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ABSTRACT

This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape
optimization. The optimization problem is posed to maximize the lift and drag coefficient ratio subject to airfoil
geometry constraints. Computational Fluid Dynamic (CFD) and XFoil tools are used for high and low-fidelity
simulations of the airfoil to find the real objective function value. A special multi-objective sub-optimization
problem is proposed for multiple points infill sampling exploration to improve the surrogate model constructed.
To validate and further assess the proposed methods, a conventional surrogate-assisted optimization method
and an infill sampling surrogate-assisted optimization criterion are applied with multi-fidelity simulation, while
their numerical performance is investigated. The results obtained show that the proposed technique is the best
performer for the demonstrated airfoil shape optimization. According to this study, applying multi-fidelity with
multi-objective infill sampling criteria for surrogate-assisted optimization is a powerful design tool.

KEYWORDS
Multi-fidelity modelling; differential evolution; kriging; infill sampling criteria; metaheuristics

Nomenclature

CFD Computational Fluid Dynamics
MHs Metaheuristics
HF High Fidelity
LF Low Fidelity
DOE Design of Experiment
Cl Coefficient of Lift
Cd Coefficient of Drag
RANS Reynold-Averaged Navier Stoke
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AOA Angle of Attack
EI Expect Improvement Function
Conventional-KRG Conventional Kriging Based Surrogate Assisted Optimisation
Infill-KRG Infill Sampling Kriging-Based Surrogate-Assisted Metaheuristics
MO-infill KRG Proposed Multi-objective infill sampling Kriging Based Surrogate-Assisted

Metaheuristics
f(x) Objective function value
x Vector of design variables
xlb Lower bound of x
xub Upper bound of x
Φ(X) Space-filling quality of the sampling set X
m Number of sampling points
q Exponent parameter
Std Standard deviation
ymin Minimum objective function value in the sampling set
ŷ(x) Approximate function value of an additional point x
ŝ (x) Mean squared error in a Gaussian process based prediction
σ 2 Variance of objective function values of the sampling points
ψ Basis function of the sampling point
dj Euclidean distance of a pair of points in the sampling design X
Jj Number of pairs of points in sampling design X divided by the distance dj

1 Introduction

Burning fossil fuels leads to increased greenhouse gas emissions, which will be one of the major
environmental issues for years to come. This results in the development of fuel-efficient vehicles around
the world, of which an aircraft is one. It is well known that an aircraft wing with a higher lift-to-drag
ratio leads to longer endurance and range. Therefore, airfoil shape design is a critical aspect of aircraft
wings and other aerodynamic structure designs, as it affects aerodynamic performance significantly,
including lift and drag [1,2]. Another important aspect of airfoil shape optimization is the trade-off
between maximum lift and minimum drag. In some cases, a highly cambered airfoil shape may provide
increased lift, but at the cost of increased drag. As a result, the design of the airfoil shape needs to be
performed by means of optimization, which is usually purposed to explore the trade-off between lift
and drag, as well as other objectives, such as stall angle, angle of attack and maximum lift-to-drag
ratio [3,4].

An important factor in airfoil shape optimization design is the selection of a tool for aerodynamic
analysis. This analysis can either be low-fidelity, e.g., using the vertex lattice method [5], or high-fidelity,
using computational fluid dynamics (CFD) [5–7]. Although CFD is more accurate, it also requires
complex, computationally expensive models, and design optimization through this approach is nearly
impossible. To address this, surrogate models are utilized to approximate the airfoil’s aerodynamic
performance through the limited number of CFD simulations, enabling a rapid optimization process
[8–11]. Despite their advantages, the use of surrogate models presents certain challenges, including
the risk of misfit and overfitting. Nevertheless, ongoing development and refinement in this field hold
the promise of overcoming these challenges. Enhancement of surrogate-assisted optimization can be
attained by implementing multiple surrogate models [12–14], utilizing infill criteria [8,9], or applying
multi-fidelity simulation techniques [15,16]. Although infill criteria and multi-fidelity surrogate models
have proven effective in improving surrogate models, most research tends to focus on one approach
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at a time, rather than utilizing both techniques simultaneously. Furthermore, the majority of infill
sampling studies focus on single-objective optimization problems, making the exploration of multi-
objective optimization with multiple points infill sampling a unique and challenging area of study.

