
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.028631

ARTICLE

Optimization of Engine Control Strategies for Low Fuel Consumption
in Heavy-Duty Commercial Vehicles

Shuilong He1,2, Yang Liu1, Shanchao Wang2,*, Liangying Hu1, Fei Xiao2 and Chao Li2

1School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
2Technology Center of Commercial Vehicle, Dongfeng Liuzhou Motor Co., Ltd., Liuzhou, 545005, China

*Corresponding Author: Shanchao Wang. Email: wangsc_dflzm@163.com

Received: 29 December 2022 Accepted: 20 March 2023 Published: 03 August 2023

ABSTRACT

The reduction of fuel consumption in engines is always considered of vital importance. Along these lines, in
this work, this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy. More
specifically, at first, a general first principles model for heavy-duty commercial vehicles and a transient fuel
consumption model for heavy-duty commercial vehicles were developed and the parameters were adjusted to fit the
empirical data. The accuracy of the proposed model was demonstrated from the stage and the final results. Next, the
control optimization problem resulting in low fuel consumption in heavy commercial vehicles was described, with
minimal fuel usage as the optimization goal and throttle opening as the control variable. Then, a time-continuous
engine management approach was assessed. Next, the factors that influence low fuel consumption in heavy-duty
commercial vehicles were systematically examined. To reduce the computing complexity, the control strategies
related to the time constraints of the engine were parametrized using three different methods. The most effective
solution was obtained by applying a global optimization strategy because the constrained optimization problem
was nonlinear. Finally, the effectiveness of the low-fuel consumption engine control strategy was demonstrated by
comparing the simulated and field test results.
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1 Introduction

It is well-known that vehicle energy consumption and exhaust emissions harm sustainable
development. The rapid growth of the automobile industry in developing countries has alarmingly
exacerbated the environmental pollution caused by automobile exhaust emissions [1]. According to the
literature, more than half of the energy used for trucking comes from heavy-duty commercial vehicles
[2]. Therefore, there is an urgent need for the development of heavy-duty commercial vehicles to lower
exhaust emissions in the transportation industry.

Although numerous methods for reducing vehicle fuel consumption have been proposed, they are
influenced by several factors [3]. Eco-driving techniques including acceleration, cruising, deceleration,
and stopping, as well as other elements including traffic, vehicles, and the environment, are regarded
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as low-cost and efficient strategies to increase fuel efficiency [4,5]. Compared to unpredictable driving,
a smooth driving style can simultaneously reduce fuel consumption and increase driving comfort
and safety. Moreover, drivers who practice eco-driving must minimize idling, excessive braking,
acceleration, and other driving habits. 16 separate driving factors have been also studied for their
impact on fuel consumption and emissions, four of which play an important role and are related to
the acceleration and power requirements [6].

Fuel economy studies rely on specific scenarios and driving strategies that are more sensitive to
speed and acceleration [7]. Acceleration and deceleration are considered important factors influencing
fuel economy and exhaust emissions. As a result, finding the optimal speed trajectory or strategy
has attracted wide attention from the scientific community. Choi et al. [8] concluded the key factors
leading to the sudden increase in fuel consumption of LPG passenger vehicles. Chakraborty et al. [9]
proposed a multi-dimensional heuristic system to effectively lower energy use while the vehicle is
waiting. Birrell et al. [10] recommend smooth and positive acceleration for cruising speed, and limiting
throttle opening to less than 50%. Although some contributions to vehicle eco-driving were achieved
by the above-mentioned works, they were all limited to low-speed passenger vehicles.

Since the creation of eco-driving techniques for heavy-duty commercial vehicles is highly depen-
dent on vehicle performance, road driving, and traffic environment availability, the relevant works in
the literature are scarce. Although planning the optimal speed profile of a vehicle using a heavy vehicle
driving model predictive control (MPC) [11,12] algorithm was initially believed that could minimize
fuel consumption, the connection between environmental driving forces and fuel consumption, as well
as the impact of heavy vehicle engine factors on fuel consumption, have not been investigated in the
literature. On top of that, the experimental speed trajectory planning must satisfy the condition that
the speed of the target vehicle is constant [13]. Even though an optimal path and speed trajectory
planning strategy for heavy commercial vehicles to drive with low fuel consumption on urban roads
has been proposed, the impact of fuel consumption estimation and vehicle dynamics models for heavy
vehicles on ecological driving factors has not yet been taken into account.

Under this perspective, in this work, an engine control strategy for heavy commercial vehicles that
use less fuel was proposed and optimized. The optimal driving strategy for heavy-duty commercial
vehicles that minimizes fuel consumption can be classified as optimal control, with the optimization
objective of minimizing fuel consumption during vehicle operation. The factors causing low fuel
consumption driving of heavy-duty commercial vehicles were also thoroughly discussed, and a driving
strategy based on speed profile and throttle opening was proposed. Three parameterization methods
were used to optimize the engine control strategy. Interestingly, iterating with the global optimization
algorithm yielded the best results. Finally, the effectiveness of the low-fuel consumption engine control
strategy was demonstrated by comparing it to real-world vehicle test results.

