
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.028826

ARTICLE

Reliability Analysis of HEE Parameters via Progressive Type-II Censoring
with Applications

Heba S. Mohammed1, Mazen Nassar2,3, Refah Alotaibi1 and Ahmed Elshahhat4,*

1Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh, 11671, Saudi Arabia
2Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
3Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig, Egypt
4Faculty of Technology and Development, Zagazig University, Zagazig, 44519, Egypt

*Corresponding Author: Ahmed Elshahhat. Email: aelshahhat@ftd.zu.edu.eg

Received: 10 January 2023 Accepted: 21 March 2023 Published: 03 August 2023

ABSTRACT

A new extended exponential lifetime model called Harris extended-exponential (HEE) distribution for data
modelling with increasing and decreasing hazard rate shapes has been considered. In the reliability context,
researchers prefer to use censoring plans to collect data in order to achieve a compromise between total test
time and/or test sample size. So, this study considers both maximum likelihood and Bayesian estimates of
the Harris extended-exponential distribution parameters and some of its reliability indices using a progressive
Type-II censoring strategy. Under the premise of independent gamma priors, the Bayesian estimation is created
using the squared-error and general entropy loss functions. Due to the challenging form of the joint posterior
distribution, to evaluate the Bayes estimates, samples from the full conditional distributions are generated using
Markov Chain Monte Carlo techniques. For each unknown parameter, the highest posterior density credible
intervals and asymptotic confidence intervals are also determined. Through a simulated study, the usefulness of
the various suggested strategies is assessed. The optimal progressive censoring plans are also shown, and various
optimality criteria are investigated. Two actual data sets, taken from engineering and veterinary medicine areas,
are analyzed to show how the offered point and interval estimators can be used in practice and to verify that the
proposed model furnishes a good fit than other lifetime models: alpha power exponential, generalized-exponential,
Nadarajah-Haghighi, Weibull, Lomax, gamma and exponential distributions. Numerical evaluations revealed that
in the presence of progressively Type-II censored data, the Bayes estimation method against the squared-error
(symmetric) loss is advised for getting the point and interval estimates of the HEE distribution.
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1 Introduction

Modelling actual data using generalized distributions is still important today. A variety of
generalized distributions have been developed, and their usefulness in various contexts is investigated,
see for example the work of Nadarajah et al. [1] and Mahdavi et al. [2]. By combining the exponential
and Harris distributions, Pinho et al. [3] created a new three-parameter lifetime model known as the
Harris extended-exponential (HEE) distribution. They emphasized that the HEE distribution can be
utilized as a substitute of the Weibull and gamma distributions for modelling data with a rising or
decreasing failure rate. As a result, it can be applied in a variety of domains, including but not limited
to reliability, biology, engineering, insurance and epidemiology, among others.

However, if X is a random variable that follows the HEE distribution, denoted by X ∼ HEE(�),
where � = (α, β, θ)� is the parameters vector with scale parameter β and shape parameters α and
θ , then its probability density function (PDF) and cumulative distribution function (CDF) can be
written, respectively, as

f (x; �) = βθ
1
α e−βx

[1 − θ̄e−αβx]1+ 1
α

, x > 0, α, β, θ > 0, (1)

and

F(x; �) = 1 −
[

θe−αβx

1 − θ̄e−αβx

] 1
α

, (2)

where θ̄ = 1 − θ . One can see that when α = 1, the HEE distribution reduces to the Marshall–Olkin
exponential distribution proposed by Marshall et al. [4]. Also, the exponential distribution can be
obtained as a special case from the HEE distribution by putting α = θ = 1. The associated reliability
characteristics of X such as reliability function (RF) and hazard rate function (HRF), at mission time
t, are expressed, respectively, as follows:

R(t; �) =
[

θe−αβt

1 − θ̄e−αβt

] 1
α

(3)

and

h(t; �) = β[1 − θ̄e−αβt]−1. (4)

Fig. 1a displays different plots of the PDF using various choices of parameters. Similarly, Fig. 1b
shows the plots of the HRF. Fig. 1a indicates that the PDF of the HEE distribution can be decreasing
or unimodal. On the other hand, its HRF allows for decreasing and increasing shape hazard rates.

In reliability analysis and life testing studies, the examined items are commonly lost or discarded
before failure. The obtained sample is therefore known as a censored sample. To preserve the functional
experimental units for future use, shortening the duration of the test, and saving money are some
major justifications for removing the experimental units. Various censoring techniques, such as time
and failure censoring, are available in the literature; nevertheless, they do not have the ability to permit
units to be eliminated at any moment other than the experiment’s endpoint. As a result, a more flexible
censoring scheme known as progressive Type-II censoring is offered. For more in-depth analysis, or to
be used as test samples in other research, certain items may need to be removed from the experiment.
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Figure 1: Shapes of the PDF and HRF of the HEE distribution

The schematic representation of the progressive Type-II censoring scheme is as follows: Assume
that m units will fail out of n distinct units that are put on a life test. Allow (R1, R2, . . . , Rm) to be
fixed in advance such that when the first failure occurs, X1:m:n, R1 units are arbitrarily removed from
the experiment. When the experiment has its second failure, X2:m:n, R2 units from the remaining items
are at random deleted from the test, and so on. When the mth failure Xm:m:n occurred, all Rm remaining
items are extracted from the test. It is clear that n = m + ∑m

i=1 Ri. When Ri = 0, i = 1, . . . , m − 1
and Rm = n − m, the case of conventional Type-II censored sampling arises. The progressive Type II
censoring plan reduces to the case of a complete sample when Ri = 0, i = 1, . . . , m. If we assume that a
continuous population with CDF F(·), and PDF f (·), then the likelihood function for a progressively
Type-II censored sample can be expressed as below:

L(�) = C
m∏

i=1

f (xi:m:n)[1 − F(xi:m:n)]Ri , (5)

where C = n(n − R1 − 1) . . . (n − ∑m−1

i=1 (1 + Ri)). Many studies used progressively Type-II censored
data to consider some estimation issues for various lifetime distributions.

In literature, different censoring schemes were introduced; however, authors prefer to deal with
progressive censoring over other censoring plans because it allows survival items to be withdrawn
during the experiment at different stages which is not possible in case of failure (Type-II) censoring.
Sultan et al. [5] investigated the classical and Bayesian estimation of inverse Weibull distribution.
Dey et al. [6] investigated the maximum likelihood and Bayesian estimations for Marshall–Olkin
extended exponential distribution. Kotb et al. [7] studied the inferences for modified Weibull dis-
tribution. Bdair et al. [8] analyzed the estimation and prediction for flexible Weibull distribution.
Wu et al. [9] discussed the estimation and prediction problems for the Nadarajah–Haghighi parame-
ters. Alotaibi et al. [10] considered the estimation of some reliability indices for alpha power Weibull
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distribution. Elshahhat et al. [11] considered the Bayesian life analysis of generalized Chen’s param-
eters. Dey et al. [12] studied various inferences for the Wilson–Hilferty parameters. For additional
details regarding the concept of progressive censoring, one can guide Balakrishnan et al. [13].

Despite the flexibility and adaptability of the HEE distribution in modelling different types of
data, to the best of our knowledge, there is no existing study on censoring mechanisms that deals
with the estimation of parameters and/or reliability characteristics of the HEE distribution under
incomplete (censored) sampling, which is of great interest and practical importance in many real-
world scenarios. So, this study stands out in that it is the first to investigate the estimation issues for
the HEE distribution when using incomplete data collected from a progressively Type-II censoring.
Consequently, the main purposes for this study are fourfold:

• First objective explores various point and interval estimation issues of the HEE distribution
parameters as well as its reliability characteristics utilizing progressive Type-II censored data,
namely: maximum likelihood estimators (MLEs), Bayes estimators, approximate confidence
intervals (ACIs) and highest posterior density (HPD) credible intervals.

• In Bayesian analysis, utilizing Markov Chain Monte Carlo (MCMC) techniques, the estimators
are acquired by employing the squared-error (SE) and general entropy (GE) loss functions.

• The second objective performs extensive Monte Carlo simulations to compare the performance
of the proposed estimation methods on the basis of their simulated root mean squared errors,
mean absolute biases, average confidence lengths and coverage probabilities.

• The third objective is to check various optimality criteria to decide the best progressive
censoring schemes.

