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ABSTRACT

The topological connectivity information derived from the brain functional network can bring new insights for
diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation
between abnormal connectivities and dementia disorders. However, it is challenging to access considerable
amounts of brain functional network data, which hinders the widespread application of data-driven models in
dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with
transformer is proposed to generate new fake brain functional networks to augment the brain functional network
dataset, improving the dementia diagnosis accuracy of data-driven models. Specifically, the label distribution is
estimated to regularize the latent space learned by the graph encoder, which can make the learning process stable
and the learned representation robust. Also, the transformer generator is devised to map the node representations
into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.
The typical topological properties and discriminative features can be preserved entirely. Furthermore, the generated
brain functional networks improve the prediction performance using different classifiers, which can be applied to
analyze other cognitive diseases. Attempts on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
demonstrate that the proposed model can generate good brain functional networks. The classification results show
adding generated data can achieve the best accuracy value of 85.33%, sensitivity value of 84.00%, specificity value of
86.67%. The proposed model also achieves superior performance compared with other related augmented models.
Overall, the proposed model effectively improves cognitive disease diagnosis by generating diverse brain functional
networks.
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1 Introduction

The brain is an information-processing system with many complicated and precise computations
when dealing with various daily activities [1]. Daily physiological activities are always associated with
the interaction between multiple neurons, neuronal clusters, or multiple brain regions. This interaction
is called brain functional network (BFN), which describes the relationship between temporal blood-
oxygen-level-dependent (BOLD) signals from distant brain areas [2]. Dementia (i.e., Alzheimer’s
Disease, AD) is a typical kind of neuropathic disorder where patients usually show abnormal
functional connections between brain regions [3]. It can result in a series of cognitive symptoms:
memory impairment, poor language expression, and changes in vision [4,5]. Functional magnetic
resonance imaging (fMRI) can easily capture these abnormal features using the non-intrusive scanning
technology [6]. The BFN can bring a new way for the diagnosis and analysis of neurodegenerative
disorders [7]. Therefore, analysis of BFNs is important to mine complex brain connectivity features
and help detect dementia-related biomarkers. It is further important to understand the pathogenic
mechanism and the drug discovery for neurodegenerative disorders [8].

The BFN is usually constructed through a software toolbox by splitting the human brain into
predefined Region-of-Interests (ROIs) [9]. The element in the BFN matrix indicates the functional
correlation between two ROIs. Many approaches based on machine learning were utilized to diagnose
neurological disease in an end-to-end scheme [10–16]. For example, Meier et al. [17] applied the support
vector machine (SVM) classifier to distinguish older adults from younger adults using functional con-
nectivity data. To boost the Mild Cognitive Impairment (MCI) prediction performance, Yu et al. [18]
designed a sparse graph representation learning method with a weighting scheme to generate sparse
BFNs. Bi et al. [19] combined convolutional learning and recurrent learning to extract regional
connectivity and adjacent positional features, which proves its learning ability in AD diagnosis.
More advanced techniques are proposed to explore the complex connectivity-based features [20–22].
Ji et al. [23] devised novel convolutional kernels to capture hierarchical topological characteristics by
element-wise weighting brain networks and achieved more accurate classification performance. The
work in [24] applied the graph convolutional network (GCN) method to improve the classification
accuracy by jointly using the functional time series and connectivity-based matrices. Nevertheless, the
limited medical data makes data-driven models challenging to achieve good prediction results.

The straightforward way to improve classification performance is to synthesize more similar
medical data and feed it to data-driven models [25,26]. Numerous data-augmented methods have
been developed to solve the small data problem in the field of brain imaging analysis. For example,
Hong et al. [27] augmented the routine brain magnetic resonance (MR) imaging with scaling,
rotation, translation, and gamma correction and achieved accurate results predicting children’s brain
age through a deep learning model. Hu et al. [28] synthesized the positron emission tomography
(PET) from MR using generative models, which can handle the problem of incomplete modalities
and is promising for multimodal fusion. However, the above methods cannot be applied to BFN
augmentation, because it only considers the local features between adjacent pixels and ignores the



