504.74 158 Locally optimal
SSA 32 503.21 164 Locally optimal

Table 6: The statistical analysis results of different methods in solving the deterministic scheduling
problem

Algorithm/Index Best ($) Worst ($) Mean ($) Std ($)

IARO 509.40 502.28 507.65 55.04
ARO 502.11 488.92 495.44 87.35
PSO 504.74 498.36 500.07 58.73
SSA 503.21 492.50 497.26 80.54

5.3 Results of Stochastic Scheduling
Using the HTPEM approach outlined in Section 3, the energy hub scheduling issue has been

handled in this part by taking into account the power unpredictability of solar and wind energy sources.
To put it another way, the impact of taking into account the power unpredictability of solar and wind
sources on the amount of profit made by the energy hub has been assessed. The HTPEM approach and
the IARO meta-heuristic algorithm have been used to compare the energy hub scheduling issue with
the conventional ARO, PSO, and SSA methods. Fig. 12 depicts the convergence of several optimization
techniques. The findings demonstrate that the IARO algorithm outperforms competing approaches
with a lower convergence tolerance in fewer convergence repeats. As can be seen in Table 7, although
the other techniques were unable to leave the local optimum and failed to make a profit of $463.59
after 33 iterations, the IARO approach did. It has been noted that although the classic ARO technique
experienced early convergence with a profit value of $455.06, the performance enhancement of the
traditional ARO method based on the non-linear dynamic inertia weight avoided the premature
convergence of its enhanced counterpart. Also, the proposed method has a lower computational cost
compared to the conventional ARO, PSO and SSA methods. Additionally, the effectiveness of the
suggested technique during a statistical study carried out for various algorithms following Table 8
has shown the suggested algorithm’s superiority. The findings of stochastic scheduling, like those of
the deterministic technique, have shown that by figuring out the planned capacity of the energy hub
equipment, a powerful optimization method may generate more profit.
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Figure 12: Convergence curve of different algorithms in solving the problem

Table 7: The numerical results of different methods in stochastic scheduling the hub energy

Algorithm/Item Convergence iteration Profit ($) Solution time (s) Algorithm status

IARO 33 463.59 174 Globally optimal
ARO 35 455.06 198 Locally optimal
PSO 33 461.95 181 Locally optimal
SSA 48 458.32 192 Locally optimal

Table 8: The statistical analysis results of different methods in stochastic scheduling the hub energy

Algorithm/Index Best ($) Worst ($) Mean ($) Std ($)

IARO 463.59 502.28 507.65 55.04
ARO 455.06 488.92 495.44 87.35
PSO 461.95 498.36 500.07 58.73
SSA 458.32 492.50 497.26 80.54

5.4 Results Comparison of Deterministic and Stochastic Scheduling
In this section, Table 1 compares the outcomes of the energy hub planning issue using two deter-

ministic and random techniques. Table 9 shows that taking uncertainty into account has decreased
Hub Energy’s earnings. The system’s profit is $509.40 in the deterministic state and $463.59 in the
random state computed using the HTPEM approach, a fall of 8.99 percent. The results of comparing
the suggested method’s capacity with reference [38] also show its superiority in terms of generating
more profit. The linearization of the issue and the complexity of its mathematical model are two
drawbacks of MINLP programming as opposed to meta-heuristic approaches in reference [38], which
use it to address the energy hub design problem.
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Table 9: The results comparison of deterministic and stochastic scheduling of the hub energy

Algorithm/Item Profit ($)

IARO (Deterministic) 509.40
IARO (Stochastic) 463.59
[38] (Deterministic) 504.74
[38] (Stochastic) 461.95

5.5 Comparison of the IARO with Some Well-Known Algorithms
In this section, the performance of the IARO in solving the problem is compared with the well-

known GA [39], GWO [40] and circle search algorithm (CSA) [41]. It should be noted that the
parameters of different algorithms are considered as the parameters provided by their authors. The
performance comparison of different methods is presented in Table 10, respectively. As can be seen,
among the presented methods, the GWO and the CSA have achieved the global optimal solution. It
has been observed that the performance of the improved proposed method is better compared to other
methods and has obtained more profit. On the other hand, the CSA has also provided a favorable and
acceptable performance in solving the problem and maximizing energy profit.