Therefore, this work proposes multi-fidelity multi-objective infill-sampling surrogate-assisted
optimization for an airfoil shape design optimization [17,18]. The objective function is set to be
maximization of the ratio of lift-to-drag coefficients subjected to airfoil geometry constraints. Com-
putational Fluid Dynamics is used for high-fidelity simulation of airfoils, while the XFoil flow solver
is used for low-fidelity simulation of the airfoil. To validate and further assess the proposed method,
conventional surrogate assisted optimization and a traditional infill sampling criterion with multi-
fidelity simulation are applied. In Section 3, the multi-fidelity analysis tools are described in more
details. Section 4 provides details of the multi-surrogate-assisted metaheuristics case. The numerical
experiment of each methodology at each test case is illustrated in Section 5. Section 6 demonstrates
the results obtained and discusses them, followed by conclusions expressed in Section 7.

2 Literature Review

Optimization has become a vital part of multi-disciplinary design optimization [19–24], while
computational tools based on both high-fidelity simulation [25–27] and low-fidelity simulation
[23,28,29] are used practically to simulate the real-world environment and render the outcomes as
a function of design variables within the design objectives and constraints framework. Typically,
high-fidelity simulation requires extensive computational cost; however, the outcome is more precise
than low-fidelity simulation [23,30]. Conversely, the low-fidelity simulations take short times but
are less accurate. Therefore, multi-disciplinary design optimization, which requires several function
evaluations or simulation runs, is almost impossible based on using high-fidelity simulation alone,
while using low-fidelity simulation obtains unacceptable “optimum” solutions. Consequently, the
techniques of surrogate-assisted optimization are being used extensively for numerous applications of
multi-disciplinary design optimization to reduce [25,31–33] computational competency and analysis
times, based on the high-fidelity simulation.

Generally, the surrogate-assisted optimization technique consists of three main steps; generating
a set of sampling points, constructing the surrogate model (SuMo), and performing optimization
based on the constructed surrogate model [33]. The set of sampling points can be searched for using a
design of experiment method, such as the Latin hypercube sampling method (LHS) or the Optimum
Latin hypercube sampling method (OLHS) [34,35], while SuMo can be constructed based on several
approaches such as Response Surface Methods (RSM) [36], a Gaussian Process or Kriging Model
[20,37–41], Radial Basis Functions (RBFs) [42,43], Artificial Neural Networks (ANNs) [44], Support
Vector Machines (SVMs) [36], etc. [19,45]. Among these models, Kriging is arguably the most popular
one, due to its ability to effectively capture complicated responses and its ability to provide an exact
interpolation, objective prediction, and error estimation in the spatial distribution.

Improving the surrogate model method can be achieved by applying infill criteria strategies. The
infill sampling technique finds additional points to improve the model by solving an optimization
sub-problem, such as maximising an Expected Improvement (EI) indicator [46–49], maximizing the
Probability of Improvement function (PI) [50], minimizing the Lower Confidence Bounding (LCB)
[51], and Minimizing the Prediction of surrogate models (MP) [52]. Among the various infill criteria,
maximizing EI is arguably the most preferred and efficient criterion, while others are also still in use
[42,53,54]. Rather than using infill criteria strategies for improving the surrogate model, multi-fidelity
surrogate models can also be applied for the reduction of expensive high-fidelity computations
with the enhancement of cheaper low-fidelity data [19,53]. Successful use of multi-fidelity surrogate
models for several applications of multi-disciplinary design optimization has been reported worldwide



2114 CMES, 2023, vol.137, no.3

[26,27,55,56], e.g., the use in aircraft design [57]. Although the strategy of infill criteria and multi-
fidelity surrogate models are used successfully for improving the surrogate model, most of the research
usually applies a single strategy; either infill sampling or multi-fidelity modelling in a single work,
while the application of using both techniques at the same time is rarely studied. In addition, the
infill sampling technique is mostly performed based on a single objective optimization problem, while
studying a multi-objective optimization problem for multiple points infill sampling is interesting and
challenging.

