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ABSTRACT

To create a green and healthy living environment, people have put forward higher requirements for the refined
management of ecological resources. A variety of technologies, including satellite remote sensing, Internet of
Things, artificial intelligence, and big data, can build a smart environmental monitoring system. Remote sensing
image classification is an important research content in ecological environmental monitoring. Remote sensing
images contain rich spatial information and multi-temporal information, but also bring challenges such as difficulty
in obtaining classification labels and low classification accuracy. To solve this problem, this study develops a
transductive transfer dictionary learning (TTDL) algorithm. In the TTDL, the source and target domains are
transformed from the original sample space to a common subspace. TTDL trains a shared discriminative dictionary
in this subspace, establishes associations between domains, and also obtains sparse representations of source
and target domain data. To obtain an effective shared discriminative dictionary, triple-induced ordinal locality
preserving term, Fisher discriminant term, and graph Laplacian regularization term are introduced into the TTDL.
The triplet-induced ordinal locality preserving term on sub-space projection preserves the local structure of data
in low-dimensional subspaces. The Fisher discriminant term on dictionary improves differences among different
sub-dictionaries through intra-class and inter-class scatters. The graph Laplacian regularization term on sparse
representation maintains the manifold structure using a semi-supervised weight graph matrix, which can indirectly
improve the discriminative performance of the dictionary. The TTDL is tested on several remote sensing image
datasets and has strong discrimination classification performance.
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1 Introduction

The ecological environment is closely related to human life. A good ecological environment is the
foundation of human survival and health. At present, maintaining a healthy ecological environment
has been the consensus of people all over the world. Ecological environment monitoring refers to
the monitoring activities carried out to accurately, timely, and comprehensively reflect the ecological
environment status and its changing trend with the objects of mountains, water, forests, fields, lakes,
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and grasses. The rapid development of satellite and aviation technology makes the application of
remote sensing technology an important part of ecological environmental monitoring [1]. A large
amount of real-time and reliable ecological environmental image information can be obtained by
using satellite remote sensing images. Remote sensing image classification is the process of real-
time scene classification and recognition based on the content extracted from images. Improving
the accuracy of scene image classification can bring many conveniences to ecological environmental
monitoring. Remote sensing image classification labels an image as a high-level semantic class [2].
Different from pixel-based semantic segmentation, it only pays attention to which pixels correspond
to a certain feature. In scene classification, a small-scale image has its semantic information and can
be classified into a certain semantic class through semantic features. Therefore, the overall cognition
of a remote sensing image constitutes the scene class. The texture and spatial features of a scene,
as well as the relationship between the objects, enable not only to describe the underlying physical
features of the image, but also to characterize the semantic information of images. Dictionary learning
has achieved success in this field due to its sparse representation and reconstruction capabilities. For
example, Soltani-Farani et al. [3] developed a spectral and contextual characteristics-based dictionary
learning algorithm for multispectral resolution sample classification. The linear combinations of two
features of spectral are used as the common elements in the dictionary. Vu et al. [4] developed a
dictionary learning model characterized by shared and class-specific dictionaries. Especially, the Fisher
discrimination and low-rank constraints are enforced for the learned dictionaries. Geng et al. [5] used
an online dictionary learning algorithm with the special atom’s selection strategy. The particle swarm
optimization algorithm was adopted in the model update phase.

In scene classification, some different scene classes may contain similar feature representations
and spatial texture structures [6]. For example, commercial and residential areas often contain houses,
vehicles, highways, and interchanges. Bridges often contain roads, vehicles, and other objects. There
will also be large differences in characteristics in the same class of scene, such as parking lots with cars
and parking lots without cars. Thus, how to effectively and efficiently classify scenes is a challenging
problem. In addition, nature scenes are rich and diverse, and even the same ground object may exhibit
different characteristics under different time and space conditions, which results in “the same object
with different spectrum” and “different objects with the same spectrum”. Such differences make most
remote sensing application fields lack suitable labeled sample sets. At present, most remote sensing
image processing problems based on artificial intelligence adopt supervised learning algorithms. The
supervised learning algorithms require sufficiently fine-grained data labeling of the target image, and
use these manually labeled remote sensing samples to train effective automatic classifiers on data with
the same feature distribution. Therefore, it is a challenge to utilize traditional supervised learning
algorithms to build a universal and reusable remote sensing image processing model [7].