• The last one is to demonstrate the ability of the proposed methods to work in practice by
exploring two actual real data sets.

Before going any further, it is important to remember that the limitations of this study are: (i) All
inferential methodologies are developed based on the assumption that at least one survival item was
removed during the life-test; (ii) We assumed that the HEE parameters α, β and θ as well as its related
parametric functions R(t) and h(t) are unknown.

The remaining sections of the study are organized as follows: Section 2 presents MLEs and ACIs.
Section 3 investigates the Bayes estimators and HPD credible intervals. The results of the simulation
study are included in Section 4. We offer several ways to select the optimum censoring scheme in
Section 5. Section 6 highlights the analysis of two real data applications. The paper is finally concluded
in Section 7.

2 Likelihood Inference

In this section, the MLEs of the unknown parameters including the RF and HRF of the HEE
distribution are investigated. Moreover, the ACIs based on the asymptotic properties of the MLEs
are constructed. Assume that x = (x1, . . . , xm), where xi = xi:m:n, i = 1, . . . , m, for simplicity, be a
progressively Type-II censored sample selected from a population with PDF and CDF given by (1) and
(2), respectively. Given a predetermined progressive censoring scheme R1, . . . , Rm, then the likelihood
function, without the constant term, can be derived from (1), (2) and (5) as follows:

L(�|x) = βmθ
n
α e−β

∑m
i=1 R∗

i xi

m∏
i=1

[
1 − θ̄e−αβxi

]−(1+ᾱR∗
i )

, (6)
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where R∗
i = 1 + Ri and ᾱ = 1/α. Instead of maximizing the likelihood function in (6), it is more

convenient to work with its natural logarithm. Thus, it follows:

�(�|x) = m log(β) + n
α

log(θ) − β

m∑
i=1

R∗
i xi −

m∑
i=1

(1 + ᾱR∗
i ) log

[
1 − θ̄e−αβxi

]
, (7)

where �(�|x) = log L(�|x). The MLEs of α, β and θ , denoted by α̂, β̂ and θ̂ , are obtained by
maximizing (7) with respect to α, β and θ . An equivalent way to obtain the MLEs is to solve the
three normal equations simultaneously, which are acquired by getting the first order derivatives of
the objective function in (7) with respect to the unknown parameters and equating the result by zero.
Consequently, the normal equations are

∂�(�|x)

∂α
= −n log(β)

α2
+ 1

α2

m∑
i=1

R∗
i log

[
1 − θ̄vi

] − βθ̄

m∑
i=1

(1 + ᾱR∗
i )

xivi

1 − θ̄vi

= 0, (8)

∂�(�|x)

∂β
= m

β
−

m∑
i=1

R∗
i xi − αθ̄

m∑
i=1

(1 + ᾱR∗
i )

xivi

1 − θ̄vi

= 0 (9)

and
∂�(�|x)

∂θ
= n

αθ
−

m∑
i=1

(1 + ᾱR∗
i )

vi

1 − θ̄vi

= 0, (10)

where vi = e−αβxi . It is clear from (8)–(10), that the MLEs α̂, β̂ and θ̂ have no closed forms. Therefore,
numerical methods may be implemented to solve these equations to produce α̂, β̂ and θ̂ . Since the
MLE of α, β or θ cannot be solved analytically, the ‘maxLik’ package (which implements the Newton–
Raphson (NR) method of maximization) proposed by Henningsen et al. [14] can be easily used. On the
other hand, instead of NR method, the expectation–maximization (EM) or stochastic EM algorithm
can be easily incorporated. For details, see Panahi [15,16].

Once the MLEs of α, β and θ are obtained, we can get the MLEs of R(t) and h(t) by using the
invariance property of the MLEs as follows:

R̂(t) =
[

θ̂e−α̂β̂t

1 − ˆ̄θe−α̂β̂t

] 1
α̂

, and ĥ(t) = β̂[1 − ˆ̄θe−α̂β̂t]−1,

where ˆ̄θ = 1 − θ̂ .

After getting the point estimates of α, β and θ as well as the reliability indices, it is also of
appeal to construct the associated confidence intervals. This objective can be achieved by employing
the asymptotic properties of the MLEs. It is known that based on the theory of large samples that
the asymptotic distribution of �̂, where �̂ = (α̂, β̂, θ̂ )�, is normal distribution with average �̂ and
variance-covariance matrix I−1

3×3(�) which is obtained by taking the inverse of the Fisher information
(FI) matrix. It is not easy to obtain the elements of the FI matrix due to its intractable elements.
Therefore, we can use the observed FI matrix to obtain I−1

3×3(�̂) as an estimate of I−1
3×3(�), where

I−1
3×3(�̂) =

⎡⎣−Fαα −Fαβ −Fαθ

−Fβα −Fββ −Fβθ

−Fθα −Fθβ −Fθθ

⎤⎦−1

(α,β,θ)=(α̂,β̂,θ̂ )

=
⎡⎣σ̂αα σ̂αβ σ̂αθ

σ̂ββ σ̂βθ

σ̂θθ

⎤⎦, (11)
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where the main diagonal elements are the estimated variances of α̂, β̂ and θ̂ , respectively, and the
elements of the observed FI matrix can be easily obtained from (7) as follows:

∂2�(�|x)

∂α2
= 2n log(θ)

α2
− 2

α3

m∑
i=1

R∗
i log

[
1 − θ̄vi

] + βθ̄

m∑
i=1

xivi

1 − θ̄vi

[
2R∗

i

α2
+ βxi(1 + ᾱR∗

i )

1 − θ̄vi

]
,

∂2�(�|x)

∂β2
= − m

β2
+ θ̄α2

m∑
i=1

(1 + ᾱR∗
i )

vix2
i

(1 − θ̄vi)2
,

∂2�(�|x)

∂θ 2
= − n

αθ 2
+

m∑
i=1

(1 + ᾱR∗
i )

v2
i

(1 − θ̄vi)2
,

∂2�(�|x)

∂α∂β
= −θ̄

m∑
i=1

xivi

1 − θ̄vi

+ θ̄αβ

m∑
i=1

(1 + ᾱR∗
i )

vix2
i

(1 − θ̄vi)2
,

∂2�(�|x)

∂α∂θ
= − n

αθ 2
+ 1

α2

m∑
i=1

R∗
i

vi

1 − θ̄vi

+ β

m∑
i=1

(1 + ᾱR∗
i )

xivi

1 − θ̄vi

[
1 + θ̄vi

1 − θ̄vi

]
and
∂2�(�|x)

∂β∂θ
= α

m∑
i=1

(1 + ᾱR∗
i )

xivi

(1 − θ̄vi)2
.

Now, the 100(1 − γ )% ACIs of α, β and θ can be acquired as follows:

α̂ ± zγ /2

√
σαα, β̂ ± zγ /2

√
σββ and θ̂ ± zγ /2

√
σθθ ,

where zγ /2 is the upper (γ /2)th percentile point of the standard normal distribution.

On the other hand, the ACIs of the RF and HRF can be also obtained by approximating the
variances of their estimators by using the delta method. See Greene [17] for more details about the
delta method. In this case, we can approximate the variances of R̂(t) and ĥ(t) by σ̂R = DRI−1

3×3(�̂)D�
R

and σ̂h = DhI−1
3×3(�̂)D�

h , respectively, where

DR =
(

∂R(t)
∂α

,
∂R(t)
∂β

,
∂R(t)
∂θ

) ∣∣∣
(α,β,θ)=(α̂,β̂,θ̂ )

and

Dh =
(

∂h(t)
∂α

,
∂h(t)
∂β

,
∂h(t)
∂θ

) ∣∣∣
(α,β,θ)=(α̂,β̂,θ̂ )

,

with the following elements

∂R(t)
∂α

= − 1
α2

(
θvt

1 − θ̄vt

) 1
α
[

log
(

θvt

1 − θ̄vt

)
+ αβt

1 − θ̄vt

]
,

∂R(t)
∂β

= −(1 − θ̄vt)
−1

(
θvt

1 − θ̄vt

) 1
α

,
∂R(t)
∂θ

= vt − 1

αθ(1 − θ̄vt)

(
θ tαvt

1 − θ̄vt

,
) 1

α

∂h(t)
∂α

= − tθ̄β2vt

(1 − θ̄vt)2
,

∂h(t)
∂β

= 1 − θ̄vt(1 + βαt)

(1 − θ̄vt)2
, and

∂h(t)
∂θ

= − βvt

(1 − θ̄vt)2
,
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where vt = e−αβt. Based on the above results, the ACIs for RF and HRF at the confidence level 100(1−
γ )% can be expressed, respectively, as

R̂ ± z γ
2

√
σ̂R and ĥ ± z γ

2

√
σ̂h.