Table 10: Comparison of different algorithms performance in stochastic scheduling the hub energy

Algorithm/Item Convergence iteration Solution time (s) Profit ($)

IARO 33 174 463.59
GA 48 186 449.16
GWO 39 182 457.20
CSA 30 177 460.88

5.6 System Power and Profit in Deterministic and Stochastic Scheduling
The daily power and profit curves for various energies in deterministic and stochastic scheduling

modes are shown in Figs. 13 and 14, respectively. The participation level of solar and wind sources has
dropped in stochastic mode compared to deterministic mode, as seen by comparing the power curves in
Fig. 13. Fig. 13 shows that from 1:00 to 7:00 during the early hours of the program, the active power of
all Energy Hub equipment is negative. Due to the cheap price of power at this time, electric car charging
and energy storage are taking place as a result of these circumstances. On the other hand, owing to low
gas prices between the hours of 1:00 and 4:00, CHP has met the demand for hub equipment. On the
other hand, Fig. 13 demonstrates that the power needed by the grid is provided by CHP equipment,
renewable energy sources, storage systems, and electric cars as a result of the high cost of electricity
between the hours of 8:00 and 24:00. The maximum permitted heating power, on the other hand, has
been sent to the heating network throughout the day during these hours since heating energy is more
expensive than gas. As a result, the power of the hub equipment is negative from 1:00 to 4:00 because
the power supplied by the upstream network to the hub equipment is more than the power supplied by
the CHP, solar, and wind energy sources combined. Additionally, the hub’s equipment has a positive
capacity between the hours of 8:00 and 24:00. As a result, in the aforementioned instances, energy
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management is carried out to optimize system profit, and because photovoltaic and wind generation
are unpredictable in the stochastic scheduling mode, system profit is lower than in the deterministic
scheduling mode.

Figure 13: Daily changes of hub power for different energy equipment a) deterministic b) stochastic

Fig. 14 displays the profit hub’s daily fluctuations. The findings show that the price of energy
has an impact on the system’s profit in the day-ahead market of various networks. Fig. 14 shows that
the benefit of heating varies depending on the fluctuating cost of energy at various times. On the
other hand, it can be seen from Fig. 14 that the profit of the power market is positive for the rest of
the hours and negative from 1:00 to 7:00 owing to the energy storage provided by EVs. Additionally,
the gas market’s profit is negative since gas energy is used by CHP and steam boilers, and because the
heating market consistently generates larger profits than the gas market does. The set of profits from
all hubs in various forward markets is included in the profit from the future market in such a manner
that the negative profit is equivalent to the positive cost.

The proposed method has optimal performance under changes in working conditions as well
as changes in load demand. The purpose of evaluating the uncertainty of photovoltaic and wind
renewable energy sources power as well as the load demand of the energy hub is the ability of the
system in these conditions and to be robustness to the existing uncertainties. Hub energy system has
maintained its performance level in achieving maximum energy profit in the conditions of uncertainty
of renewable power generation and load demand. The proposed hub energy planning scheme has
high scalability because it can be expanded to multiple and wider energy hubs. The proposed plan is
practical and can provide the planners of energy hub systems in the energy industry with full knowledge
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of the economic evaluation of these types of systems and also the maximum revenue generation from
them. Because in the proposed plan, a real approach to hub energy planning is included, taking into
account the economic aspect of monetization as well as the technical aspect of generation and load
demand uncertainties.

Figure 14: Daily changes of profit hub a) deterministic b) stochastic

6 Conclusion

To maximize the energy profit, this article uses stochastic scheduling of energy hubs to participate
in the future energy market using electricity, natural gas, and urban heating networks while taking into
account the unpredictability of solar and wind generation. IARO’s new algorithm was introduced. In
order to maximize the profit from the hub energy while fulfilling operational and hub restrictions, the
optimum energy scheduling of the hub equipment was established, and the scheduling issue was put
into practice. The study’s conclusions are as follows:

• The results revealed that in the day-ahead market based on deterministic planning, the IARO,
ARO, PSO, and SSA methods achieved energy profits of $509.40, $502.11, $504.74, and
$503.21, respectively. This demonstrates the superior performance of the proposed framework
based on IARO, which is the market leader in achieving the highest energy profits.

• Considering the uncertainty has decreased the system’s profit by 8.99 percent based on the
IARO method, according to the results of the stochastic scheduling of hub energy using the
IARO, ARO, PSO, and SSA methods. Energy profit of 463.59 dollars, 455.06 dollars, 461.95
dollars, and 458.32 dollars was obtained in the future market.
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• The findings demonstrated that the participation level of solar and wind power has dropped
in stochastic planning as a consequence of the unpredictability of these sources, which has
impacted system profit.

• The findings showed that the price of electricity, natural gas, and heating energy has a
substantial impact on the system’s profitability. The results also demonstrated that the next day’s
gas market profits are higher due to the reception of gas energy by CHP and steam boilers. The
gas is fully negative the next day.

Access to accurate data of renewable energy sources and their uncertainty is one of the major
limitations of the research. Robust hub energy planning based on the combined method of information
gap decision theory and meta-heuristic algorithm is proposed for future work.
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