The remainder of this article is divided into the following sections: the discussion of a generic
first-principles model of heavy-duty commercial vehicles in Section 2 and optimizes model parameters
using real-world vehicle data. The parameterization and optimization algorithms for the optimal
engine control problem are presented in Section 3. Section 4 compares the optimization outcomes
of various heavy-duty commercial vehicle control strategies. Section 5 contains the conclusions of this
paper.
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2 Vehicle Dynamics Modeling
2.1 Model Derivation

The heavy-duty commercial vehicle model derivation was divided into two parts: the longitudinal
motion control model derivation and the model derivation for fuel consumption estimation. Because
the fuel consumption estimation model is heavily reliant on the vehicle motion control model,
the vehicle motion control model was first established, and then a single-step solution for fuel
consumption was realized. The fuel consumption optimization problem defined in Section 3 can be
simplified to the greatest extent possible by decomposing the complex task of the entire vehicle eco-
driving process.

The evaluation of vehicle motion control was described using fundamental physics laws and
the basic parameters of the experimental vehicle. Because the purpose of this part was to develop
a mathematical model of how a vehicle operates, simple polynomial functions and heavy vehicle
parameters were used to approximate the vehicle dynamics model [14]. It has been demonstrated in
the literature that the driving force of the vehicle is largely dependent on the throttle opening and the
quadratic polynomial model based on the rolling characteristics. However, the driving force test for
heavy vehicles is usually based on engine torque and power factors. Hence, the driving force of the
vehicle was considered the engine torque ratio in this work, and the instantaneous torque is obtained
from the instantaneous speed and throttle opening relationship equation.

To improve the model’s robustness and accuracy, the traditional power factor fuel consumption
model contained more parameters and was more computationally intensive [15,16]. In this work, a
lightweight fuel consumption model based on engine speed was also redesigned for heavy commercial
vehicles to enhance the calculation and effectiveness evaluation of fuel use. The model of vehicle throt-
tle opening, engine speed, and instantaneous fuel consumption laws was summarized by analyzing the
basic laws, operating parameters, and actual working conditions of vehicles. In addition, the model was
improved based on ecological driving factors, resulting in an instantaneous fuel consumption model
that meets the operating laws of heavy vehicles.

2.1.1 Motion of Vehicle

In this work, the heavy-duty commercial vehicle was idealized as a mass point, with no regard for
the shape or size of the vehicle. However, the aerodynamic effect is regarded as a critical factor in the
vehicle model that affects vehicle movement, and the operating state of the vehicle, as well as specific
parameters, such as the vehicle wind resistance coefficient, air density, and orthogonal projection area,
must be considered.

Aerodynamic drag is determined by the wind drag coefficient fw, vehicle orthographic projection
area A, and definition of aerodynamic pressure Q:⎧⎨
⎩

Fwindage = fwAQ

Q = 1
2
ρV 2

(1)

where A denotes the projected area of the driving direction of the vehicle, ρ uses the typical air density
at sea level, and V is the relative speed of the vehicle to the actual wind speed. fw represents the
wind resistance coefficient to be determined. The driving conditions of commercial vehicles under
the conditions of no wind were only considered here. Therefore, Fwindage was only proportional to the
relative velocity V , and the relative speed V was vehicle speed x′.
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Rolling resistance and slope resistance are defined by Froll and Fgrade, respectively, both of which are
related to road slope α:

Froll = frmg cos(α) (2)

Fgrade = mg sin(α) (3)

where fr is the assessment of the rolling resistance ratio, and m refers to the overall mass of the heavy
vehicle described in this work.

Ftraction = δση

rwheel

(
λ0 + λ1h(t) + λ3h2

(t) + (
λ2 + λ4 + λ5h(t)

)
n′

(t)

)
(4)

where δ, σ represent transmission ratio and main transmission ratio, respectively, η stands for
mechanical efficiency, rwheel signifies the radius of the tire, h(t) is the throttle opening, n′

(t) denotes the
instantaneous engine speed, and λ0, λ1, λ2, λ3, λ4, λ5 are the undefined propulsive drag coefficients.