Though the main problem of ACI for a positive parameter is that it may give a negative value
in the lower bound. In literature, there are different approaches available to handle this problem.
Theoretically, one of them is called the log-transformed maximum likelihood estimator developed by
Meeker et al. [18]. Numerically, one can easily verify that the computed confidence intervals contain
a lower bound with a positive value if one of them contains a negative lower bound, in which case
this value is replaced by zero. Recently, this issue has been examined by Elshahhat et al. [11] and
Elshahhat et al. [19].

3 Bayes MCMC Inference

In this section, we consider the Bayesian estimation method to derive the Bayesian estimators for
α, β and θ , as well as the R(t) and h(t). Besides the point estimates, we also acquire the HPD credible
intervals for the different parameters. In statistical analysis, the Bayesian method has significant
advantages over the classical methods when data availability is a critical barrier. In Bayesian inference,
prior distribution selection is important. Since the gamma density prior, based on its parameter values,
provides various shapes, see Dey et al. [20]. Thus, it is flexible and can be adopted as a suitable prior
for the HEE parameters. Therefore, we utilize the Bayesian estimation under the assumption that
the unknown model parameters α, β and θ are independent and follow gamma (G) distributions, i.e.,
α ∼ G(a1, b1), β ∼ G(a2, b2) and θ ∼ G(a3, b3), where ak and bk, k = 1, 2, 3, are the hyper-parameters
and are always positive. Using these premises, we can simply write the joint prior distribution of α, β
and θ in the following form:

g(�) ∝ αa1−1 βa2−1 θ a3−1 e−(b1α+b2β+b3θ). (12)

To get the Bayes estimates, we should first derive the joint posterior distribution of the unknown
parameters. To obtain the joint posterior distribution, we combine the sample information given by (6)
with the prior information about the unknown parameters given by (12) and apply the Bayes theorem.
As a result, we can write the joint posterior distribution as follows:

π(�|x) = A−1αa1−1βm+a2−1θ
n
α +a3−1e−β(

∑m
i=1 R∗

i xi+b2)−(b1α+b3θ)

m∏
i=1

[
1 − θ̄e−αβxi

]−(1+ᾱR∗
i )

, (13)

where A is the normalized constant and obtained as

A =
∫ ∞

0

∫ ∞

0

∫ ∞

0

αa1−1βm+a2−1θ
n
α +a3−1e−β(

∑m
i=1 R∗

i xi+b2)−(b1α+b3θ)

m∏
i=1

[
1 − θ̄e−αβxi

]−(1+ᾱR∗
i )

dα dβ dθ .

The loss function is crucial to Bayesian analysis because it may be used to characterize over-
estimation and underestimation in the investigation. Symmetric and asymmetric loss are two often
employed loss functions. While the asymmetric loss function offers various weights to overestimation
and underestimation, the symmetric loss function treats overestimation and underestimation equally.
The asymmetric loss is more practical and advantageous in real-world applications than the symmetric
loss see for more details Nassar et al. [21]. One of the most popular symmetric loss functions is the
SE loss function, whereas the GE loss function is asymmetric. The SE and GE loss functions are
considered in this work to acquire the Bayes estimates. It is generally known that the posterior mean
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is the Bayes estimator in the case of the SE loss function. On the other hand, the GE loss function
provides varying weights for overestimation and underestimation.

Let μ̃ is an estimator of μ, then according to Calabria et al. [22], the GE loss function can be
expressed as

E(μ̃, μ) ∝ (μ̃/μ)
δ − δ log (μ/μ) − 1, δ �= 0,

where δ determines the degree of asymmetry. In this case, the Bayes estimator of δ can be obtained as

μ̃GE = [
Eμ(μ

−δ)
]− 1

δ , (14)

given that Eμ(μ
−δ) exists and is finite. Assume that �(�) be any function of the unknown parameters.

Therefore, the Bayes estimators of �(�) based on SE and GE loss functions can be obtained,
respectively, as

�̃SE(�) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

�(�) π(�|x) dα dβ dθ (15)

and

�̃GE(�) =
[∫ ∞

0

∫ ∞

0

∫ ∞

0

[�(�)]−δ π(�|x) dα dβ dθ

]− 1
δ

, (16)

where π(�|x) is the joint posterior distribution given by (13). It is obvious that it is impossible
to calculate the Bayes estimators using (15) and (16) analytically due to the complex forms of the
integration. In order to acquire the Bayes estimates of the unknown parameters and the corresponding
HPD credible intervals in this case, we suggest using the MCMC technique. We first must establish
the full conditional distributions of α, β and θ before we can use the MCMC approach. Given (13),
the necessary full conditional distributions can be determined as below:

π(α|β, θ , x) ∝ αa1−1θ
n
α e−b1α

m∏
i=1

[
1 − θ̄e−αβxi

]−(1+ᾱR∗
i )

, (17)

π(β|α, θ , x) ∝ βm+a2−1e−β(
∑m

i=1 R∗
i xi+b2)

m∏
i=1

[
1 − θ̄e−αβxi

]−(1+ᾱR∗
i )

(18)

and

π(θ |α, β, x) ∝ θ
n
α +a3−1e−b3θ

m∏
i=1

[
1 − θ̄e−αβxi

]−(1+ᾱR∗
i )

. (19)

Even though we have the full conditional distributions for each parameter, they do not have
a known form, making it difficult to directly take samples from them. Therefore, we utilize the
Metropolis–Hasting (M–H) algorithm to generate samples from these distributions. In order to derive
the Bayesian estimates and the HPD credible intervals, we assume the normal distribution as the
proposal distribution for the M–H sampling. Using the full conditional distributions given by (17)–
(19), the required steps for the MH algorithm are as below

Step 1. Start with p = 1.

Step 2. Determine the beginning values such that
(
α(0), β(0), θ (0)

) = (α̂, β̂, θ̂ ).
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Step 3. Generate α(p) from (17) using the M-H steps and N
(
α(p−1), σ̂αα

)
.

Step 4. From (18) and (19), generate β(p) and θ (p), respectively, by repeating Step 3.

Step 5. Use the generated sample
(
α(p), β(p), θ (p)

)
to obtain R(p)(t) and h(p)(t) from (3) and (4),

respectively.

Step 6. Put p = p + 1.

Step 7. Replicate Steps 3–6, N times to get α(p), β(p), θ (p), R(p)(t) and h(p)(t), p = 1, . . . , N.

In order to ensure convergence and remove the appeal of initial values, the first B generated
variates are discarded. In this instance, we possess α(p), β(p), θ (p), R(p)(t) and h(p)(t), where p = B +
1, . . . , N. The resulting sample, which is based founded on a big B, delivers an approximately posterior
sample that can be applied to compute the Bayes estimates as well as the HPD credible intervals.

Let φ denote the parameter that needs to be estimated. Following that, the SE loss function-based
Bayes estimate of φ can be calculated as

φ̃SE = 1
N − B

N∑
p=B+1

φ(p).

Likewise, the following formula can be applied to obtain the Bayes estimate of φ based on the GE
loss function.

φ̃GE =
{

1
N − B

N∑
p=B+1

[φ(p)]−δ

}− 1
δ

.

The HPD credible interval specifies a range that covers the majority of the distribution, say 100(1−
γ )% of it, and each point within the range has higher credibility than any point outside the range. To
obtain the HPD credible intervals of α, β, θ , R(t) and h(t), say φ, we order φ(p), as φ(B+1) < φ(B+2) <

· · · < φ(N). Then, the 100(1 − γ )% HPD credible interval of φ is
[
φ(p∗), φ(p∗+(1−γ )(N−B))

]
, where p∗ =

B + 1, B + 2, . . . , N is defined in a way that

φ(p∗+[(1−γ )(N−B)]) − φ(p∗) = min
1�p�γ (N−B)

[
φ(p+[(1−γ )(N−B)]) − φ(p))

]
,

where the highest number less than or equal to y is denoted by the symbol [y].