Transfer learning is a type of algorithm of using the relevant dataset (called source domain) to
calibrate the target domain when the source domain with sufficient class labels and the target domain
with insufficient labels (or without class labels) have different feature distributions [8]. In practical
applications, a large number of pre-labeled images or open-source public datasets are readily available,
which can be used as the source domain. Due to the difference in objective factors such as sensors,
algorithms, atmospheric conditions, solar radiation, ground features, building styles, and vegetation
characteristics of data acquisition, there are often differences between different domains. To solve this
problem, Zhou et al. [9] proposed the correlation alignment (CORAL) algorithm to achieve domain
adaptation and capture the texture of the image structure. Tuia et al. [10] developed the spectral feature
alignment (SFA) algorithm to use singular value decomposition for calculating the mapping function
of feature representation so that the two domains can learn common features independent of their
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respective domains in a common latent space. Wang et al. [11] developed the structural correspondence
learning algorithm to model the correlation of features.

In this paper, we propose a transductive transfer dictionary learning (TTDL) algorithm for remote
sensing image classification. By TTDL, the source and target domains are transformed into a common
subspace, and the samples in the two domains are re-encoded to have similar feature distributions.
In this subspace, a shared dictionary is trained to establish the association between two domains
and obtain the sparse representations of two domain samples. Also, the triplet-induced ordinal
locality preserving term on subspace projection, Fisher discriminant term on dictionary and graph
Laplacian regularization term on sparse representation are introduced into the TTDL algorithm. The
triplet-induced ordinal locality preserving term considers the ranking information of each sample’s
neighborhood, so it can more accurately describe the local geometry of the data. Fisher’s criterion
directly constrains the intra-class distance and inter-class distance of the learned dictionary, instead
of constraining the sparse representation. Its direct benefit is that the dictionary atoms of the same
class can be more compact, so the similarity between different classes can be greatly reduced and
the reconstruction ability and discriminative ability of the dictionary can be enhanced. Following the
principle that the sparse representation of the same class should be as similar as possible and the sparse
representation of different classes should be as different as possible, the graph Laplacian regularization
term on sparse representation is constructed. The semi-supervised weight graph matrix in the source
domain is built using the known class labels. Since the weight graph matrix in the target domain is
unknown, it appears as a variable in the model optimization and reaches its optimal solution when the
algorithm converges. Finally, TTDL obtains the discriminative dictionary and sparse representation,
to better complete the remote sensing image classification across datasets.

The contributions of this paper are as follows:

(1) A remote sensing image classification algorithm for cross dataset transfer learning is proposed.
Different domains are projected into the subspace to eliminate distribution differences. And the shared
dictionary is established the relationship between two domains.

(2) Fisher’s criterion on dictionary improves the intra-class compactness and inter-class differences
of sub-dictionary. In this way, one sub-dictionary reconstructs a certain class of training samples, which
can enhance the discrimination of the dictionary.

(3) The unsupervised triplet graph in the triplet-induced ordinal locality preserving term is
used to exploit the data local structure information. The semi-supervised weight graph matrix is
used to maintain the manifold structure. Thereby, the discriminative ability of subspace and sparse
representation can be enhanced.

2 Related Work
2.1 Dictionary Learning

Let Y ∈ Rn×N represent the training data set containing N samples of C classes, where the
dimension of samples is n. The dictionary learning [12] is constructed as,

min
D,A

‖Y − DA‖2
2 + λ ‖A‖p , (1)

where D ∈ Rn×K and A ∈ RK×N are the dictionary and sparse representation on Y, respectively.
‖Y − DA‖2

2 represents the reconstruction error term. ‖A‖p represents the regularization constraint of
�p-norm of sparse representation A. λ > 0 is the trade-off parameter. Eq. (1) is not a convex optimal
solution. D and A can be solved by an alternate iterative strategy.
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In classification tasks, the new test sample ynew can be classified by,

identity
(
ynew

) = arg minl

∥∥ynew − Dσl (anew)
∥∥

2
, (2)

The function σl (anew) returns a vector, whose internal non-zero elements are related to the class
of data.