3 Formulation of Airfoil Shape Optimization Problem

Numerical simulation and optimization techniques [58–60] are widely used in the aerodynamic
shape optimization field. Lift and Drag are counted as aerodynamic forces because they exist due to
the movement of the aircraft through the air. For aircraft aerodynamic design, a majority of researchers
have investigated the lift to drag ratio as a metric of aircraft range and endurance. The literature depicts
that the panel method with low-fidelity simulation and CFD simulation with high-fidelity are the two
most widely applied and preferred techniques. However, the present work explored both fidelity tools
in an effort to accelerate the design process to predict the lift to drag ratio. The airfoil shape design
problem is posted to maximize the ratio of lift to drag coefficients which can be expressed as:

Maximise: f (x) = Cl/Cd (1)

Subject to

xl ≤ x ≤ xu,

where f (x) is an objective function; xl and xu are lower bound and upper bound of the design variables
of vector x; Cl = coefficient of lift and Cd = coefficient of drag. Here, x = [x1, x2, x3, . . . , x10]T illustrates
the airfoil design variables that have direct control over the airfoil shape, while the NACA2412 airfoil
is used as a baseline geometry. The design vector determines airfoil shape change from the baseline
NACA2412 as shown in Fig. 1. The airfoil is constructed using a cubic spline function though the
ten design variables points, while the leading and trailing edge points are fixed. The lower and upper
bounds are considered as xl = [0.0177, 0.0646, 0.0629, 0.0427, 0.0098, −0.020, −0.0203, −0.0541,
−0.0274, −0.00640]T and xu =[0.0253, 0.0884, 0.0567, 0.0324, 0.0130, −0.0127, −0.0304, −0.0236,
−0.0134, −0.00320 ]T, respectively.

Figure 1: Based line geometry of NACA2412 airfoil and the ten design variables



CMES, 2023, vol.137, no.3 2115

Multi-fidelity tools are applied for the airfoil aerodynamic analysis to balance between accuracy
performance and computational time. The XFoil tool and ANSYS 2020 student version are applied
to perform numerical simulation for low-fidelity and high-fidelity, respectively.

3.1 High Fidelity Simulation of Airfoil
The high-fidelity simulation is performed using the ANSYS Fluent student version with the

pressure-based finite volume method. The flow conditions are set based on Table 1. A C-type
computational Domain is used while the upstream, top and bottom edges of the computational
domain are located 12 m radius chord wise away from the trailing edge of the airfoil and the
downstream edge is located 12 m chord wise away. An unstructured C-type mesh was used while
the meshed model is shown in Fig. 2. Here, a medium mesh is used because the mesh size is limited
to 512k cells/nodes for the Ansys student license for a CFD model [56,61,62]. The ANSYS fluent
solver is used with steady-state governing equations of continuity and momentum conservation of the
Reynold-averaged Navier–Stoke (RANS) simulation. Here, incompressible fluid flow and a pressure-
based solver with a 2nd order upwind discretisation scheme are applied. Also, the Spalart–Allmaras
turbulence flow model which is found to be effective and robust in the flow analysis of an airfoil as
reported in the references [63,64] is used to simulate the 2D flow over the airfoil.

Table 1: Flow conditions set in the ANSYS simulation

Physical conditions for air XFoil simulation value Units

Angle of attack (AOA) 5 deg
Velocity 30 m/s
Reynolds number 1.5 × 105 –
Pressure 1.01 × 105 Pa
Density 0.125 kg/m3

(a) C-type hybrid mesh of an airfoil (b) C-type hybrid mesh of an airfoil (zoomed in)

Figure 2: Simulation results of an airfoil with C-type tunnel

Fig. 3 shows the effect of the number of elements on the C l/Cd values obtained from the CFD
analysis; it was found that the C l/Cd ratio changed when the number of elements ranged from 10,000 to
35,000 elements. However, when the number of elements is higher than approximately 36,000 elements,
the lift-to-drag ratio tends to be constant. As a result, in this work, 36,000 elements were used for the
CFD analysis.
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Figure 3: Effect of element size on the Cl/Cd based on the CFD simulation