CMES, 2023, vol.137, no.3 2131

topological information between distant pixels. Many efforts have been tried to generate new graph
data in the graph domain. Meszlényi et al. [29] created some simulated connectivity-based datasets
by applying noise weights (NW) to improve the classification performance. The study of [30] solved
the problem of small-size data by employing the synthetic minority over-sampling technique (SMOTE)
algorithm and achieved a good classification accuracy of non-tumorous facial pigmentation disorders.
However, these methods do not directly generate new graph data but interpolate existing brain
networks to augment the data, which brings some noise and may have some side effects on the model’s
classification performance.

The generative adversarial networks (GANs) [31] is a two-player game that can produce quite
good results by mutual game learning [32]. It has gained broad applications in analyzing medical
imaging because of its strong ability in distribution fitting [33]. These applications cover the image-
related fields, including cross-modal synthesis [34], point cloud generation [35], image super-resolution
[36], disease classification [37–39], regression task [40,41], and organ segmentation [42]. Besides, the
prior distribution can guide the model’s optimization and thus stabilize the representation learning
in the GAN’s training [43]. Reference [44] introduced a Gaussian distribution to constrain the graph
embedding in adversarial learning and achieved good performance in graph analytics. The GAN-
based model has been applied in the BFN augmentation. For example, Tan et al. [45] utilized the
Gaussian noise to synthesize BFNs by applying a semi-positive definite manifold constraint. Also,
the transformer network [46] can greatly improve image classification performance by combining
adversarial strategy, which can model a strong relationship between distant ROIs.

Motivated by these observations, in this study, a novel distribution-regularized adversarial graph
autoencoder (DAGAE) model is proposed to generate BFNs for dementia diagnosis. The main works
of this paper are as follows: (1) The label distribution is estimated to regularize the latent space learned
by the graph encoder, which can make the learning process stable and deduce a robust representation.
(2) The transformer-based network in the generator is introduced to map the node representations into
node-to-node connections by exploring the global connectivity information between distant ROIs. It
preserves the main topological properties and more discriminative features. (3) The generated BFNs
enhance disease prediction using different classifiers, which can be applied to analyze other related
brain diseases.

2 Materials and Methods
2.1 Data Preparation

The purpose of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project1 is to detect the
early stage of Alzheimer’s disease from clinical, imaging, gene, biomarker, and other aspects. In this
study, we mainly focus on the Late Mild Cognitive Impairment (LMCI) stage scanned with functional
Magnetic Resonance Imaging (fMRI). To eliminate the influence of category imbalance on model
classification performance, we selected the same number of NC subjects as LMCI for the experiment.
About 150 subjects with fMRI were selected to test our model’s effectiveness, including 75 Normal
Controls (NC) and 75 LMCI. The fMRI data were scanned with the filed strength of 3.0 Tesla. The
turning angle is 80 degrees, and the time of repetition (TR) is in the range of 0.607∼3.0 s. The scanning
time for each subject is about 10 min.

The commonly used GRETNA [47] software is adopted to preprocess the fMRI to construct
graph data. The detailed procedures include format conversion, first ten volumes removal, slice

1http://adni.loni.usc.edu/

http://adni.loni.usc.edu/
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timing, head motion realign, normalizing, spatially smooth, detrend, and temporally filtering (usu-
ally 0.01∼0.08 Hz). At last, the automated anatomical labeling (AAL) atlas [48] with ninety non-
overlapping ROIs is warped to the fMRI volumes for obtaining functional features F . The F with
the size 90 × 187 is transformed into a BFN Aori with the dimension size 90 × 90 by the Pearson
coefficient algorithm.

2.2 Distribution-Regularized Adversarial Graph Autoencoder
The BFN is generated by the designed DAGAE model, which is depicted in Fig. 1. It accepts

the graph data (including brain functional feature F and BFN Aori) and corresponding label (i.e.,
Y = {0, 1}), outputs the reconstructed brain network Arec, and the generated brain network Agen.
The proposed DAGAE contains three parts: the label distribution estimation (LDE), the adversarial
graph encoder (AGE), and the transformer generator (TG). The LDE module is devised to compute
the probability distribution of latent node features, which can robustly constrain the graph encoder
for node representation learning. The TG maps latent node space to graph space, which decodes the
node representations to BFNs. Four objective functions are utilized to optimize the model, including
adversarial loss, reconstruction loss, node-representation consistent loss, and cross-entropy loss.