2.2 Fisher Discrimination Dictionary Learning
Fisher discrimination dictionary learning (FDDL) [13] algorithm aims to obtain a structured

dictionary of training data. Using Fisher’s criterion, the learned sparse representations belonging to
different classes have a large spatial distance, while the sparse representations belonging to the same
class have a small spatial distance. The objective function of FDDL is,

min
D,A

1
2

C∑
l=1

r (Yl, D, Al) + λ1 ‖S‖1 + λ2

2
g(A), (3)

where r (Yl, D, Al) is the structure dictionary term. Yl and Al are the class label and sparse repre-
sentation of the l-th class, respectively. g (A) is the Fisher’s criterion term on sparse representation.
r (Yl, D, Al) and g (A) are defined as,

r (Yl, D, Al) = ‖Yl − DAl‖2
F + ‖Yl − DAl‖2

F +
∑

j �=l

∥∥DjA
j
l

∥∥2

F
, (4)

g (A) =
C∑

l=1

( Nj∑
j=1

∥∥aj
l − ml

∥∥2

2
− Nl ‖ml − m‖2

F

)
+ ‖A‖2

F , (5)

where Dj is the j-th class sub-dictionary. Aj
l is the sparse representation of Al over Dj. ml and m are the

mean vector of Al and A, respectively.

3 Transductive Transfer Dictionary Learning Algorithm
3.1 Objective Function

Let Ys = [
ys

1, ys
2, . . . , ys

Ns

] ∈ Rn×Ns and Yt = [
yt

1, yt
2, . . . , yt

Nt

] ∈ Rn×Nt are the source and target
domains, respectively, where Ns and Nt are the size of samples in the source and target domains,
respectively, N = Ns + Nt. TTDL uses the orthographic projection matrices Ps ∈ Rm×n and Pt ∈
Rm×n

(m < n) to project the source and target domains into the low-dimensional common subspace,
respectively. The samples of two domains are re-encoded with the same or similar feature distributions
in the subspace. Meanwhile, TTDL trains a discriminative dictionary D of domain-invariant features
under the framework of dictionary learning, and also obtains the sparse representation As and At for

the source and target domains, respectively. Let Ỹ =
[

Ys 0
0 Yt

]
, P̃ = [Ps, Pt], Ã = [As, At], the objective

function of TTDL is represented by,

min
P̃,Ã,D,Qt

∥∥∥P̃Ỹ − DÃ
∥∥∥2

F
+ θ1

∥∥∥Ã
∥∥∥2

F
+ θ2Φ(P̃) + θ3Z (D) + θ4Γ(Ã, Qt), (6)

where Qt is the weight graph matrix in the target domain. Through P̃, different domain data is
projected into the subspace to eliminate the distribution difference between two domains. Also the
shared dictionary D is established the association between two domains. Φ(P̃), Z (D) and Γ(Ã, Qt) are
functions on variables P̃, D, Ã and Qt, respectively, which helps to establish the relationship between
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two domains and improve the discriminative ability of dictionary learning. θ1, θ2, θ3 and θ4 are trade-off
parameters, to coordinate the functions of each item in the objective function.

Φ(P̃) is the triplet-induced ordinal locality preserving term on projection matrix. We think that the
samples in the low dimensional subspace should keep their local structure information in the original
space. Φ(P̃) considers the ranking information of samples’ neighborhood, so it can more accurately
describe the local geometric structure of data. First, we construct the k-nearest neighbor set �i for
each sample ỹi. The sample ỹi with two neighbors ỹu and ỹl builds a triplet

(
ỹi, ỹu, ỹl

)
. We build the

asymmetric distance matrix Ci for ỹi, and its element Ci
ul is computed as Ci

ul = ∥∥ỹi − ỹu

∥∥2

2
− ∥∥ỹi − ỹl

∥∥2

2
.