The forces on the heavy-duty commercial vehicle in the longitudinal dynamics model are depicted
in Fig. 1. According to the second law of Newton, the longitudinal dynamic equation of a vehicle can
be described as follows:

mx′′ = Ftraction − Fwindage − Froll − Fgrade (5)

Figure 1: The forces on the heavy commercial vehicle in the longitudinal dynamics model

According to Eqs. (1)–(5), the dynamic balance Eq. (6) of heavy-duty commercial vehicles was
obtained. The evaluation parameters of the heavy commercial vehicle dynamic model are presented in
Table 1:

mx′′ = δση

rwheel

(
λ0 + λ1h(t) + λ3h2

(t) + (
λ2 + λ4 + λ5h(t)

)
n′

(t)

) − 1
2

fwAρx′2 − frmg cos (α) − mg sin (α) (6)
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Table 1: The parameters of the dynamic model for heavy commercial vehicles

Parameter Value Parameter Value

Area of orthographic projection A 9.8475 m2 Density of air ρ 1.18415 kg/m3

Gross vehicle mass m 25000 kg Coefficient of wind resistance fw 0.528
Efficiency of machinery η 97% Coefficient of roll resistance fr 0.0055
Radius of tire rwheel 0.522 m

2.1.2 Relationship between Fuel Consumption and Vehicle Speed

At present, there are two models available for fuel consumption estimation in the field of economic
driving, and the pursuit of fuel consumption economy lies between them. The power demand type
model typically calculates the instantaneous power demand of a vehicle and then obtains the instan-
taneous fuel consumption of the vehicle while driving using the speed and acceleration of heavy-duty
commercial vehicles [17], as well as road and other information. On the other hand, the model of fuel
consumption based on the universal characteristic curve is related to the characteristics and state of the
engine, with better steady-state accuracy but poorer dynamic accuracy. The aforementioned factors
lead to the implementation of a simplified fuel consumption model [18]. Instantaneous fuel efficiency
is completely independent of fuel consumption in other periods. Additionally, the instantaneous fuel
efficiency only serves as a gauge of the effectiveness of the control strategies. The precise cumulative
fuel consumption value is unimportant in determining the performance of the different strategies
relative to one another. As a result, the cumulative error brought on by model simplification needs
not to be considered.

The instantaneous fuel injection rate of an engine is influenced by a variety of factors including
engine throttle opening, coolant temperature, oxygen concentration at the intake valve position, engine
speed, and torque [19]. Based on the connection between vehicle drive force (4), engine speed, and
throttle opening, a model of instantaneous fuel consumption was developed based on engine speed
and vehicle driving speed. Assuming full throttle opening, the fuel consumption estimation model is a
function of engine speed and instantaneous fuel consumption rate. The pace at which fuel is consumed
right now varies linearly with throttle opening when the speed is constant. As a result, the equation
for estimating engine speed and fuel consumption rate was designed as Eq. (7).

Q′
(t) = z0 + ah(t) + bn′

(t) + ch(t)
2 + dn′

(t) + fh(t)n′
(t) (7)

where n′
(t) is the instantaneous speed of the engine, h(t) denotes the relative opening of the throttle,

the value range is 0% to 100%, z0, a, b, c, d, f are the adjustment parameters of the unknown fuel
consumption estimation model, and Q′

(t) refers to the estimated instantaneous fuel consumption.

The vehicle speed, and acceleration for estimating the statistical function are considered the key
factors for assessing fuel consumption. In addition, they are used to analyze the connection between
engine speed and vehicle speed. When the vehicle speed is stable, the commercial vehicles have the same
gear, speed, and the proposed linear change. The speed estimation model can be used to fit a primary
function, whereas the instantaneous speed estimation model function is shown in Eq. (8).

n′
(t) = r0x′

(t) + r1 (8)

where n′
(t) denotes the estimated rotational speed when the instantaneous speed of the vehicle is x′

(t),
and r0, r1 are used to estimate the fitting parameters of the unknown speed model.
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In summary, the direct relationship between the instantaneous fuel injection rate of the vehicle and
the engine interior was considered first, and the fuel estimation model was established using engine
speed and throttle opening, followed by an analysis of the relationship between the vehicle speed and
acceleration and the engine interior. Finally, using Eqs. (7) and (8), the commercial vehicle driving
instantaneous fuel consumption estimation model can be derived, as indicated in Eq. (9).

Q′
(t) = ch(t)

2 + ah(t) + z0 + [b + d + fh(t)][r0x′
(t) + r1] (9)

2.2 Tuning of Model Parameters
The employed parameter optimization was based on real-world data collected from heavy com-

mercial vehicle experiments. During the experiments, the road surface is flat, and the changes caused
by road inclination during vehicle driving can be ignored. Because the designed control system does not
include the position factor of the vehicle, the data set does not contain vehicle position data. Fig. 2
depicts the data set used for parameter identification. A global positioning system (GPS) receiver
determined the current speed, and a special gasoline flow meter measured the fuel consumption.

Figure 2: The dataset for identifying model parameters

Depending on engine experimental data, the parameters of the fuel consumption model were
updated. For vehicle engines shifting from 700 to 1900 rpm and throttle position changing from 0%
to 100%, the vehicle instantaneous fuel injection rate dataset was gathered in the engine tests, and
the changing pattern of the pace of vehicle fuel consumption as engine speed grew when the throttle
opening was taken from 0%–100%, respectively, is displayed in Fig. 3a.

The instantaneous fuel consumption model is provided by Eq. (7). The conventional, linear model
with linearly independent basis functions cannot be used because the experimentally derived data set
was nonlinear. Because the proposed fuel consumption model has a two-dimensional input type in this
work, the model parameters were identified using a nonlinear matrix fit. The sum of squared residuals
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(RSS) and the square of R (COD) were used as measurement bases to obtain more accurate model
parameters [20].