Figure 1: The architecture of the proposed DAGAE model. It accepts brain functional feature F and
BFN Aori with a specific label and outputs reconstructed or generated BFN (i.e., Arec, Agen). The model
has four parts: Graph encoder, classifier, discriminator, and transformer generator
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2.2.1 Label Distribution Estimation

To improve the performance of node representation in latent space, the label probability dis-
tribution estimated by Kernel Density Estimation (KDE) is introduced in the node representation
learning. Instead of the traditional normal distribution, it can reflect the accurate distribution of node
features and ensure robust representations in the model training. In the feature space, the node feature
F ∈ R

N×187 is first passed through a dimension reduction operation to get H = {h1, h2, ..., hN} ∈ R
N×p,

and then sent to the KDE for distribution estimation. N means the number of brain regions, p is the
dimension of hi. The estimated label distribution P(x|F , Y) is defined as:

P(x|F , Y) = 1
NnY b

NnY∑
i=1

K
(

x − hi

b

)
(1)

where, nY is the subject number with specfic disease (i.e., Y = 0 means the NC, Y = 1 means the LMCI)
subjects. K(·) is a predefined kernel function (i.e., Gaussian), and b means the kernel’s bandwidth.

2.2.2 Adversarial Graph Encoder

The graph encoder accepts both F and Aori and outputs the latent node representation H. To
make the node representation learning stable, a prior distribution is introduced to guide the learning
process. The graph encoder E consists of two GCN layers, where each layer is followed by an activation
function. The output dimension of GCN layers is 64 and 32, respectively. The first and second
activations are the ReLU and tanh functions, respectively. The graph encoder can be expressed as:

H = E(Aori, F) = GCN2(GCN1(Aori, F)) (2)

The node representation H is treated as a fake sample to send to the discriminator D. The loss
function of the graph encoder in adversarial training is:

Lenc = EF∼PfMRI ,Aori∼PfMRI
[log(1 − D(E(Aori, F)))] (3)

The graph encoder aims to enforce the latent node representation H to be consistent with the
estimated label distribution Px. The estimated label distribution Px is utilized to guide the graph
encoder to learn a robust representation. The discriminator plays as a referee to supervise the graph
encoder to learn a distribution-consistent representation. Specifically, we sample a matrix X ∈ R

N×p

from the distribution Px. The sampled matrix X is the real sample for adversarial learning, while the
fake sample is the output H of the graph encoder. As shown in Fig. 2, the discriminator comprises
N sub-networks, where each discriminates the true or false of only one ROI representation. Each
subnetwork is built on a three-layer perceptron with hidden neurons 32, 64, and 1. Each subnetwork
consists of a sigmoid activation function to keep the output in the range of 0∼1. The output of the
discriminator is the mean value of all the subnetwork outputs. The discriminator loss is:

Ldis = EF∼PfMRI ,Aori∼PfMRI
[−log(1 − D(E(Aori, F)))] + EX∼Px [−log(D(X)))] (4)

In addition, to make the node representation discriminative, the cross-entropy loss is introduced
to further regularize the learned node representation. The binary classifier C is shown in the lower part
of Fig. 2. The node representation H passes five Multi-Layer Perceptron (MLP) and outputs a vector
with two elements, followed by a softmax to predict the most likely disease category. The classifier loss
can be computed as follows:

Lcla = EF∼PfMRI ,Aori∼PfMRI
[y · log(C(E(Aori, F)))] (5)

here, the y is a one-hot vector (i.e., [0,1] represents the LMCI, and [1,0] represents NC).
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Figure 2: Illustration of the discriminator and classifier structure. The input of the discriminator is a
matrix computed from either latent node representation H or label distribution Px, and the output is
true (1) or false (0)