Then we build the similarity matrix G ∈ RN×N as,

gil =
⎧⎨
⎩

∑
u∈�i

Ci
ul, l ∈ �i

0, l /∈ �i

(7)

The triplet-induced ordinal locality preserving term Φ(P̃) is represented as,

min
P̃

N∑
i=1

N∑
l=1

gil

∥∥∥P̃
T
ỹi − P̃

T
ỹl

∥∥∥2

,

s.t. P̃P̃
T = I,

(8)

Denote � ∈ RN×N is the Laplacian matrix � = M − G + GT

2
. M is the diagonal matrix, where

Mii =
∑

l

gil + gli

2
. (9)

Eq. (8) can be represented as,

min
P̃

Tr
(

P̃Ỹ�Ỹ
T
P̃

T
)

,

s.t. P̃P̃
T = I.

(10)

Z (D) is the Fisher discriminant term on dictionary. To ensure the dictionary atoms have intra-class
compactness and inter-class differences, we implement Fisher discriminant criteria on the dictionary
D. Z (D) is represented as,

Z (D) = Tr (�w (D) − �B (D)). (11)

where �w (D) and �B (D) are the intra-class scatter and the inter-class scatter on D, respectively,

�w (D) =
C∑

l=1

(
Dl − D̃l

) (
Dl − D̃l

)T

, (12)

�B (D) =
C∑

l=1

Kl

(
Dl − D̃

) (
Dl − D̃

)T

, (13)

where Kl is the number of the lth class atoms. D̃ and D̃l are the mean values of D and Dl, respectively.

Let El = 1Kl
1T

Kl
∈ RKl×Kl , E = 1K1T

K ∈ RK×K , we have D̃l = DlEl/Kl,D̃ = DE/K, �w (D) and �B (D)

can be written as,

�w (D) =
C∑

l=1

(
DlD

T
l − 1

Kl

DlElD
T
l

)
, (14)



2272 CMES, 2023, vol.137, no.3

�B(D) =
C∑

l=1

Kl(D̃lD̃T
l − 2D̃lD̃T + D̃D̃T). (15)

Substituting Eqs. (14) and (15) into Eq. (11), Z (D) is represented as,

Z (D) = Tr
(
DBDT

)
, (16)

where B = IK − Diag
(

2
K1

E 1,
2

K2

E 2, . . . ,
2

KC

E C

)
+ 1

K
E .

Γ
(

S̃, Qt

)
is the graph Laplacian regularization term on sparse representation. We think that the

sparse representation of the same class should be as similar as possible, and the sparse representation
of different classes should be as different as possible. The weight graph matrix Qs is built on the source
domain Ys. The element qs

ij in Qs is defined as,

qs
ij =

{
1, ys

i and ys
i are of the same class

0, otherwise
(17)

Because the class label of Yt is unknown, TTDL estimates the weight graph matrix Qt in the target
domain. Γ(Ã, Qt) is represented as,

min
Ã,Qt

Ns∑
i=1

Ns∑
j=1

qs
ij

∥∥ãs

i − ãs

j

∥∥2 +
Nt∑
i=1

Nt∑
j=1

qt
ij

∥∥ãt

i − ãt

j

∥∥2 + δ ‖Qt‖2
F ,

s.t. qt
i1 = 1, qt

ij ≥ 0
(18)

where δ is the trade-off parameter. Let L ∈ RN×N be the Laplacian matrix with L = W − Q̃, Q̃ =[
Qs 0
0 Qt

]
and W be the diagonal matrix with Wii = ∑

j qij.

min
Ã,Qt

Tr
(

ÃLÃ
T
)

+ δ ‖Qt‖2
F ,

s.t. qt
ij1 = 1, qt

ij ≥ 0
(19)

Combining Eqs. (8), (11), and (19) into Eq. (6), the objective function of TTDL is re-written as,

min
P̃,Ã,D,Qt

∥∥∥P̃Ỹ − DÃ
∥∥∥2

F
+ θ1

∥∥∥Ã
∥∥∥2

F
+ θ2Tr

(
P̃Ỹ�Ỹ

T
P̃

T
)

+ θ3Tr
(
DBDT

) + θ4Tr
(

ÃLÃ
T
)

+ δ ‖Qt‖2
F ,

s.t. P̃P̃
T = I,

qt
ij1 = 1, qt

ij ≥ 0,

‖dk‖2
2 ≤ 1, ∀k (20)

3.2 Optimization
For the objective function of the TTDL algorithm, four variables P̃, Ã, D and Qt should be

optimized. We adopt the alternately optimization strategy and have the following four steps:

(1) P̃ is optimized by fixing Ã, D and Qt,

min
P̃

∥∥∥P̃Ỹ − DÃ
∥∥∥2

F
+ θ2Tr

(
P̃Ỹ�Ỹ

T
P̃

T
)

,

s.t. P̃P̃
T = I,

(21)
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According to [14], there exists the matrices R̃ ∈ RN×m, Z ∈ RN×K , which has the following form:
P̃ = (ỸR̃)T , D = P̃ỸZ, and K̃ = Ỹ

T
Ỹ. Then we have,

min
R̃

∥∥∥R̃
T
K̃

(
I − ZÃ

)∥∥∥2

F
+ θ2Tr

(
R̃

T
K̃�K̃

T
R̃

)
,

s.t. R̃
T
K̃R̃ = I.

(22)

We have the closed-form solution of R̃ as,

R̃ = τ
−1/2σ , (23)

where K̃ = τΣτ T . σ is obtained by,

min
σ

Tr
(
σ THσ

)
,

s.t. σ Tσ = I,
(24)

where H = 
1/2τ T

((
I − ZÃ

) (
I − ZÃ

)T

+ θ2�τ
1/2

)
. Obviously, σ has the closed-form solution.

(2) D can be optimized by fixing P̃, Ã and Qt,

min
D

∥∥∥P̃Ỹ − DÃ
∥∥∥2

F
+ θ3Tr

(
DBDT

)
,

s.t. ‖dk‖2
2 ≤ 1, ∀k.

(25)

Using the Lagrange dual approach, D is obtained by,

D = P̃ỸÃ
T
(

ÃÃ
T + θ3B

)−1

. (26)

(3) S̃ is optimized by fixing P̃, D and Qt,

min
Ã

∥∥∥P̃Ỹ − DÃ
∥∥∥2

F
+ θ1

∥∥∥Ã
∥∥∥2

F
+ θ4Tr

(
ÃLÃ

T
)

. (27)

We re-write Eq. (27) in terms of the row vector ãi in Ã as,

min
ãi

∥∥∥(
P̃Ỹ

)
i
− Dãi

∥∥∥2

2
+ θ1

∥∥ãi

∥∥2

2
+ θ4

∑
j

qi,j

∥∥ãi − ãj

∥∥2

2
. (28)

The closed-form solution of ãi is,

ãi =
(

DTD + θ4

∑
j

qi,jI + θ1I

)−1 (
DT

(
P̃Ỹ

)
i
+ θ4

∑
j

qi,jãj

)
. (29)

(4) Qt can be optimized by fixing P̃, D and Ã, we have,

min
Qt

θ4

Nt∑
i=1

Nt∑
j=1

qt
ij

∥∥ãt

i − ãt

j

∥∥2 + δ ‖Qt‖2
F ,

s.t. qt
ij1 = 1, qt

ij ≥ 0,
(30)

We define hi,j = θ4

∥∥ãt,i − ãt,j

∥∥2

2

2δ
, Eq. (30) is represented as,

min
qt

ij

∥∥qt
i + hi

∥∥2

2
,

s.t. qt
i1 = 1, qt

ij ≥ 0, ∀i, j
(31)
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The closed-form solution of qt
i is,

qt
i =

(
1 + ∑k

j=1 ĥij

k
1 − hi

)
+

, (32)

where (·)+ means the elements in qt
i are nonnegative. The element ĥij of ĥi is the same as that in hi with

the ascending order.

It is noted that according to [14], δ can be computed by,

δ = 1
Nt

Nt∑
i=1

(
k
2

ĥik+1 − 1
2

k∑
j=1

ĥij

)
. (33)

The solving procedure of Eq. (20) is summarized in Algorithm 1.

Algorithm 1: TTDL algorithm
Input: The labeled source domain Ys and unlabeled target domain Yt, parameters θ1, θ2, θ3, and θ4;

Output: P̃, Ã, D, and Qt.
Calculate the similarity matrix G via Eq. (7) and weight graph matrix Qs via Eq. (17);
While not converge do
Update P̃ via Eqs. (22)–(24);
Update D via Eq. (26);
Update Ã via Eq. (30);
Update Qt via Eq. (32);

end while
Compute the parameter δ via Eq. (33)
Obtain the optimal P̃, Ã, D, and Qt.