4 Monte Carlo Simulations

To assess how well the suggested point (or interval) estimators perform for α, β, θ , R(t) and h(t)
obtained in the proceeding sections, extensive Monte Carlo simulation experiments are carried out.
From the proposed HEE distribution, when the actual value of parameters (α, β, θ) is taken as (0.8,
0.3, 0.1), we replicated 2,000 times progressively Type-II censored samples utilizing several choices of n
(number of test items), m (number of effective test items) and Ri, i = 1, . . . , m (progressive mechanism).
At distinct time t = 0.1, using the same true parameter values of α, β and θ , the respective true values
of R(t) and h(t) are 0.762 and 2.472. For different choices of n, such as n = 40 (moderate) and 80

(large), different values of the failure proportion (FP)
m
n

×100% such as 50% and 80% are considered.

Recall that, in progressive Type-II censoring plan, when the FP achieves its pre-fixed value, the test
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stops. Four distinct censoring schemes are also taken into consideration in order to assess the behavior
of the removal patterns Ri, i = 1, . . . , m, namely

S1 : R1 = n − m, Ri = 0 for i �= 1,

S2: R m
2

= n − m, Ri = 0 for i �= m/2,

S3: Rm = n − m, Ri = 0 for i �= m,

S4: R1 = R2 = · · · = Rm = 0 and n = m.

The proposed schemes Si for i = 1, 2, 3, 4 behave similarly to the left progressive (when the survival
n−m units are removed at the time of first failure occurs), middle progressive (when the survival n−m
units are removed at the time of (m/2)th failure occurs), Type-II censoring (when the survival n − m
units are removed at the time of mth failure occurs), and complete sampling (when all experimental
units failed), respectively. To discuss the behavior of the gamma density priors on the Bayesian analysis,
two prior sets of (ak, bk), k = 1, 2, 3, are considered, called Prior-I: (a1, a2, a3) = (4, 1.5, 0.5) and
bk = 5, k = 1, 2, 3 and Prior-II: (a1, a2, a3) = (8, 3, 1) and bk = 10, k = 1, 2, 3. The posterior
distribution will be reduced proportionally to the likelihood function if the researcher does not have
prior knowledge about the model parameters of the lifespan distribution under consideration. Using
the M-H algorithm described in Section 3, we generate 12,000 MCMC samples from the conditional
posterior distributions and then the first 2,000 MCMC iterations have been discarded as burn-in.
The starting values of α, β and θ used to run the M-H algorithm have been chosen to be their
classical estimates. To check the convergence of the generated sequences of α, β, θ , R(t) and h(t),
both autocorrelation and trace plots of their 10,000 MCMC variates (for n[FP%] = 40[50%] and S1
as an example) are shown in Fig. 2. It shows that the MCMC iterations for all unknown parameters
are effectively mixed, so all estimated results are reasonable. However, using the lasting 10,000 MCMC
iterations, the Bayes estimates (through SE and GE (for δ(= −2, +2)) loss functions) as well as the
95% HPD intervals of α, β, θ , R(t) and h(t) are computed.

Frequentist and Bayes estimates of α, β, θ , R(t) and h(t) (say φ “for briefly”) are compared using
their respective root mean squared-error (RMSE) and mean absolute bias (MAB) values obtained as
follows:

RMSE(φ̌) =
√√√√ 1

S

S∑
j=1

(
φ̌(j) − φ

)2

,

and

MAB(φ̌) = 1
S

S∑
j=1

∣∣∣φ̌(j) − φ

∣∣∣,
where φ̌ is an estimate of φ using any estimation method and S is the number of generated samples.
The ACIs and HPD credible interval estimates of the unknown parameters are also compared using
their average confidence lengths (ACLs) and coverage probabilities (CPs), which are provided by

ACL(1−γ )%(φ) = 1
S

S∑
j=1

(
Uφ̌(j) − Lφ̌(j)

)
,
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Figure 2: Autocorrelation (left) and Trace (right) plots for MCMC draws of α, β, θ , R(t) and h(t)
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and

CP(1−γ )%(φ) = 1
S

S∑
j=1

1(
L

φ̌(j) ; U
φ̌(j)

) (φ),

where 1(·) is the indicator function and L (·) and U (·) denote the lower and upper bounds, respectively,
of (1 − γ )% ACIs or HPD credible interval of φ.

Following Henningsen et al. [14] and Plummer et al. [23], all numerical evaluations for both clas-
sical and Bayesian estimators of 
 were conducted via ‘maxLik’ and ‘coda’ packages, respectively in R
4.1.2 software. Elshahhat et al. [24] recommended the same packages. Graphically, the corresponding
simulated values (including RMSE, MAB, ACL and CP) for α, β, θ , R(t) and h(t) are displayed with
heatmap plots, see Figs. 3–7, respectively. For specialization, based on Prior-I (say P1) as an example,
several notations have been used such as (i) Bayes estimates based on SE loss are symbolized by “SE-
P1” and (ii) Bayes estimates based on GE loss using δ = −2 and +2 are symbolized by “GE1-P1” and
“GE2-P1”, respectively. All simulation results for the various considered tests are also provided (see
Tables S1–S10) in the supplementary file.
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Figure 3: Heatmap plots for the estimation results of α
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Figure 4: Heatmap plots for the estimation results of β
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Figure 5: (Continued)
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Figure 5: Heatmap plots for the estimation results of θ
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Figure 6: Heatmap plots for the estimation results of R(t)
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Figure 7: Heatmap plots for the estimation results of h(t)

From Figs. 3–7, some observations can be drawn as:

• All offered estimates of the unknown HEE parameters α, β and θ (or its reliability character-
istics R(t) and h(t)) are excellent in terms of the smallest RMSE, MAB and ACL values and
highest CP values.

• All estimated estimations perform satisfactorily as n (or FP) rises. All estimates also behave in
the same way when

∑m

i=1 Ri goes down.

• Comparing the point estimation methods of α, β, θ , R(t) and h(t), due to the MCMC estimates
included additional prior information, the MCMC estimates performed better against the GE
loss than the SE loss and both are more favorable compared to the classical estimates in terms
of the smallest RMSE and MAB values.

• Comparing the proposed interval estimation methods of α, β, θ , R(t) and h(t)s, in terms of
the smallest ACL values and highest CP values, the HPD interval estimates of all unknown
parameters behave preferably than others. In addition, in most cases, the CPs are below (or
close to) the nominal level.

• The Prior-II behaves better than the Prior-I in terms of the lowest values of RMSE, MAB, and
ACL, as well as the greatest values of CP, when comparing the Bayes estimates of all unknown
parameters based on Priors I and II. This outcome was expected because the associated variance
of Prior-II is lower than that of Prior-I.
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• Comparing S1 and S3, in terms of the smallest RMSE, MAB and ACL values and highest CP
values, it is observed that the proposed estimates of α, β and θ based on the censoring plan S1
perform better compared to S3 while that of R(t) and h(t) based on S3 perform better than S1.

• Among the calculated estimates, the methods for estimating model parameters or reliability
properties show superior performance using S4 which usually provides the best results for all
unknown parameters as expected. It is an expected result because the acquired estimates have
been obtained based on all information included in the complete sample.

• Finally, when data is acquired from a progressively Type-II censored sampling plan, the Bayes
inferences based on the M-H algorithm are advised to estimate the unknown parameters and
the reliability measures of the HEE lifespan distribution.

5 Optimal Progressive Censoring Plan

The topic of how to pick a specific progressive censoring scheme naturally arises. Should we select
a certain plan just on the basis of convenience or should we consider some statistical factors? The
statistical literature has drawn a lot of attention to the topic of selecting the best censoring schemes.
Finding the progressive censoring plan that provides the most information about the unknown
parameters among all potential progressive censoring plans is necessary for choosing the best sampling
approach. Here, probable censoring schemes relate to all Ri, i = 1, dots, m mixtures for specified n and
m, where m+∑m

i=1 Ri = n. References for additional information on the best censoring schemes include
Ng et al. [25], Kundu [26] and Pradhan et al. [27]. Four optimality criteria that have been extensively
used in the literature are taken into account in this study. Practically speaking, as we have already
indicated, we must choose the filtering method that gives us the greatest details on the parameters.
Table 1 outlines a few often used optimal criteria to help us select the most appropriate progressive
censoring.