RSS =
n∑

i=1

[
yi − ∧

y
]2

(10)

COD = 1 − RSS
TSS

(11)

where yi denotes the observed value of the model,
∧
y represents the estimated value of the model,

TSS is the total sum of squares, and RSS refers to the statistical data obtained from general linear
model analysis (such as traditional regression and variance analysis) [21]. Particularly, it represents the
percentage of variance in the outcome variable (COD) and sample-wide estimate (the adjusted COD)
that can be described by the predictor variable. The RSS determines the model parameter correlation,
which generally measures the fitted expressions with fewer model parameters, while the residual sum
of squares indicates the model error, whose error value is decreased with an increase in the fitting
accuracy and is more accurate for the estimation of multi-parameter models [22]. Based on the fitting
of the law between instantaneous fuel consumption, engine speed, and throttle opening, the obtained
fuel consumption estimation model adjustment parameters are presented in Table 2.

Figure 3: (a) The dataset for instantaneous fuel consumption; and (b) the estimation model of
instantaneous fuel consumption

Table 2: The estimated parameters of the instantaneous fuel consumption model

Parameter z0 a b c d f

Value −0.00761 1.21 × 10−5 5.88 × 10−5 −5.73 × 10−9 −7.38 × 10−7 3.73 × 10−7

The data shown in Table 2 are input to the instantaneous fuel consumption estimation model
Eq. (7) for validation, and the final validation results were obtained in Fig. 3b. The static accuracy is
higher in the given initial model. In the subsequent study, the fuel consumption estimation is performed
for the vehicle during driving, and the extreme cases during engine testing did not occur. Therefore,
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the described control model (22) constrains the engine speed to 700–1400 rpm to further improve the
accuracy of the model.

The given instantaneous fuel consumption estimation model can measure variables related to
the engine, which cannot directly respond to the influence of speed factors on heavy vehicle fuel
consumption. As a result, the following step was to examine the direct relationship between engine
speed and vehicle speed. Fig. 4 depicts the experimental dataset for heavy commercial vehicle speed.
When shifting gears, the engine speed of the vehicle changed with the gear. The primary function
between the vehicle and engine speeds can be used as the functional relationship of the engine speed
estimation model between the same gear, and the fitting adjustment parameters are presented in
Table 3. The fuel consumption model for heavy-duty commercial vehicles developed in this work
exhibited an RSS value of 1.11347 × 10−4 and a COD value of 0.962, which indicates a high degree of
fitting accuracy.

Figure 4: (a) The dataset for engine speed, and (b) the fitting of engine speed

Table 3: The estimated parameters of the engine speed model

Parameter r0 r1

Value 11.96218 16.24941

The driveline transmits the torque produced by the car engine to the drive wheels, and the
torque acting on the drive wheels creates a circular force on the ground, which is what propels the
vehicle forward. As can be observed in Eq. (4), the driving force is proportional to the engine torque.
The operating conditions of the engine are unstable while the vehicle is moving. Because there is
a difference between the internal state of the engine and the external characteristics test when the
throttle opening increased rapidly, the power that the engine can provide was slightly lower than
when it was stable. The origins of this effect are that there is a difference between the internal state
of the engine and the external characteristics test when the power performance was estimated. As a
result, the relationship between torque and speed in the external characteristics curve under steady-
state conditions was used for transmission system matching and optimization. The experiments in
this work were specifically designed for engine torque, speed, and throttle opening. Fig. 5 displays
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the experimental data changing trend. The required engine driving resistance coefficient for heavy
commercial vehicles can be calculated by analyzing the influence of engine speed on torque, as
presented in Table 4.

Figure 5: The dataset for torque

Table 4: The estimated parameters of the propulsion drag coefficient model

Parameter λ0 λ1 λ2 λ3 λ4 λ5

Value −111.56482 436 −0.397 −0.0953 −1.43 × 10−4 6.61 × 10−4

2.3 Verification of Models
The verification of the model was based on an independent dataset obtained during the highway

testing of the mentioned heavy trucks. The test conditions on this stretch of road were significantly
different from the data used in the previous section. Fig. 6 depicts the collected experimental vehicle
speed, fuel consumption, and time series [23]. The following is the basic flow of the model validation.

Figure 6: (Continued)
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Figure 6: The dataset for validation of models

The relevant data snippet was selected from the dataset under test. Furthermore, the vehicle speed
and fuel consumption data from the relevant time segment were used as the comparison condition
because the fuel consumption of engines fluctuates with operating time. The vehicle speed was entered,
the fuel consumption model simulation was run, and comparisons between the simulation and real-
world results were performed. The model of the engine speed estimation was validated first. Fig. 7a
illustrates a comparison of the model response speed to the actual speed. The simulation based
on the model of engine speed estimation produced a relatively accurate result. When the actual
speed oscillated more dramatically, the model can keep up in time to obtain accurate estimates,
demonstrating a strong dynamic estimation performance.