3.2 Low Fidelity Simulation
The XFoil flow solver [65] is applied for low-fidelity simulation by combining the panel method

and an integral boundary layer formulation with the subsonic panel code for the analysis of potential
flow around the airfoils. The panel method is used to calculate the velocity distribution along the
surface of the airfoil by using a given coordinate. The airfoil was imported to XFoil tools to calculate
the airfoil performance, and then the number of coordinate points was set as 250 points to resolve
the flow properties in the curved region [50,51,66]. To predict the airfoil performance at low Reynolds
numbers, a code was developed. The essential design parameters are the airfoil geometry, the Mach
number and the Reynolds number, which are set to be the same as for the high-fidelity simulation and
also the number of iterations was defined as 400. The results are shown as a graph of the lift and drag
coefficient vs. the angle of attack, while pressure distribution around the airfoil can be acquired. Fig. 4
shows the airfoil model simulation in the XFoil with the example results obtained.

Figure 4: Example results obtained in XFoil
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4 Multi-Objective Infill Sampling Kriging Based Surrogate-Assisted Metaheuristics

In real-world problems, optimization is usually time-consuming and computationally expensive
in the evaluation of objective functions. Surrogate models can successfully alleviate this problem by
reducing the computation time for every numerical simulation code.

4.1 Kriging Based Surrogate-Assisted Metaheuristics
Conventional Kriging based surrogate-assisted optimization (Conventional-KRG) consists of

three main steps. Firstly, a set of sampling points is generated throughout the design domain while
real expensive objective function values are evaluated. Afterwards, the Kriging surrogate model is
constructed [40,67] and optimization is performed based on the constructed inexpensive Kriging
model. Finally, the real expensive objective function value at the optimum point is evaluated.

The KG approximation function can be expressed as follows:

F (x) = μmin + yT�−1(f − μmin1) (2)

where F (x) is the predicted function required at the point x, while y is a correlation matrix of the
sampling points and x. The matrix � is a correlation matrix for all samples and 1 is a vector of ones.
The μmin is expressed as:

μmin = 1T�−1f
1T�−11

(3)

where f is a vector of function values of the sampling points.

4.2 Infill Sampling Kriging Based Surrogate-Assisted Metaheuristics (Infill-KRG)
Infill sampling is a technique used to improve the model accuracy, which leads to the improvement

of the optimum solution. The main idea of an infill sample technique is to add a sampling point to
update the already constructed surrogate model, which is expected to obtain the global optimum
solution. The additional solution can be found by solving an optimization sub-problem posed to
maximize the expected improvement function, expressed as:

max : EI(x) = (
ymin − ŷ (x)

) [
1
2

+ 1
2

erf
(

ymin − ŷ (x)

ŝ (x)
√

2

)]
+ ŝ(x)√

2π
exp

(−(ymin − ŷ(x))2

2ŝ (x)
2

)
(4)

subject to

xlb < x < xub

where x is a vector of design variables or a sampling solution and EI is the expected improvement
function. The ymin and ŷ(x) are the minimum objective function value in the sampling set and an
approximate function value of additional points x, respectively. The parameter ŝ (x) is the mean
squared error in a Kriging based prediction which can be expressed as:

ŝ (x)
2 = σ 2[1 − yT�−1y] (5)

where σ 2 is the variance of objective function values of the sampling points and � is a basic function.

The Kriging based infill sampling surrogate-assisted optimization starts with generating a set of
sampling points using a design of experiment method (DOE), and then performing real objective
function evaluations. Then, the Kriging surrogate model is constructed. After that, the optimization
sub-problem (Eq. (4)) is solved to find the additional point, with its actual expensive objective function
value being evaluated. The constructed Kriging model is then updated while optimization is operated
based on the updated Kriging model. After the optimum solution is obtained, a real expensive objective
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function at the optimum point is evaluated. The computational steps for constructing the infill-KRG
surrogate model are shown in Algorithm 1.

Algorithm 1: Infill-KRG computational steps
Main
1. Generate an initial set of sampling points using a DOE technique.
2. Evaluate real expensive objective function values of the sampling points using the high-fidelity
simulation.
3. Construct a Kriging surrogate model.
4. Perform optimization to solve Eq. (4) using a metaheuristic (MH).
5. Evaluate the real expensive objective function value of the optimum from Step 4.
6. Update the Kriging surrogate model by means of infill sampling.
7. Return to Step 4 if more additional points are required.