Table 1: Some optimal censoring plan criteria

Criterion Method

I Max trace (I3×3(�̂))

II Min trace (I−1
3×3(�̂))

III Min det (I−1
3×3(�̂))

IV Min v̂ar (log(T̂q)), 0 < q < 1

We wish to maximize the trace of the observed FI matrix in terms of criterion I. Additionally, we
want to reduce the determinant and trace of I−1

3×3(ξ̂) for criterions II and III, respectively. The variance
of the logarithmic MLE of the qth quantile is to be minimized according to criterion IV, denoted by
v̂ar(log(T̂q)). As a result, the logarithmic for T̂q for the HEE distribution is supplied by

log(T̂q) = − 1

α̂β̂
log

[
(1 − q)α̂

ˆ̄θ(1 − q)α̂ + θ̂

]
.

The variance of log(T̂q) can be approximated using the delta approach. The highest value of
criterion I and the lowest values of criterions II, III, and IV are indicative of the optimal progressive
censoring plan.
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6 Real-Life Applications

In this section, two real-world data sets from the engineering and veterinary industries are
investigated to see how the estimating approaches suggested in this study perform in actual use.

6.1 Turbocharger Data
The time-to-failure (103) of forty sets of turbochargers in one type of diesel engine will be used

in this application from the engineering sector, see Table 2. Guerra et al. [28] reanalyzed this data set
after it was provided by Xu et al. [29].

Table 2: Failure times of 40 turbochargers

1.6 2.0 2.6 3.0 3.5 3.9 4.5 4.6 4.8 5.0
5.1 5.3 5.4 5.6 5.8 6.0 6.0 6.1 6.3 6.5
6.5 6.7 7.0 7.1 7.3 7.3 7.3 7.7 7.7 7.8
7.9 8.0 8.1 8.3 8.4 8.4 8.5 8.7 8.8 9.0

We fit the HEE distribution and compare it to other seven lifetime distributions as its competitors,
including the alpha power exponential (APE), generalized-exponential (GE), Nadarajah-Haghighi
(NH), Weibull (W), G, Lomax (L), and exponential (E) distributions. For x > 0 and β, θ > 0, the
corresponding PDFs of these distributions are presented in Table 3.

Table 3: Competing statistical models of the HEE distribution

Model f (x) Author(s)

APE θ(β − 1)−1 log(β)e−θxβ1−e−θx Mahdavi et al. [2]
GE θβe−βx(1 − e−βx)θ−1 Gupta et al. [30]
NH θβ(1 + βx)

θ−1 exp(1 − (1 + βx)
θ
) Nadarajah et al. [1]

W βθxβ−1e−θxβ Weibull [31]

G
θβ

�(β)
xβ−1e−θx Johnson et al. [32]

L βθ(1 + θx)−(β+1) Lomax [33]
E θe−θx Johnson et al. [32]

Several model selection criteria, including negative log–likelihood (NL), Akaike’s (A), Bayesian
(B), consistent Akaike’s (CA), and Hannan–Quinn (HQ) information criteria, are utilized to show
the HEE distribution’s utility in comparison to its rival models. Three alternative goodness–of–fit
statistics, namely, Anderson–Darling (AD), Cramér–von Mises (CvM), and Kolmogorov–Smirnov
(KS) (with its p-value) statistics are also used to assess the validity of the HEE model in comparison
to other competitor models. Based on these measures, the best distribution corresponds to the lowest
value of A, B, CA, HQ, AD, CvM and KS statistics as well as to the highest p-value via R software
and ‘AdequacyModel’ package proposed by Marinho et al. [34], all unknown parameters are estimated
using the maximum likelihood method and their standard–errors (St.Errs) are also computed and
reported in Table 4. However, the estimated values of the given goodness–of–fit measures under the
turbochargers data set are presented in Table 5. It is evident that the HEE distribution is the good
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distribution compared to the other distributions under the turbochargers data. We further draw
quantile–quantile plots of the HEE distribution and the competitive models based on the same given
data, see Fig. 8. Moreover, the histogram and the fitted densities as well as the plot of fitted/empirical
reliability functions of all considered distributions are displayed in Figs. 9a and 9b, respectively.
Graphical presentations in Figs. 8 and 9 support the results in Table 5 which indicate that the HEE
distribution is the best model to fit the turbochargers data compared to all given distributions listed
in Table 3.

Table 4: Summary fit of the HEE distribution and other competing models from turbochargers data

Model α β θ

Estimate St.Err Estimate St.Err Estimate St.Err

HEE 0.0801 0.1294 7.9269 12.101 1063.5 1494.9
APE – – 2430.7 2422.7 0.4105 0.0356
GE – – 9.5142 2.8959 0.4498 0.0578
NH – – 26.932 16.541 0.0045 0.0028
W – – 3.8725 0.5176 6.9200 0.2947
G – – 7.7487 1.6832 0.8065 0.1809
L – – 5.3062 2.2487 29.275 12.507
E – – – – 0.1599 0.0253

Table 5: Goodness-of-fit results of the HEE distribution and other competing models from tur-
bochargers data

Model NL A B CA HQ AD CvM KS (p-value)

HEE 80.2971 166.5941 171.6608 167.2608 168.4261 0.2630 0.0355 0.0930 (0.879)
APE 90.3055 184.6111 187.9888 184.9354 185.8323 1.3497 0.2032 0.1763 (0.166)
GE 90.1427 184.2853 187.6631 184.6097 185.5066 1.7601 0.2757 0.1541 (0.298)
NH 102.146 208.2920 211.6698 208.6163 209.5133 0.8742 0.1238 0.3652 (0.015)
W 82.4755 168.9510 172.3288 169.2754 170.1723 0.5730 0.0770 0.1077 (0.742)
G 87.4104 178.8209 182.1986 179.1452 180.0422 1.3616 0.2053 0.1281 (0.563)
L 116.7596 237.5193 240.8971 237.8437 238.7406 1.5160 0.2322 0.3817 (0.005)
E 113.3192 228.6385 230.3274 228.7438 229.2492 1.3689 0.2065 0.3630 (0.009)
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Figure 8: The quantile-quantile plots of the HEE distribution and other competing models using
turbochargers data
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Figure 9: Estimated densities and reliability functions of the HEE distribution and other competing
models using turbochargers data

From the complete turbochargers data, three different progressively Type-II censored samples
with m = 20 are generated, where R = (2, 0, 0, 0, 2) is denoted by R = (2, 0∗3, 2) and reported in
Table 6. Using Table 6, the maximum likelihood and Bayes estimates with their St.Errs of α, β, θ , R(t)
and h(t) at given time t = 5 are calculated and provided in Table 7. Also, 95% two-sided ACI and HPD
credible interval estimates with their interval lengths are obtained and presented in Table 8.
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Table 6: Three progressively Type-II censored samples from turbochargers data

Sample Scheme Censored data

S1 (10, 10, 0∗18) 1.6 5.3 7.0 7.1 7.3 7.3 7.3 7.7 7.7 7.8
7.9 8.0 8.1 8.3 8.4 8.4 8.5 8.7 8.8 9.0

S2 (0∗9, 10, 10, 0∗9) 1.6 2.0 2.6 3.0 3.5 3.9 4.5 4.6 4.8 5.0
6.5 8.0 8.1 8.3 8.4 8.4 8.5 8.7 8.8 9.0

S3 (0∗18, 10, 10) 1.6 2.0 2.6 3.0 3.5 3.9 4.5 4.6 4.8 5.0
5.1 5.3 5.4 5.6 5.8 6.0 6.0 6.1 6.3 7.8

Table 7: Point estimates of α, β, θ , R(t) and h(t) from turbochargers data

Sample Par. MLE SE GE
δ → −3 −0.03 3

Est. St.Err Est. St.Err Est. St.Err Est. St.Err Est. St.Err
S1 α 0.2384 0.1180 0.2378 3.47×10−5 0.2381 3.91×10−4 0.2377 6.93×10−4 0.2374 1.00×10−3

β 3.7836 1.5999 3.7826 4.98×10−5 3.7827 9.57×10−4 3.7826 9.96×10−4 3.7826 1.04×10−3

θ 5173.1 11.881 5173.1 5.02×10−5 5173.1 8.90×10−4 5173.1 8.90×10−4 5173.1 8.90×10−4