Figure 7: (a) The response of the engine speed model; (b) the response of the fuel consumption model

Following that, the model of fuel consumption estimation was validated. The desired speed,
corresponding throttle opening, and total fuel consumption data were chosen from the dataset shown
in Fig. 6, and the intercepted speed of the dataset was fed into the speed estimation model to obtain
the speed required by the model of fuel consumption estimation. The estimated fuel consumption was
calculated using the model of fuel consumption estimation and contrasted with the initial calculated
fuel use, as displayed in Fig. 7b. The precise model can be used as the measurement basis for the
subsequent control strategy, and the estimated trajectory of the tested model was close to the actual
data trajectory. The mean relative error (MRE), a comparison of the anticipated, and actual values,
were also used to assess the accuracy of the instantaneous fuel consumption model for predicting fuel
consumption. The instantaneous fuel consumption model presented in this work had an MRE value of
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0.08 and a relative error that can typically be controlled within 7%, which can satisfy the requirements
of the following method. Since the model was tested using only the same initial conditions, the error
between the model and the measured values was inevitable during the validation process. To obtain a
more accurate model, more scenarios of validation data were needed. Thereby, the optimization of the
model will be further enhanced in our future work.

3 Optimization of Engine Control Strategy for Heavy-Duty Commercial Vehicle
3.1 Establishment of an Optimization Problem

The strategy of creating a decision system based on objective laws, such as vehicle displacement,
engine performance, fuel consumption, and other factors is appropriate given the existence of the
longitudinal dynamics model of heavy commercial vehicles. The approach can compare many variables
and reflect all that is available. The constraint of ordinary differential equations (ODE) formed by the
vehicle motion equation, the engine speed model, and the fuel consumption estimation model are
shown in Eqs. (12)–(15).

x′
1 = x2 (12)

x′
2 = δση

mrwheel

(
λ0 + λ1h(t) + λ3h2

(t) + (
λ2 + λ4 + λ5h(t)

)
(r1 + r0x2)

)

− 1
2m

fwAρx2
2 − frg cos (α (x1)) − g sin (α (x1)) (13)

x′
3 = r0x2 + r1 (14)

x′
4 = ch(t)2 + ah(t) + z0 + [b + d + fh(t)] (r0x2 + r1) (15)

where x1 is the vehicle driving position, x2 refers to the vehicle driving speed, x′
3 is the engine speed,

and x4 denotes the instantaneous fuel consumption of the vehicle engine.

To summarize the optimal control problem, for a controlled system, the optimal amount of control
was sought to minimize the performance index while satisfying the constraints. The goal of this work
was to find the vehicle driving control trajectory with the least amount of fuel consumption. Hence,
the control trajectory was defined as a function of the vehicle position, vehicle speed, engine speed,
and total engine fuel consumption, where vehicle speed and throttle opening were the control variables.
In the vehicle driving process, seeking the optimal control trajectory is a nonlinear optimization with
constraints. To determine the best control trajectory while a vehicle is running, a restricted nonlinear
optimization procedure was used. For a controlled system, if the constraints are satisfied, the first
thing to look for is the control variable u(t) ∈ Rm, control variable should be found to minimize the
performance index J, as shown in Eq. (16).

min J =
∫ t=tmax

t=t0

Gfuel(x1(t), u(t), x′
3(t), t) + �(x′

4(t0), u(t0), x′
4(tf ), u(tf ), t0, tf ) (16)

where Gfuel is the instantaneous fuel consumption rate and acceleration x′
2 denotes the control variable

u, whereas displacement x1, instantaneous speed x′
3, and instantaneous fuel consumption x′

4 are the
state variables. Eq. (16) represents the performance indicator for solving the engine control plan while
using the least amount of fuel. As can be seen from the equation, the equation constituting the vehicle
driving fuel consumption index is composed of the integral of the state variable in the whole time
domain from t0 to tmax, the composite function relation index of the control variable, and the sum of
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the composite function relation index of the instantaneous fuel consumption at the terminal moment
of t0, tmax.

The variables of state and control satisfy the following constraints:

x′
4(t) = Gfuel(x1(t), u(t), x′

4(t), t) (17)

φ(x(t0), t0, x(tf ), tf ) = 0 (18)

C(u(t), x(t), t) ≤ 0 (19)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1(t0) = 0
x2(t0) = 85
x′

3(t0) = 0
x1(tmax) = d

(20)

x2(t) ≥ 0 (21)

700 ≤ x′
3(t0 ≤ t ≤ tmax) ≤ 1400 (22)


x′
2 (t) =

∣∣∣∣x′
2(ta) − x′

2(tb)
∣∣∣∣

||ta − tb|| ≤ ϕ (23)

The variables of state and control constraints were explained as follows:

a. Eq. (17) represents the composite equation of instantaneous fuel consumption estimation,
which consists of state variable displacement, instantaneous speed, and control variable speed.