4.3 Proposed Multi-Objective Infill Sampling Kriging Based Surrogate-Assisted Metaheuristics
(MO-Infill Sampling-KRG)

The proposed infill sampling technique is based on the findings of a previous study [68]. It
was found that the EI indicator is used for improving an optimum solution to the design problem.
However, in such work, it is seen that using a surrogate model that can capture the true objective
function landscape, even though the overall root mean square error is high, can lead to better
optimum results. This implies that the diversity of the sampling points plays a very vital role in
improving the performance of surrogate-assisted optimization. As a result, this work proposes an infill
sampling strategy that optimizes EI and sampling point diversity. The optimization sub-problem then
becomes multi-objective optimization. For the diversity indicator, a space-filling function proposed by
Morris et al. [68,69] is used as another objective function to balance between improving the optimum
and capturing a true function landscape. The optimization problem is proposed as a multi-objective
optimization problem. A few solutions from the Pareto front obtained from solving the proposed
optimization sub-problem are selected to be additional points. The space-filling quality used can be
expressed as:

�(X) =
(∑m

j=1
Jjd−q

j

)1/q

(6)

where �(X) is the space filling quality of the sampling set X, while m and q are the number of sampling
points and an exponent parameter. In this study, the parameter q is set to be 2.

The optimization problem can be expressed as:

Max: {f1 = EI (x) , f2 = �({x, X})} (7)

subject to

xlb < x < xub

Similarly, for the Kriging based infill sampling surrogate assisted optimization strategy, the
proposed multi-objective infill sampling surrogate assisted optimization strategy starts with generating
a set of sampling points (X) and performing real expensive objective function evaluation (using high-
fidelity or low-fidelity). Then, the Kriging surrogate model is constructed and an optimization sub-
problem (Eq. (7)) is solved using a multi-objective MH. After the Pareto front is obtained, a Pareto
selection process for the multi-objective MH is applied to search for the additional points with their
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real expensive objective function values being evaluated. The constructed Kriging model is then
updated while optimization is performed based on the updated Kriging model. After the optimum
solution is obtained, a really expensive objective function at the optimum point is evaluated. The
computational steps of the proposed MO-infill-KRG are shown in Algorithm 2.

Algorithm 2: MO-infill-KRG computational steps
Main
1. Generate an initial set of sampling points using a DOE technique.
2. Evaluate real expensive multiple objective functions values of the sampling points using the high-
fidelity or low-fidelity simulation.
3. Construct a Kriging surrogate model.
4. Perform multi-objective optimization based on Eq. (7) using multi-objective MH.
5. After the Pareto front is obtained, the Pareto selection process of the multi-objective MH for
searching for a number of additional sampling points is applied.
6. Perform real expensive objective function values of the additional sampling points using the high-
fidelity or low-fidelity simulation, in the case that both high-fidelity and low-fidelity will be applied.
7. Update the Kriging surrogate model using the multiple points selected from the Pareto front.

5 Numerical Experiment

In order to examine the performance of the proposed method, three surrogate assisted opti-
mization techniques including the conventional Kriging based surrogate assisted optimization, infill
sampling Kriging based surrogate assisted optimization and the proposed multi-objective infill sam-
pling Kriging based surrogate assisted optimization are applied for solving the proposed airfoil shape
optimization problem as detailed in Section 2. Multi-fidelity modeling is also applied for objective
function calculation. The details of the surrogate model techniques used in this study are as follows:

• Conventional-KRG; Conventional Kriging-based surrogate model is used. The Kriging model
is constructed based on the high-fidelity simulation for 75 samplings.

• Infill-KRG1 (detailed in Section 3.1). The Kriging model is initially constructed based on
the high-fidelity simulation for 60 samplings points. Then, sampling points from high-fidelity
simulations are added to update the Kriging model after solving the optimization sub-problem
as detailed in Section 3.1. The Kriging model is updated 15 times, which means 15 sampling
points are added. Among the 15 sampling points, 5 sampling points are from high-fidelity
simulation while the other 10 sampling points are from low-fidelity simulation. The total
number of high-fidelity simulations is 60 + 5 = 65 for this case.