R(5) 0.9302 0.0151 0.9305 3.43×10−5 0.9306 3.76×10−4 0.9305 3.00×10−4 0.9304 2.23×10−4

h(5) 0.0654 0.0137 0.0651 4.21×10−5 0.0662 8.03×10−4 0.0646 8.04×10−4 0.0630 2.43×10−3

S2 α 0.0723 0.0338 0.0717 2.24×10−5 0.0720 3.67×10−4 0.0716 7.82×10−4 0.0711 1.22×10−3

β 7.6421 2.7495 7.6412 4.98×10−5 7.6412 9.59×10−4 7.6412 9.78×10−4 7.6411 9.98×10−4

θ 1064.5 5.2321 1064.4 5.00×10−5 1064.4 9.05×10−4 1064.5 9.05×10−4 1064.4 9.05×10−4

R(5) 0.8255 0.0332 0.8273 9.30×10−5 0.8277 2.16×10−3 0.8271 1.54×10−3 0.8264 9.00×10−4

h(5) 0.1123 0.0229 0.1111 9.32×10−5 0.1142 1.89×10−3 0.1096 2.72×10−3 0.1049 7.47×10−3

S3 α 4.5181 3.6838 4.4927 2.47×10−4 4.4933 2.48×10−2 4.4925 2.56×10−2 4.4917 2.65×10−2

β 0.2151 0.1065 0.2141 4.52×10−5 0.2145 5.75×10−4 0.2140 1.14×10−3 0.2134 1.72×10−3

θ 44.144 13.593 44.144 4.94×10−5 44.143 1.11×10−3 44.143 1.11×10−3 44.143 1.12×10−3

R(5) 0.7400 0.0625 0.7445 1.25×10−4 0.7454 5.35×10−3 0.7441 4.10×10−3 0.7428 2.82×10−3

h(5) 0.1612 0.0369 0.1584 7.52×10−5 0.1598 1.36×10−3 0.1577 3.48×10−3 0.1554 5.73×10−3

Table 8: Interval estimates of α, β, θ , R(t) and h(t) from turbochargers data

Sample Par. ACI HPD
Lower Upper Length Lower Upper Length

S1 α 0.0072 0.4696 0.4624 0.2243 0.2515 0.0271
β 0.6479 6.9193 6.2714 3.7637 3.8027 0.0391
θ 5149.8 5196.3 46.576 5173.2 5173.1 0.0394
R(5) 0.9006 0.9598 0.0592 0.9168 0.9435 0.0267
h(5) 0.0387 0.0922 0.0535 0.0493 0.0820 0.0326

(Continued)
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Table 8 (continued)

Sample Par. ACI HPD
Lower Upper Length Lower Upper Length

S2 α 0.0060 0.1387 0.1327 0.0629 0.0804 0.0175
β 2.2532 13.031 10.778 7.6214 7.6604 0.0389
θ 1054.2 1074.7 20.509 1064.5 1064.5 0.0393
R(5) 0.7604 0.8906 0.1302 0.7897 0.8623 0.0726
h(5) 0.0675 0.1572 0.0897 0.0766 0.1490 0.0724

S3 α 0.0000 11.738 11.738 4.3972 4.5900 0.1928
β 0.0064 0.4238 0.4175 0.1970 0.2325 0.0355
θ 17.502 70.787 53.285 44.124 44.162 0.0385
R(5) 0.6176 0.8624 0.2448 0.6962 0.7941 0.0979
h(5) 0.0888 0.2335 0.1448 0.1282 0.1872 0.0590

Since no prior information is available for HEE parameters α, β and θ from turbochargers data,
non-informative priors, i.e., ai = bi = 0, i = 1, 2, 3, are used to carry out the Bayesian analysis from
both SE and GE (for δ(= −3, −0.03, +3)) loss functions. To run calculations, we have taken 1 × 10−4

for all given hyper-parameters. Using the MCMC algorithm described in Section 3, the first 10,000
iterations have been discarded from 50,000 MCMC samples in order to eliminate effects from the initial
values. The initial guesses of α, β and θ were taken to be their classical estimates. It is observed, from
Tables 7 and 8, that the Bayes estimates of α, β, θ , R(t) and h(t) perform better than the frequentist
estimates in terms of their St.Errs as well as the corresponding lengths of the HPD interval estimates
are narrow down compared to the ACIs. In addition, some vital properties for the MCMC outputs
of all unknown parameters after burn-in, namely: mean, mode, quartiles (Qi for i = 1, 2, 3), standard
deviation (St.D) and skewness (Skew.) are calculated and presented in Table 9.

Table 9: Vital properties of MCMC outputs of α, β, θ , R(t) and h(t) from turbochargers data

Sample Par. Mean Mode Q1 Q2 Q3 St.D Skew.

S1 α 0.23785 0.23643 0.23320 0.23792 0.24260 0.00695 −0.05050
β 3.78264 3.78977 3.77596 3.78264 3.78931 0.00996 0.01078
θ 5173.09 5173.08 5173.09 5173.09 5173.11 0.01004 0.00173
R(5) 0.93054 0.93171 0.92607 0.93081 0.93531 0.00687 −0.24748
h(5) 0.06514 0.06357 0.05925 0.06470 0.07053 0.00841 0.32828

S2 α 0.07169 0.07128 0.06876 0.07176 0.07479 0.00448 −0.14659
β 7.64117 7.64033 7.63450 7.64113 7.64788 0.00996 −0.01944
θ 1064.48 1064.47 1064.47 1064.48 1064.484 0.01000 −0.01400
R(5) 0.82729 0.83005 0.81488 0.82804 0.84012 0.01861 −0.17590
h(5) 0.11112 0.10786 0.09807 0.10982 0.12319 0.01864 0.34268

(Continued)
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Table 9 (continued)

Sample Par. Mean Mode Q1 Q2 Q3 St.D Skew.

S3 α 4.49275 4.37610 4.45936 4.49177 4.52583 0.04947 0.06349
β 0.21414 0.20656 0.20807 0.21414 0.22015 0.00903 0.02330
θ 44.1436 44.1346 44.1368 44.1436 44.1502 0.00989 0.02942
R(5) 0.74453 0.75410 0.72796 0.74490 0.76156 0.02498 −0.08247
h(5) 0.15838 0.14053 0.14821 0.15836 0.16848 0.01505 0.00122

In MCMC iterations, the convergence of simulated chains of each unknown parameter must be
checked. Therefore, based on the data set of S1 as an example, trace plots based on 40,000 chain values
of α, β, θ , R(t) and h(t) are plotted and displayed in Fig. 10. Furthermore, the associated histograms
using the Gaussian kernel for 40,000 MCMC iterations of α, β, θ , R(t) or h(t) are also shown in
Fig. 10. For specification, in each trace plot, the sample mean and two bounds of 95% HPD interval
are expressed by soled and dashed horizontal lines, respectively, as well as in each histogram plot,
the sample mean is plotted by vertical dash–dotted line. Fig. 10 shows that the proposed MCMC
algorithm converges well and the size of burn–in sample is enough to eliminate the effect of the initial
guesses. It also demonstrates that the generated posteriors of α, β, θ , R(t) and h(t) behave almost
symmetrically. In the supplementary file (see Figs. S1–S2), the MCMC plots obtained from samples
S2 and S3 of α, β, θ , R(t) and h(t) are presented.
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Figure 10: (Continued)
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Figure 10: Trace plots (left) and Histogram plots (right) for simulated MCMC samples of α, β, θ , R(t)
and h(t) from turbochargers data

On the basis of the data from the turbochargers, the problem of selecting the optimal censoring
scheme out of all available censoring methods is also examined. The recommended optimum criteria
in Table 1 are determined from the generated samples reported in Table 6 and listed in Table 10. It is
clear that the progressive censoring plan (0∗9, 10, 10, 0∗9) is the optimum censoring than others based
on the given criterion I, II and III while (10, 10, 0∗18) is the optimum censoring than others based on
the criterion IV for all specified percentiles.

6.2 Guinea-Pigs Data
In this application, from veterinary medicine field, we shall provide an analysis for the survival

times (in days) of 72 guinea-pigs infected with virulent tubercle bacilli. This data set was originally
discussed and reported by Bjerkedal [35] and recently also explained by Chhetri et al. [36]. For
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computational convenience, each lifetime point in the original guinea-pigs data set is divided by one
hundred. In Table 11, the new transformed survival times are reported in ascending order.