b. Eq. (18) represents the boundary constraints of the state variables, which contains displace-
ment, velocity, and engine speed constraints on the terminal moments (20), which are different
from the terminal moment constraints in Eq. (17).

c. Eq. (19) represents the process constraints, which were used to constrain the state and control
variables (21)–(23) employed during the optimization process.

d. The maximum vehicle engine torque was 2500 N.m., which corresponds to a speed range of
1000–1400 rpm. As a result, the speed range should satisfy Eq. (22) throughout the driving
process.

e. The rate of change in the driving acceleration of a vehicle is directly proportional to its fuel
consumption, and the magnitude of the rate of change influences both driving comfort and
safety. As a result, any period during vehicle operation must satisfy Eq. (23).

3.2 Optimization Algorithm
The optimization of the controlled systems (17)–(23) has two very important problems:

a. Parameterization

Typically, the dynamic programming method is used to numerically solve the optimal strategy
problem using the Behrman equation [24,25]. The time continuity issue necessitates the analysis of
an unlimited number of potential states, which requires a significant amount of computer work.
Therefore, the time continuity problem is usually discretized. However, a reasonable discretization
time step is not determined, leading to difficulties in finding exact solution results.

Therefore, in this work, a parametric approach was to solve the optimal policy problem [26,27].
The optimal control strategy of the analytic function cannot be obtained directly, and some specific
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parameterization methods must be introduced to convert the optimization task into the form of a
distributed search solution. However, during the process of finding a distributed solution, the excessive
spatial dimensionality of the parameterization method can lead to difficulties in searching for the
optimal solution quickly. Thus, it is important to select the appropriate optimization technique, which
will hasten the convergence of the parameterization method.

b. Nonlinearity

Since the maximization fuel consumption problem is a nonconvex, multimodal nonlinear model,
it is difficult to be constrained, leading to the possible unsolvability of this optimization problem.
Therefore, the objective function was used as the cost function (17), and the global optimization
algorithm was utilized to calculate the result.

The Particle Swarm Optimization algorithm (PSO) is regarded as one of the more prominent
options, and it follows the same general algorithmic flow as the global optimization approach
[28], Weed Optimization algorithm (IWO) [29], Firefly algorithm [30], and Grey Wolf Optimization
algorithm (GWO) [31]. At the beginning of the algorithm, a predetermined number of random
particles was produced, and the parameters to be optimized during the process were measured, in terms
of their merit at each stage according to the objective function. The optimization process updates the
coordinates of the random vector according to some specific strategies, and the iterations were repeated
until the iteration conditions were satisfied.

In the optimization of optimal fuel consumption strategy, the PSO algorithm has obvious
advantages compared with other algorithms. More importantly, the best results can be obtained in a
limited time through the PSO [32]. The PSO algorithm has been improved many times in the literature
[33]. For example, the heuristic algorithm of the PSO algorithm was used as the target optimization
model, or improved particle swarm optimization based on simulated annealing. However, in this work,
the original model of the PSO algorithm was used as the solution tool [34]. When seeking the optimal
solution, the algorithm needs to constantly iterate the trajectory of its generation i in the parameter
space, adjust the local optimal coordinate pi pointing to the global optimal solution g, and calculate
the number of steps according to the established acceleration constants c1, c2. The random weighting
of the acceleration constant velocity and the diagonal matrix r1 and r2 with uniform distribution of
random numbers at [0, 1] determine that the trajectory generated by the algorithm is semi-random.

di(t) = di(t − 1) + si(t) (24)

si(t) = si(t − 1) + c1(pi − di(t − 1))r1 + c2(g − di(t − 1))r2 (25)

To stop the optimization, it is necessary to make the optimization function meet the iteration
condition (26).

f (di(t)) ≥ pi, f (di(t)) ≥ gi (26)

4 Parametrization Methods

In Sections 4.1–4.3, the optimization outcomes of three distinct parameterization approaches for
the control strategy were shown and reviewed. The results of the 100 km fuel consumption test in
Table 5 and the different control strategies in Table 6 are compared in Section 4.4.
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Table 5: The results of fuel consumption in the 100 km test for heavy-duty commercial vehicles

Serial number Day 1 Day 2

Test mileage (km) Fuel
consumption (L)

Test mileage (km) Fuel
consumption (L)

1 100.01 25.586 100.03 25.206
2 80 22.819 80.085 20.131
3 50 13.715 50.01 13.409

Table 6: The comparison of results from different control strategies

Serial
number

Method
of
parameterization

Mileage (m) Fuel consumption
(mL)

Description Fuel
consumption
(L/100 km)

1 1 2570.651 602.209 2 start-up cycles 23.426
2 1 2570.678 593.253 3 start-up cycles 23.077
3 1 2575.711 624.171 1 start-up cycles 24.232
4 2 2537.978 617.505 1 start-up cycles 24.330
5 2 2543.524 606.629 3 start-up

cycles(gradually)
23.849

6 2 2543.524 812.693 3 start-up
cycles(impatiently)