• Infill-KRG2 (detailed in Section 3.1). The Kriging model is initially constructed based on
the high-fidelity simulation for 60 samplings points. Then, sampling points from high-fidelity
simulations are added to update the Kriging model after solving the optimization sub-problem
as detailed in Section 3.1. The Kriging model is updated 15 times while 15 sampling points are
added. Among the 15 sampling points, 10 sampling points are from high-fidelity simulation
while the other 5 sampling points are from low-fidelity simulation. The total number of high-
fidelity simulations is 60 + 10 = 70 for this case.

• MO-infill-KRG1 (detailed in Section 3.2). The Kriging model is initially constructed based on
the 40 high-fidelity sampling points and 20 low-fidelity samplings points. Then, 15 additional
sampling points are generated based on the proposed multi-objective-infill sampling technique.
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The high-fidelity simulation is applied for the 5 sampling points and low-fidelity simulation is
applied for 10 sampling points and all 15 sampling points are used to update the KRG model.
The total number of high-fidelity simulations is 40 + 5 = 45 for this case.

• MO-infill-KRG2 (detailed in Section 3.2). The Kriging model is initially constructed based on
the 40 high-fidelity samplings points and 20 low-fidelity samplings points. Then, 15 sampling
points are generated based on the proposed multi-objective-infill sampling technique. High-
fidelity simulation is applied for all 15 sampling points and used to update the KRG model.
The total number of high-fidelity simulations is 40 + 15 = 55 for this case.

For each surrogate model strategy, the initial sampling points are generated using an optimum
Latin hypercube sampling technique proposed by Pholdee et al. [34]. A differential evolution (DE)
algorithm [70] is used for solving the infill sampling sub-problem, while for the main airfoil shape
optimization, the hybrid real-code population-based incremental learning and differential evolution
(RPBILDE) [71,72] is used to solve the proposed multi-objective infill sampling sub-problem.

In order to investigate the performance of the above surrogate assisted MH methods, each method
is used to tackle the proposed airfoil shape optimization design problem for 20 optimization runs.
The number of iterations is set to be 200 while the population size is 50 in the present work. The
termination criterion for all optimizers is set as 10,000 function evaluations, which is the multiplication
of 50 population size and 200 iterations.

6 Results and Discussion

In this investigation, the airfoil shape optimization is executed using the multi-fidelity surrogate
assisted MH while the surrogate models are constructed based on the Kriging model, infill sampling,
and the MO-infill sampling methods. The performance of the various surrogate-assisted MH tech-
niques is investigated based on the percentage error between surrogate model approximation and the
real objective function values by high-fidelity obtained at the optimum points of each techniques. After
performing the optimization process for 20 independent runs, Fig. 5 shows the box plot of the percent
error of the objective function values at the optimum points for all techniques. For each boxplot,
the upper and lower horizontal lines correspond to the maximum and minimum percent error at
the optimum points, while the internal line shows the median of the percent error at the optimum
points. According to Fig. 5, the best performer based on the median values is the proposed MO-infill-
KRG2, while the second best and the third best are MO-infill-KRG1 and infill-KRG2, respectively.
The minimum percent of error can be archived from the proposed MO-infill-KRG2.

Table 2 shows the real objective function values at the optimum points for each method after
performing high-fidelity simulation. From the results, the best performer according to the mean of
the real optimum values is MO-infill-KRG2, while the second and third best are MO-infill-KRG1
and infill-KRG2, respectively. For the consistency performance according to the standard deviation
(STD), the best algorithm is Conventional-KRG, while the second and third best methods are Infill-
KRG1 and Infill-KRG2, respectively. The best objective function value obtained is from using MO-
infill-KRG2. Table 3 shows the real objective function value of the baseline airfoil, and the optimum
airfoil obtained from the various surrogate-assisted MH techniques. According to this table, MO-
infill-KRG2 obtained the best optimum airfoil while the second and third optimum airfoils are from
MO-infill-KRG1 and Infill-KRG2, respectively.
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Figure 5: Percentage of error at the optimum point for 20 optimization runs

Table 2: Comparison of real objective function value for 20 optimization runs

Surrogate model method Total high-fidelity simulation Max Min Std Mean

Conventional-KRG 75 52.08629 42.626 1.9642 44.565
Infill-KRG1 65 53.76734 43.2292 3.3475 45.7254
Infill-KRG2 70 54.61789 43.601 3.9942 48.5955
MO-infill-KRG1 45 55.19203 44.521 4.1377 49.992
MO-infill-KRG2 55 55.92463 44.79 4.1885 50.5844