2.2.3 Trasnformer Generator

The transformer generator G process maps each node in latent space H to a reconstructed
graph Arec. Also, the G can generate similar brain networks Agen by inputting matrix X sampled
from the label distribution Px. The generator module comprises three connectivity transformer (CT)
layers, two dimensions upscaling (DU) layers, and connectivity prediction operation. The connectivity
transformer layer contains norm, linear mapping (LM), head split, attention, dot-product, and
concatenate. 4, 8, and 11 heads are designed in the three successive CT layers. Note that each CT’s
input and output dimension is the same. The output dimension of the two DU layers is 64 and 187,
respectively. Each DU has only one layer. After latent representation H passes through the CT and
DU layers, the inner product and tanh activation function are utilized to predict connectivity with the
range −1∼1. The reconstructed BFN Arec and generated BFN Agen are given by:

Arec = G(H) = tanh(H ′ · H ′T) (6)

H ′ = CT(DU2(CT(DU1(CT(H))))) (7)

Agen = G(X) = tanh(X ′ · X ′T) (8)

X ′ = CT(DU2(CT(DU1(CT(X))))) (9)
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The reconstruction loss is adopted to preserve the original graph structure while making the
autoencoder training stable. We choose the L1 norm to measure the distance between the original
Aori and reconstructed Arec. It is defined as:

Lrec = EAori∼PfMRI ,F∼PfMRI
(||G(E(Aori, F)) − Aori||1) (10)

Moreover, to make the generator learning more stable, we put the reconstructed brain network Arec

to the graph encoder and obtain consistent node representation Ĥ. The node-representation consistent
loss is calculated by minimizing the distance generated between H and Ĥ:

Lnrc = EH∼PH
(||Ĥ − H||1) (11)

Ĥ = E(G(H)) (12)

2.3 Classification Training and Evaluation Metrics
In summary, the optimization strategy of the proposed DAGAE updates the weights of the graph

encoder, discriminator, classifier, and transformer generator. The hybrid loss is defined by:

Lall = Lenc + Ldis + Lcla + Lrec + Lnrc (13)

As illustrated in Fig. 3, we send the training set to the DAGAE model for training and augment
the BFN with the transformer generator. The detailed training of the DAGAE model is shown in
Algorithm 1. Inspired by the method [49,50], the latent feature learning can be stable when the
optimization converges. For each label (i.e., NC and LMCI), we sample matrics from the distribution
Px and generate k times the number of original BFNs. It should be noted that the generated BFNs are
not seen in the test set.

Figure 3: The entire workflow of this work. In the training stage, the transformer generator is first
extracted from the trained DAGAE and then maps the distribution-sampled representation into
generated BFNs (Agen). At last, the combination of the generated and original BFNs is utilized for
training the classifier. In the testing stage, only the original BFNs in the testing set are used to predict
the disease label
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In the classification stage, we build a sample graph classifier modified from [24], including two
GCN layers with 32 and 16 hidden neurons, one graph pooling, and one MLP layer with two neurons.
The original training set is first used to train the graph classifier. Then the generated BFNs are mixed in
the training set to finetune the classifier for enhancing classification performance. At last, the trained
classifier predicts disease labels of the testing set for performance evaluation. There are four commonly
used metrics for the prediction assessment: Accuracy (ACC), Specificity (SPE), Sensitivity (SEN), and
the Area Under the receiver operating characteristic Curve (AUC). They are defined as:

ACC = TL + TN
TL + TN + FL + FN

(14)

SEN = TL
TL + FN

(15)

SPE = TN
TN + FL

(16)

where, TN means that NC is correctly predicted, TL means that LMCI is correctly predicted. FN
means that NC is incorrectly predicted, FL means that LMCI is incorrectly predicted.