31.530

7 2 2543.524 646.767 4 start-up
cycles(gradually)

25.427

8 2 2544.911 636.630 2 start-up cycles 25.016
9 3 2498.611 608.431 1 start-up cycles 24.351

4.1 Parametrization Method 1: A Multi-Operation Strategy of Non-Variable Throttle Opening
In parametric approach 1, which models the regulating trajectory as the vehicle starting at a

constant throttle opening, the throttle starts and stop moments were used as optimization parameters
[35]. The existence of fewer parameters renders it easier for the algorithm to quickly resolve the issue
because the strategy uses the global optimization approach and the breadth of the search space is
determined by the number of variables that must be optimized [36]. By assuming that the decision
dynamic array constraint value is the total number of parameters, and the start and stop moments of
the throttle are used as the search space parameters, the search vector can be expressed by Eq. (27) as
follows:

u = [s1, c1, s2, c2, . . . , sN, cN]T (27)

where sn is the nth start moment of throttle operation, cn denotes the nth stop moment of throttle
operation, and N represents the number of throttle operations.

Since the throttle must be opened before it can be closed, the parameters in the decision vector
must be strictly monotonically increased according to the time series. Moreover, the moment when
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the throttle was last closed must be lower than the maximum experimental time. For this reason,
additional time constraints were imposed on the decision vector. Fig. 8 depicts the solution obtained
by starting the PSO algorithm with a throttle opening twice, and Fig. 9 illustrates the convergence of
the optimization process.

Figure 8: A solution obtained for non-variable throttle continuous operation 2 times strategy (param-
eterization method 2)

Figure 9: PSO algorithm progression to the non-variable throttling running condition 2 times strategy
(parameterization method 2)

Experiments with 1 and 3 operation periods were also performed, achieving remarkably compa-
rable state and control paths. Particularly, the primary distinction was defined as the number of starts
raised, and the length of the throttle opening cycle shortened, leading to an increase in the frequency of
vehicle speed changes. The fuel economy was not improved by increasing the number of parameters in
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the decision vector. Consequently, more iteration cycles were necessary for the algorithm to converge.
As a result, as the vector dimension of the parameters increased, the algorithm converged more slowly.
When method 1 with two start cycles of throttle opening was used, the convergence process required
40 iteration cycles. However, the convergence with three start cycles of throttle opening required 60
iteration cycles. This finding clearly indicates that the cost of algorithm convergence is increased with
the number of parameters.

Heavy-duty commercial vehicles have a unique architecture, which makes air resistance and drive
resistance important factors in evaluating fuel efficiency. The engine must have greater power to keep
the car moving at a consistent speed. To avoid producing extra mechanical energy from rapid changes
in vehicle speed, the running period of each cycle must be extended if more throttle-opening running
cycles are necessary.

4.2 Parametrization Method 2: A Multi-Operation Strategy of Variable Throttle Opening
As a development of the control strategy covered in Section 4.1, the parameterization method

with multiple throttle-opening start cycles and variable throttle-opening was proposed. Relative to
the parameterization method 1, this strategy slightly increased the number of parameters in the
optimization vector: the opening magnitude of the throttle opening during engine operation [37]. Thus,
the search vector is shown in Eq. (28).

u = [s1, c1, r1, s2, c2, . . . , sN, cN, rN]T (28)

where sn is the nth start moment of throttle operation, cn refers to the nth stop moment of throttle
operation, rn denotes the nth opening range of throttle operation, and N represents the number of
throttle operations.

The maximum throttle opening constraint must be added to the constraints stated in parameter-
ization method 1. The maximum throttle opening of 100% for heavy commercial vehicles provided
by the experiment was specified. The periods of four consecutive throttle opening actions and the
variable throttle opening for each period are displayed in Fig. 10. The relationship of the proposed
control strategy to the non-variable throttle opening is shown in Fig. 8. However, in method 2, the
throttle opening of the suggested method was changeable because each consecutive throttle operation
was raised in comparison to the preceding one. It was conceivable that the driver achieved optimal
fuel efficiency using various techniques for depressing the accelerator pedal in each of the other four
approaches, as indicated in Table 6, which each involves accelerating with a different number of throttle
operations for the same period.

Different levels of throttle operation can also have a significant impact on the fuel consumption
of heavy-duty commercial vehicles. Aggressive throttle pressing results in much higher fuel usage
than progressive throttle pressing for the same number of throttle operations, as indicated by the
comparison of data sets 5 and 6 in Table 6.