Table 3: Comparison of maximum C l/Cd of baseline and optimized airfoil shapes

Method C l Cd C l/Cd

Base line NACA2412 0.74666 0.01445 51.67197
Conventional-KRG 0.73687 0.0141471 52.08629
Infill-KRG1 0.78667 0.014631 53.76734
Infill-KRG2 0.73827 0.013517 54.61789
MO-infill-KRG1 0.782198 0.0141723 55.19203
MO-infill-KRG2 0.79989 0.014303 55.92463

Fig. 6 shows the best airfoil accomplished by MO-infill-KRG2 after the optimization process. The
black line represents the baseline geometry, the red line depicts the optimized airfoil shape, and the
blue line illustrates the upper and lower bounds of the airfoil nodal points. From Fig. 6, the optimum
airfoil geometry shows the lower leading-edge radius, smaller airfoil thickness and different lower and
upper surfaces, leading to the aerodynamic efficiency obtained as illustrated in Figs. 7–9. Figs. 7–9
respectively show the comparison of variation of drag coefficient, lift coefficient and ratio of lift and
drag coefficient with respect of the angle of attack of the optimized airfoil from MO-infill-KRG2 and



2122 CMES, 2023, vol.137, no.3

the base line airfoil (NACA2412) obtained from CFD analysis. From Figs. 7 and 8, the drag coefficient
obtained from the optimum airfoil is better than the base line airfoil for the angle of attack more than
6°, while the lift coefficient obtained from the optimum airfoil is better than the base line airfoil for
the angle of attack lower than 8°. For the angle of attack between 8° and 10°, the lift coefficient of
both the optimum airfoil and the base line airfoil stall, whereas the optimum airfoil still has higher lift
coefficient. Based on Fig. 9, the ratio of lift to drag coefficient obtained from the optimum airfoil is
better than the base line airfoil for all angles of attack. Overall, the optimum airfoil obtained from the
proposed MO-infill-KRG2 is aerodynamically superior to the baseline airfoil.

Figure 6: Optimised airfoil obtained by MO-infill sampling-KRG2

Figure 7: Comparison of the coefficient of drag and angle of attack for optimum airfoil and base line
airfoil

As per the aforementioned data, it can be argued that MO-infill-KRG2 is the best while MO-infill-
KRG1 is the second-best technique in the vicinity of the Infill-KRG2 approach for airfoil optimization
with the investigated surrogate-assisted MHs. Applying EI and space-filling quality functions in the
proposed technique can balance model accuracy and function landscape capturing, leading to the best
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percentage error at the optimum points and the best optimum solution with a smaller number of high-
fidelity simulations. In addition, when considering the same surrogate model technique, it was found
that using higher fidelity gives better model accuracy at the optimum points and a better optimum
solution.

Figure 8: Comparison of the coefficient of lift and angle of attack for optimum airfoil and base line
airfoil

Figure 9: Comparison of the ratio of coefficient of lift and drag with angle of attack for optimum and
base line airfoil

7 Conclusions

This work successfully proposes multi-objective infill sampling surrogate-assisted metaheuristic
based on multi-fidelity simulation for airfoil shape optimization. The optimum LHS technique along
with the Kriging surrogate model is applied, while a differential evolution algorithm is used as an
optimizer. A special multi-objective optimization sub-problem is proposed for multiple points infill
sampling exploration to improve the constructed surrogate model. To validate and further assess
the proposed methods, a conventional surrogate-assisted optimization method and infill sampling
surrogate-assisted optimization methods are applied with multi-fidelity simulation and their per-
formances are investigated. The quantitative and qualitative comparative analysis demonstrates the
dominance of the proposed method (MO-infill-KRG2) over other considered techniques for the
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presented airfoil shape optimization problem. This work only studied aerodynamics at a single value
of AOA with a computational fluid dynamic simulation and various surrogate model method with one
optimizer. Future work may try to study various AOAs with various algorithms based on this work.
The whole aircraft design based on this simulation process and various algorithms is also a future topic
of interest.
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