Table 10: Optimal progressive censoring schemes from turbochargers data

Sample 1 2 3 4

p → 0.2 0.4 0.6 0.8

S1 11145.81 143.7514 0.032497 0.0559152 0.0631377 0.073538 0.087202
S2 40554.46 34.93527 0.004375 0.1260493 0.1345998 0.169284 0.227501
S3 2276.636 198.3635 198.3635 0.2451898 0.3637591 1.242139 6.479739

Table 11: New transformed survival times of 72 guinea-pigs

0.10 0.33 0.44 0.56 0.59 0.72 0.74 0.77 0.92 0.93 0.96 1.00
1.00 1.02 1.05 1.07 1.07 1.08 1.08 1.08 1.09 1.12 1.13 1.15
1.16 1.20 1.21 1.22 1.22 1.24 1.30 1.34 1.36 1.39 1.44 1.46
1.53 1.59 1.60 1.63 1.63 1.68 1.71 1.72 1.76 1.83 1.95 1.96
1.97 2.02 2.13 2.15 2.16 2.22 2.30 2.31 2.40 2.45 2.51 2.53
2.54 2.54 2.78 2.93 3.27 3.42 3.47 3.61 4.02 4.32 4.58 5.55

Again, to illustrate how the HEE distribution can be used effectively to provide a better fit than
the other distributions, the guinea-pigs data set is also analyzed for this purpose. From Table 11, the
MLEs (with their St.Errs) of all considered distributions (given in Table 3) are calculated and reported
in Table 12. Furthermore, the different goodness-of-fit criteria are also computed and reported in
Table 13. It is clear, from Table 13, that the HEE distribution is the best statistical model compared
to other fitted models for fitting guinea-pigs data set because it has the lowest values of the different
goodness-of-fit measures and the highest p-value. Fig. 11 shows the quantile-quantile plots for the
considered distributions. Furthermore, the histogram and the different fitted densities as well as the
empirical and fitted reliability functions are displayed in Figs. 12a and 12b, respectively. Figs. 11 and
12 support the same findings reported in Table 13. Now, from the complete guinea-pigs data, different
progressively Type-II censored samples with fixed m = 32 and various choices of Ri, i = 1, . . . , m
are generated and listed in Table 14. The MLEs and the Bayes estimates (with their St.Errs) as well
as the 95% ACI/HPD interval estimates (with their lengths) of α, β, θ , R(t) and h(t) (at time t = 1)
are calculated and reported in Tables 15 and 16, respectively. Using the proposed SE and GE (for
δ(= −3, −0.03, +3)) loss functions, because prior knowledge about the HEE parameters from the
guinea-pigs data is not available, the Bayes point estimates are obtained based on improper gamma
densities when ai = bi = 0, i = 1, 2, 3. We also take 0.0001 for all given hyper-parameters. By running
the MCMC sampler 50,000 times and omitting the first 10,000 iterations as burn-in, the Bayes point (or
interval) calculations are performed. However, Table 15 shows that the point estimates of all unknown
parameters obtained by frequentist and Bayesian estimation methods are almost close to each other
as expected. A similar finding is also reached in the case of interval estimation.
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Table 12: Summary fit of the HEE distribution and other competing models from guinea-pigs data

Model α β θ

Estimate St.Err Estimate St.Err Estimate St.Err

HEE 4.3287 1.5182 1.0311 0.1555 47.969 40.283
APE – – 21.458 9.6672 1.0522 0.0998
GE – – 3.6288 0.7211 1.1271 0.1316
NH – – 6.4260 2.6985 0.0602 0.0276
W – – 1.8254 0.1587 1.9960 0.1363
G – – 3.0981 0.4910 0.5707 0.0982
L – – 11.701 5.7754 20.205 10.535
E – – – – 0.5654 0.0666

Table 13: Goodness-of-fit results of the HEE distribution and other competing models from guinea-
pigs data

Model NL A B CA HQ AD CvM KS (p-value)

HEE 91.8032 189.6064 196.4364 189.9593 192.3254 0.2788 0.0470 0.0713 (0.857)
APE 97.1522 198.3045 202.8578 198.4784 200.1171 0.6586 0.1134 0.1673 (0.055)
GE 94.2360 192.4721 197.0254 192.6460 194.2848 0.5224 0.0808 0.0930 (0.561)
NH 103.869 211.7381 216.2914 211.9120 213.5508 1.2021 0.2044 0.2281 (0.051)
W 95.7898 195.5796 200.1329 195.7535 197.3923 0.9711 0.1649 0.1047 (0.408)
G 94.2295 192.4591 197.0124 192.6330 194.2718 0.5985 0.0971 0.0898 (0.606)
L 115.085 234.1718 238.7251 234.3457 235.9845 0.5507 0.0873 0.2949 (0.025)
E 113.037 228.0741 230.3508 228.1312 228.9804 0.5978 0.0968 0.2944 (0.018)
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Figure 11: The quantile-quantile plots of the HEE distribution and other competing models using
guinea-pigs data
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Figure 12: Estimated densities and reliability functions of the HEE distribution and other competing
models using guinea-pigs data

Table 14: Three progressively Type-II censored samples from guinea-pigs data

Sample Scheme Censored data

S1 (20, 20, 0∗30) 0.10 1.12 1.71 1.72 1.76 1.83 1.95 1.96 1.97 2.02 2.13
2.15 2.16 2.22 2.30 2.31 2.40 2.45 2.51 2.53 2.54 2.54
2.78 2.93 3.27 3.42 3.47 3.61 4.02 4.32 4.58 5.55

S2 (0∗15, 20, 20, 0∗15) 0.10 0.33 0.44 0.56 0.59 0.72 0.74 0.77 0.92 0.93 0.96
1.00 1.00 1.02 1.05 1.07 1.53 2.45 2.51 2.53 2.54 2.54
2.78 2.93 3.27 3.42 3.47 3.61 4.02 4.32 4.58 5.55

S3 (0∗30, 20, 20) 0.10 0.33 0.44 0.56 0.59 0.72 0.74 0.77 0.92 0.93 0.96
1.00 1.00 1.02 1.05 1.07 1.07 1.08 1.08 1.08 1.09 1.12
1.13 1.15 1.16 1.20 1.21 1.22 1.22 1.24 1.30 2.15
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Table 15: Point estimates of α, β, θ , R(t) and h(t) from guinea-pigs data

Sample Par. MLE SE GE
δ → −3 −0.03 3

Est. St.Err Est. St.Err Est. St.Err Est. St.Err Est. St.Err
S1 α 2.6962 0.8659 2.6228 4.71×10−4 2.6262 7.01×10−2 2.6211 7.51×10−2 2.6160 8.02×10−2

β 1.1954 0.2875 1.1792 2.98×10−4 1.1822 1.32×10−2 1.1778 1.77×10−2 1.1732 2.22×10−2

θ 496.09 11.905 495.98 4.83×10−4 495.98 9.95×10−2 495.98 9.95×10−2 495.98 9.95×10−2

R(1) 0.9826 0.0033 0.9841 1.21×10−5 0.9841 1.59×10−3 0.9841 1.58×10−3 0.9841 1.57×10−3

h(1) 0.0577 0.0138 0.0510 4.97×10−5 0.0530 4.74×10−3 0.0501 7.59×10−3 0.0474 1.03×10−2

S2 α 0.1004 0.0475 0.0999 4.20×10−5 0.1006 2.24×10−4 0.0996 8.25×10−4 0.0985 1.93×10−3

β 6.1208 1.7324 6.0258 4.78×10−4 6.0273 9.34×10−2 6.0251 9.57×10−2 6.0228 9.79×10−2

θ 54.119 11.765 54.022 4.95×10−4 54.022 9.67×10−2 54.022 9.70×10−2 54.021 9.72×10−2

R(1) 0.8564 0.0320 0.8591 2.12×10−5 0.8591 2.67×10−3 0.8591 2.64×10−3 0.8590 2.61×10−3

h(1) 0.2059 0.0416 0.2008 5.29×10−5 0.2014 4.47×10−3 0.2006 5.30×10−3 0.1997 6.14×10−3

S3 α 9.9173 3.4497 9.8059 5.28×10−4 9.8070 1.10×10−1 9.8053 1.12×10−1 9.8036 1.14×10−1