The convergence of the PSO algorithm to a variable throttle opening is illustrated in Fig. 11. As
can be observed, with a variable throttle opening, the global optimization yields a cost 20 iterations
higher than method 1 when the search vector is increased by the throttle opening magnitude. There
is no significant difference in fuel consumption when the throttle opening magnitude is variable
vs. non-variable. Nonetheless, the optimization technique becomes more difficult [38]. Therefore,
the parameterized method with variable throttle opening is theoretically a more efficient strategy.
The optimal fuel efficiency results cannot be obtained because imposing variable throttle opening
parameters in the search vector leads to a reduced convergence rate. Therefore, it is difficult to
guarantee a search for a definite local minimum in the search space.
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Figure 10: A solution obtained for variable throttle continuous operation 4 times strategy (parameter-
ization method 2)

Figure 11: PSO algorithm progression to the variable throttle continuous operation 4 times strategy
(parameterization method 2)

4.3 Parametrization Methods: A Single-Operation Strategy of Variable Throttle Opening
The third parameterization method operated with a single variable throttle from the start and

runs until the end of the experiment. This control method was different from the one described in the
preceding section in that it calls for only one actuation of the throttle opening. In addition, during
the driving of the experimental vehicle, the mechanical energy generated by the engine was always
higher than the energy necessary to drive the vehicle [39]. Therefore, in addition to constraining the
throttle operation start and stop moments, the proposed parameterization method needed to assume
that the throttle operation covered the maximum driving time, dividing this period into N periods, and
constituting a decision variable with the throttle start and stop moments. The employed search vector
is shown in Eq. (29).
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u = [s1, c1, s1, s2, . . . , sN]T (29)

where sn is the nth start moment of throttle operation, cn refers to the nth stop moment of throttle
operation, sn is the nth opening span of throttle operation, and N denotes the number of throttle
operations.

Fig. 12 displays the single-start outcomes for the varied throttle openings. The progression of the
PSO algorithm to a single operation strategy of variable throttle opening is illustrated in Fig. 13. The
control trajectory of the optimal strategy is smooth and accelerates. It is safe to suppose that this
method can best converge on a result that is like cycle control. The whole stroke cannot satisfy the
running time of the full-time span strategy requirement. In contrast, a discretization approach to the
periodic control strategy can also precisely determine the best control solution. Nonetheless, because
of the complexity of the process and the high number of optimization factors, it is more expensive to
solve.

Figure 12: A solution obtained for a single operation strategy of variable throttle opening (parameter-
ization method 3)

4.4 Experimental Results
Tables 5 and 6 show the results of 15 different test groups including 6 testing data sets for

heavy-duty commercial vehicles that have been run over 100 km in two days and 9 test data sets for
optimization that have been obtained using various control strategies. The final results are given based
on cycle fuel consumption, strategy type, 100 km fuel consumption, and the ideal remedy. The optimal
outcome from simulating several tactics was about 23.077 L/100 km, while the best result of the 100-km
fuel consumption test of heavy commercial vehicles was 25.137 km/h. The error of 8% was acceptable
given that the fuel consumption and vehicle dynamics models were both simplified and influenced by
the rational conduct of the driver. The theoretical value obtained by the global optimization algorithm
was not the most critical parameter. Although it provided approximate results, it was more important
to compare the rationality of the proposed trajectory optimization strategy.
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Figure 13: PSO algorithm progression to single operation strategy of variable throttle opening
(parameterization method 3)

5 Conclusion

In this work, an engine control strategy for heavy commercial vehicles that use less fuel was
proposed and thoroughly examined. First, a first-principles model based on a heavy-duty commercial
vehicle was developed, and the model was validated using experimental data collected from a real
vehicle. The engine control strategy model was then created. Finally, it was used to evaluate engine
control strategies.

From the acquired results, it was demonstrated that an ideal driving strategy based on a multi-
operation strategy of non-variable throttle opening and engine speed coordination can reduce the
fuel consumption of a heavy-duty commercial vehicle. Under high-speed road conditions, heavy-duty
commercial vehicles can minimize fuel consumption by controlling the speed at 85 to 92.5 km/h and
the throttle opening at 16.107% to 32.773%.

By using the optimal driving strategy model, the speed curve was produced. The connection
between the control variables, vehicle speed, and fuel consumption under dynamic engine conditions
was examined to estimate the fuel consumption of heavy-duty commercial vehicles under various
driving conditions and experimental conditions. Moreover, an instantaneous fuel consumption model
based on the engine speed and speed power was established. The experimental data collected by large
commercial vehicles demonstrated the model’s efficacy. The ideal fuel-consumption strategy and the
calculation technique for the fuel consumption pattern in the driving cycle were both based on the
estimation findings of the model.

The results indicated that the optimal fuel consumption was about 23.077 L/100 km in contrast
between the calculated results of the given multiple strategies and the actual test data, to improve fuel
economy and driving comfort, the driving style of more starts, and gentle driving should be adopted
as much as possible. Saving fuel is a theoretical calculation based on assumptions, and actual driving is
limited by the rational behavior of the driver. As a result, in our future work, the main focus will lead
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on developing a hardware-embedded system dedicated to the driving of heavy commercial vehicles,
capable of solving vehicle driving optimization tasks in real-time, and reducing the rational constraints
arising from the driver’s operation.
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