Algorithm 1: Optimizing the DAGAE model
Input: F : brain functional feature;

Aori: original BFN;
Px(F , Y): label distribution;

O: the number of iterations;
T : the number of steps for updating discriminator

Output: Agen ∈ R
N×N: the generated BFN

1: for i = 1, 2, · · ·, O do
2: for j = 1, 2, · · ·, T do
3: Compute the latent representation matrix H using Eq. (2)
4: Sample a true matrix X = {x1, x2, . . . , xN} from the label distribution px{F , Y}
5: Compute the loss function Ldis

6: Update the discriminator D by propagating the gradient �L j
dis[log(D(X))+ log(1−D(H))]

7: end for
8: Compute the combined loss function L = Lenc + Lcla + Lrec + Lnrc

9: Update the encoder, classifier, and generator by back-propagating the gradient -�L i

10: Compute the generated BFN Ai
gen using Eq. (8)

11: Replace the generated Agen with Ai
gen

12: end for

3 Experiment and Results
3.1 Experimental Setup

We adopt the 5-fold cross-validation strategy in the experiment to conduct the training and testing.
The preprocessed data is evenly separated into five folds, meaning each fold contains 15 NCs and 15
LMCIs. We first selected one-fold data and sent the rest of the four folds data (60 NCs and 60 LMCIs)
into the DAGAE model for training. Next, the trained generator is used to generate k (default value
1.0) times the training data. Then the generated and original training data are jointly to train the
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classifier. Finally, the classifier predicts the disease label of the selected one-fold data for performance
evaluation. In this experiment, three other augmented methods (i.e., EW [29], SMOTE [30] and ARAE
[44]) and three classical classifiers (i.e., SVM [51], DNN [52], and GCN [53]) are introduced to test the
effectiveness of the proposed model.

The DAGAE is trained on Ubuntu18.04 using the TensorFlow framework for BFN synthesis.
The graphical device is one GPU with NVIDIA Quadro P4000 8.0 GB. We set the model’s parameters
with the values as follows: N = 90, p = 32. In the DAGAE training, we first update the weighting
parameters of the graph encoder, classifier, and discriminator and then optimize the generator
parameters. The learning rate for the encoder and the discriminator is set at 0.001 and 0.0001,
respectively. The learning rate of the classifier and the generator are the same as the discriminator. The
Adam algorithm is selected for training with batch size 16. The learning process terminates when the
discriminator cannot identify the input from the node representation or the prior label distribution
and the change of total loss is stable. After the DAGAE has been trained, the generator is used to
augment BFNs for training the classifier. The learning rate of the classifier is set as 0.0001. We took
about 1000 epochs for training to ensure the classifier’s convergence. The ACC value is defined as the
classification performance evaluation, which is used to optimize the classifiers.

3.2 Prediction Performance
In the experiment, it is essential to constrain the latent node representation to follow the label

distribution. This constraint can diminish the model overfitting and stabilize the representation
learning. Fig. 4 shows the adversarial loss over epochs in the training process. In the beginning, the
encoder loss falls, and the discriminator rises. After 250 epochs, both keep around 0.5 steadily, which
means the adversarial training converges. After the training, the transformer generator generates new
BFNs by accepting node representation matrices sampled from the label distribution Px. As shown in
Fig. 5, examples of the original and generated BFNs are compared qualitatively. It can be seen that
the generated BFN can preserve the main patterns of the original BFN.

Figure 4: The loss curve of the adversarial training. It is utilized to constrain the latent node
representations in the label distribution
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Figure 5: Visualization of the original and generated BFNs. The left column shows the original BFNs
at NC and LMCI stages, and the right column shows the generated BFNs at NC and LMCI stages

We analyze the classification performance with different classifiers to investigate the proposed
model’s effectiveness. As shown in Table 1, the generated BFNs can gain better classification perfor-
mance over original BFNs. Among the three augmented methods, our model achieved superior results
in three classifiers with more than 10 percent of ACC value compared to results using original BFNs.
Also, our model increases the ACC value by 1.3%, 2.0%, and 3.3% compared with the competing
ARAE method for GCN, DNN, and SVM classifiers, respectively. This evidence proves that the
proposed model can generate more effective BFNs for classification improvement. To detail the
effectiveness of the GCN-based classifier, Figs. 6a and 6b show that the prediction results using a
GCN-based classifier achieves the best performance than other traditional classifiers. Note that both
original and generated BFNs using different methods are sent to the same classifier for classification
performance evaluation. Fig. 7 also shows better performance of the GCN-based classifier. Our model
shows superior prediction performance in terms of ACC, SEN, SPE, and AUC by achieving 85.33%,
84.0%, 86.67%, and 86.42%. It probably indicates that the GCN-based classifier can benefit the
topological properties buried in the BFNs and enhance the classification of BFNs.
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Table 1: Comparison of classification performance using different generated BFNs