β 0.5541 0.1178 0.5366 2.23×10−4 0.5403 1.39×10−2 0.5348 1.94×10−2 0.5293 2.49×10−2

θ 30.946 7.3592 30.853 4.71×10−4 30.853 9.24×10−2 30.853 9.29×10−2 30.852 9.33×10−2

R(1) 0.8027 0.0379 0.8172 1.56×10−4 0.8184 1.56×10−2 0.8166 1.39×10−2 0.8147 1.20×10−2

h(1) 0.4935 0.0872 0.4626 3.25×10−4 0.4716 2.19×10−2 0.4581 3.54×10−2 0.4433 5.02×10−2

Table 16: Interval estimates of α, β, θ , R(t) and h(t) from guinea-pigs data

Sample Par. ACI HPD

Lower Upper Length Lower Upper Length

S1 α 0.9990 4.3934 3.3944 2.4280 2.7940 0.3660
β 0.6320 1.7589 1.1268 1.0606 1.2938 0.2333
θ 472.75 519.42 46.667 495.81 496.17 0.3675
R(1) 0.9760 0.9891 0.0131 0.9792 0.9885 0.0093
h(1) 0.0307 0.0847 0.0540 0.0332 0.0711 0.0379

S2 α 0.0073 0.1935 0.1861 0.0835 0.1165 0.0330
β 2.7252 9.5163 6.7910 5.8439 6.2148 0.3709
θ 31.058 77.179 46.121 53.807 54.201 0.3940
R(1) 0.7937 0.9191 0.1254 0.8505 0.8666 0.0161
h(1) 0.1244 0.2873 0.1629 0.1820 0.2221 0.0401

S3 α 3.1561 16.678 13.523 9.6018 10.016 0.4143
β 0.3233 0.7850 0.4618 0.4528 0.6275 0.1746
θ 16.522 45.371 28.848 30.6839 31.042 0.3584
R(1) 0.7284 0.8771 0.1487 0.7546 0.8766 0.1220
h(1) 0.3226 0.6644 0.3418 0.3431 0.5981 0.2550

Using the generated sample S1 (as an example) from the guinea-pigs data, both trace and
histogram plots for 40,000 MCMC simulated variates of the unknown parameters α, β, θ , R(t)
and h(t) are displayed in Fig. 13. It indicates that the MCMC samples generated from all unknown
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parameters are converged adequately. It is also evident, from the estimated Gaussian kernel, that
all the generated posterior samples of the HEE parameters α, β and θ are fairly symmetrical while
the generated posteriors of the survival characteristics R(t) and h(t) are negative and positive quite
skewed, respectively. Furthermore, some vital statistics of MCMC outputs of α, β, θ , R(t) and h(t)
such as: mean, mode, 1st quartile (Q1), 3rd quartile (Q3), St.D and Skew. are computed and presented
in Table 17. It shows that the calculated tendency measures support the same application results in
Fig. 13. From guinea-pigs data, in the supplementary file (see Figs. S3–S4), the MCMC plots obtained
from samples S2 and S3 of α, β, θ , R(t) and h(t) are provided. Moreover, using the specific censoring
schemes listed in Table 14, the calculated values of the proposed optimality criteria are provided in
Table 18. It shows that the progressive censoring schemes (20, 20, 0∗30) are the best compared to
the other censoring schemes based on criterions IV and II, respectively; and the censoring scheme
(0∗30, 20, 20) is the best compared to the others based on the criterions I and III.
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Figure 13: Trace plots (top panel) and Histogram plots (bottom panel) for simulated MCMC samples
of α, β, θ , R(t) and h(t) from guinea-pigs data

Table 17: Vital properties of MCMC outputs of α, β, θ , R(t) and h(t) from guinea-pigs data

Sample Par. Mean Mode Q1 Q2 Q3 St.D Skew.

S1 α 2.62277 2.56417 2.55656 2.62014 2.68691 0.09420 0.07891
β 1.17921 1.18621 1.13953 1.17771 1.21759 0.05957 0.10702
θ 495.986 495.851 495.919 495.986 496.051 0.09657 0.08720
R(1) 0.98414 0.98474 0.98267 0.98437 0.98585 0.00243 −0.55429
h(1) 0.05102 0.04816 0.04392 0.04989 0.05693 0.00994 0.66725

S2 α 0.09992 0.09570 0.09443 0.09969 0.10559 0.00841 0.03833
β 6.02583 5.89454 5.95915 6.02504 6.09046 0.09555 0.07992
θ 54.0221 53.7727 53.9559 54.0235 54.0877 0.09895 −0.01609
R(1) 0.85907 0.86395 0.85615 0.85919 0.86204 0.00423 −0.14105
h(1) 0.20083 0.19002 0.19332 0.20045 0.20808 0.01058 0.19451

S3 α 9.80589 9.66772 9.73301 9.80580 9.87597 0.10561 0.05471
β 0.53657 0.50389 0.50416 0.53608 0.56493 0.04452 0.26831
θ 30.8535 30.7377 30.7873 30.8528 30.9171 0.09429 0.12605
R(1) 0.81718 0.84299 0.79793 0.81781 0.83990 0.03127 −0.31411
h(1) 0.46258 0.41038 0.41654 0.46414 0.50459 0.06506 0.08464
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Table 18: Optimal progressive censoring schemes from guinea-pigs data

Sample 1 2 3 4

p → 0.2 0.4 0.6 0.8

S1 231.8927 142.5657 0.506579 0.012706 0.017403 0.024972 0.024972
S2 5063.384 141.4352 0.074908 0.041076 0.051283 0.061935 0.098695
S3 364.6434 66.07286 1.728637 0.009269 0.026071 0.088810 0.308492

7 Concluding Remarks

In this work, we have acquired both classical and Bayesian estimations of the Harris extended-
exponential distribution in the existence of progressively Type-II censoring samples. The maximum
likelihood approach is taken into account in the context of classical estimation in order to get the
point and interval estimations of the unknown parameters, reliability, and hazard rate functions. On
the other hand, under the premise of independent gamma priors, the Bayesian estimation is created
based on both squared and general entropy loss functions. Due to the problematic presentation of
the posterior distribution, the Markov Chain Monte Carlo technique is employed to get the Bayes
estimates as well as the highest posterior density credible intervals. Monte Carlo simulations are
implemented to compare the performance of the diverse point and interval estimators while accounting
for various sample sizes and censoring procedures. Some optimality criteria are investigated to discover
the best progressive censoring scheme. We examined two data sets for guinea pigs and turbochargers to
show how the suggested estimators perform in practical environments. These applications showed also
that the Harris extended-exponential distribution provides a better fit than other seven distributions
in the literature. To be more specific, the numerical investigations showed that the Bayesian MCMC
technique yields more accurate estimates compared to others and is recommended when the progres-
sively Type-II censored Harris extended-exponential data exist. In future work, it may be preferable
to reuse the proposed estimation methods to include competing risks or accelerated tests data.
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Table S1: The average estimates (1st column), RMSEs (2nd column) and MABs (3rd column)
of α

Table S2: The average estimates (1st column), RMSEs (2nd column) and MABs (3rd column)
of β

Table S3: The average estimates (1st column), RMSEs (2nd column) and MABs (3rd column)
of θ

Table S4: The average estimates (1st column), RMSEs (2nd column) and MABs (3rd column)
of R(t)

Table S5: The average estimates (1st column), RMSEs (2nd column) and MABs (3rd column)
of h(t)

Table S6: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of α

Table S7: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of β
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Table S8: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of θ

Table S9: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals
of R(t)

Table S10: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals
of h(t)

Figure S1: Trace plots (left) and Histogram plots (right) for simulated MCMC samples of α, β, θ ,
R(t) and h(t) using sample S2 from turbochargers data

Figure S2: Trace plots (left) and Histogram plots (right) for simulated MCMC samples of α, β, θ ,
R(t) and h(t) using sample S3 from turbochargers data

Figure S3: Trace plots (top panel) and Histogram plots (bottom panel) for simulated MCMC
samples of α, β, θ , R(t) and h(t) using sample S2 from guinea-pigs data

Figure S4: Trace plots (top panel) and Histogram plots (bottom panel) for simulated MCMC
samples of α, β, θ , R(t) and h(t) using sample S3 from guinea-pigs data
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