BFNs generated from Classifier ACC SEN SPE AUC

Original SVM 64.00% 58.66% 69.33% 69.85%
EW [29] SVM 68.00% 70.67% 65.33% 74.63%
SMOTE [30] SVM 75.33% 78.67% 72.00% 79.70%
ARAE [44] SVM 77.33% 70.67% 74.00% 79.11%
Our model SVM 80.67% 80.00% 81.33% 84.62%

Original DNN 70.67% 69.33% 72.00% 73.71%
EW [29] DNN 75.33% 70.67% 79.99% 77.10%
SMOTE [30] DNN 80.67% 78.67% 82.67% 82.66%
ARAE [44] DNN 81.33% 77.33% 85.33% 84.44%
Our model DNN 83.33% 80.00% 86.67% 85.32%

Original GCN 73.33% 72.00% 74.67% 76.28%
EW [29] GCN 80.67% 81.33% 79.99% 82.95%
SMOTE [30] GCN 82.67% 81.33% 84.00% 83.56%
ARAE [44] GCN 84.00% 82.67% 85.33% 86.91%
Our model GCN 85.33% 84.00% 86.67% 86.42%

Figure 6: The prediction performance comparison using three classifiers by inputting BFNs from (a)
our model, (b) original

3.3 Evaluation of the Generated BFNs
In this section, we evaluate the coherence between original and generated BFNs. We generated

the same size as the original data in each one-fold training. We employed the t-distributed Stochastic
Neighbour Embedding (t-SNE) tool [54] to analyze the graphical characteristics. Fig. 8 shows the
projection of the embedding representation of original and generated BFNs from high-dimensional
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space to two-dimensional space. The generated data is consistent with the original data distribution,
which ensures the similarity between the generated and original FBNs. In addition, six common
metrics are utilized to quantitatively measure the effectiveness of the generated data. These six metrics
can provide a relatively reliable measure of generated BFN’s quality, including clustering coefficient,
node strength, betweenness centrality, modularity, local efficiency, and global efficiency. As shown in
Fig. 9, the boxplot distribution of each metric is compared between the generated and original BFNs.
The generated data can mostly cover the range of graph metrics from the original data. Therefore, the
generated BFNs by our model contains non-Euclidean characteristics and preserve the overall nature
of brain connectivity, which is suitable to augment the BFNs for dementia diagnosis.

Figure 7: The comparison of ROC curves using three classifiers. The gray dotted line represents the
random classifier

Figure 8: The comparison of embedded t-SNE representation between the original and generated
BFNs
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Figure 9: Statistical analysis of the original and generated BFN. (A) Cluster coefficient, (B) Node
strength, (C) Betweenness centrality, (D) Modularity, (E) Global efficiency, and (F) Local efficiency

4 Discussion

The proposed DAGAE model can generate new BFNs for improving classification performance.
Each module in the model contributes to the generation quality of BFNs. To analyze the influence
of different modules, we remove the encoder, discriminator, and classifier from the DAGAE model
and evaluate the final classification performance. Fig. 10 demonstrates that the encoder significantly
impacts the whole model. It drops by 16% in terms of ACC by removing the encoder module. The
discriminator ensures the latent node representation in a prior distribution, which also influences the
quality of the generated BFNs. This suggests the usefulness of prior label distribution can regularize
the latent representation with a stable learning strategy and enhance the BFN classification. Further-
more, we study the dimension p of the latent node representation H in the prediction performance. As
shown in Fig. 11, the value of ACC and AUC shows relatively stable fluctuation when p exceeds 32.
Considering the computation efficiency, we select p = 32 in the experiment. The transformer generator
is essential for the generated BFN quality. We study two variations of the designed transformer
generator to test its effectiveness. (1) Remove the DU layer in the generator (No-DU), which means
the input and output dimension is the same as the dimension of latent representation H; (2) remove
the connectivity transformer (No-CT), which simplifies the generator into two layer perceptrons. The
results are illustrated in Table 2; it can be seen that the combination of DU and CT achieves the best
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prediction performance. The classification results demonstrate the effectiveness of the transformer
generator in the model. This can be explained by that the transformer-based network in the generator
preserves the main topological properties and captures more discriminative features.

Figure 10: Influence of different modules on the classification performance. (a) The proposed
DAGAE, (b) DAGAE without encoder, (c) DAGAE without discriminator, and (d) DAGAE without
the classifier

Data-driven models achieve better performance by using large amounts of data. To investigate
how much generated data influences the prediction performance, we generate k ∈ {1, 2, ..., 8} times
the original training set, combine the original BFNs and generated BFNs to train the SVM-based and
GCN-based classifier. The mean ACC is estimated by predicting five-fold original test sets separately.
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The metric DeltaACC is defined as ACCk − ACC0. Here, ACC0 refers to the predicted results of the
classifier trained using the original train set, and the ACCk refers to the predicted results of the classifier
trained using the original and generated data. Fig. 12 gives the different quantities of generated BFNs
that maximizes classification performance in both classifiers. The best quantity of generated data is
about five times the original data, with the largest DeltaACC value of 19.3% and 13.3% for the SVM
and GCN classifier, respectively. The reason why more data degrades classification performance may
be that the generated BFNs bring a lot of noise. Besides, compared with the SVM classifier, the GCN-
based classifier increases by 5.3% on the best ACC value. This marginal increase may be explained by
considering the topological information among the brain regions, which can characterize the disease-
related features of the BFNs. Thus, in the BFN augmentation experiment, it is better to choose the
GCN-based classifier to evaluate the prediction performance, and different quantities of generated
BFNs should be explored to maximize the effect of data augmentation.

Figure 11: Impact of the dimension p of the learned node representation H on the ACC and AUC

Table 2: Effect of different structures in the transformer generator

Method ACC SEN SPE AUC

Our model 85.33% 84.00% 86.67% 86.42%
No-DU 81.33% 84.00% 78.67% 82.84%
No-CT 78.67% 82.67% 74.67% 82.63%

Although the proposed DAGAE is promising in augmenting the BFN data for disease prediction,
there are still two limitations that have not been considered. (1) The label distribution is estimated using
the limited training data, which can not add other prior knowledge. We will introduce disease-related
anatomical brain knowledge into the model for performance evaluation. (2) The data in this work are
deliberately picked out to maintain category balance. The real condition in the category distribution
is always imbalanced. In the following study, we will try to apply the proposed DAGAE in category-
imbalanced datasets for other brain disorder diagnosis.
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Figure 12: Classification accuracy analysis using different amounts of generated data by our model
using (a) SVM and (b) GCN classifier, respectively

5 Conclusions

This study proposes a novel DAGAE model to augment new BFNs for dementia diagnosis.
The BFN augmentation is different from traditional image synthesis, where the latter only extracts
local patterns and ignores the topological information buried in the brain network. Our model is
novel in two aspects. One is that the estimated label distribution can regularize the latent space and
make the learning process stable. Another one is that the transformer generator is devised to map
the node representations into node-to-node connections by exploring the long-term dependence of
highly-correlated distant brain regions, which preserves the main topological properties and more
discriminative features. Testing on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) public
dataset, the proposed DAGAE can generate similar and high-quality BFNs. The classification results
show that adding generated data can achieve higher accuracy values of 85.33%, 83.33%, and 80.67%
than the original method using GCN, DNN, and SVM classifiers, respectively. The proposed model
also performs better than related augmented models, providing new insight for improving cognitive
disease diagnosis accuracy.
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