4 Experiments
4.1 Datasets

The TTDL algorithm is evaluated on real-world remote sensing datasets: RSSCN7 [1], Ucmerced
land [2], Aerial image dataset (AID) [15], and SIRI-WHU dataset [16]. The RSSCN7 dataset consists
of 2800 images of seven scene classes. There are 400 images of each class, in which the size of each
image is 400 × 400 pixels. The Ucmerced land dataset consists of 2100 aerial scene images from 21
classes, with the size of 256 × 256 pixels. The AID dataset is a large scale aerial scene dataset, which
consists of 10,000 remote sensing scene images of 30 classes, with the size of 600 × 600 pixels. The
SIRI-WHU dataset is also an aerial scene dataset, composed of 12 classes of aerial scene images, in
which each class contains 200 images, with the size of 200 × 200 pixels. To efficiently represent the
remote sensing images, we adopt two different types of deep feature representations: ResNet50 and
VGG-VD-16 [7]. They are extracted by the two convolution neural networks (CNN). The dimensions
of the two deep features are 2048.

In the experiment, we design three cross-domain remote sensing image scene classification tasks:
Ucmerced→RSSCN7 (named U→R), AID→RSSCN7 (named A→R), and SIRI-WHU→RSSCN7
(named S→R), referring to Ys→Yt. To match the classes in RSSCN7, we select corresponding
similar classes to form the source domain, the detailed information of three cross-dataset scene
classification tasks is shown in Table 1. Following the ID sequence in Table 1, some sample images of
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corresponding classes in four remote sensing image datasets are shown in Fig. 1. In the experiments,
we randomly select 80% of the images in Ys and 5% of the images in Yt for model training, and
the rest of images in Yt are used for testing. Comparison algorithms include: sparse representation-
based nearest neighbor (SRNN) [17], maximum mean discrepancy (MMD) [18], generalized joint
distribution adaptation (G-JDA) [19], and maximum independence domain adaptation (MIDA) [20],
and transfer independently together (TIT) [21]. SRNN is a basic sparse representation algorithm,
while MMD, G-JDA, MIDA, and TIT are transfer learning algorithms. The regularization and kernel
parameters are set in

{
2−6, 2−5, . . . , 26

}
. The TTDL algorithm involves four parameters, which are set

in
{
10−3, 10−2, . . . , 103

}
. The size of the sub-dictionary is the same as the number of training images in

each class. The experiment is repeated ten times, with each run’s classification accuracy being recorded.

Table 1: The information of selected subclass in four sensing image datasets

RSSCN7 Ucmerced land SIRI-WHU AID

ID Subclass No. Subclass No. Subclass No. Subclass No.

1 Grass 400 Agriculture 100 Agriculture 200 Farmland 370
2 Field 400 Baseball diamond 100 Meadow 200 Baseball diamond 220
3 Industry 400 Building 100 Industrial 200 Industrial 390
4 River/Lake 400 River 100 River 400 River 410
5 Forest 400 Forest 100 Park 200 Forest 250
6 Resident 400 Medium-residential 300 Residential 200 Medium-residential 290

Figure 1: (Continued)



2276 CMES, 2023, vol.137, no.3

Figure 1: Sample images in four dataset, (a) RSSCN7, (b) Ucmerced land, (c) SIRI-WHU, (d) AID

4.2 Performance Comparison
We compare the TTDL algorithm on three cross-domain remote sensing image classification tasks.

The accuracy results in each class are shown in Tables 2–4. Analyzing the experimental results, we can
see that the TTDL algorithm achieves the best classification accuracy. The baseline algorithm SRNN
cannot obtain satisfactory performance in all cross-domain remote sensing image classification tasks.
Since SRNN is only trained on the source domain, it cannot be used directly on the RSSCN7 dataset
due to differences in data distribution across different domains. G-JDA aligns cross-domain edge
feature probability distributions and conditional feature probability distributions in the new feature
space by applying their respective projection matrices. TIT also uses landmarks to select representative
samples for cross-domain feature matching while maintaining the manifold structure using graphs.
Both MMD and MIDA project different domains into the common subspace to achieve cross-
domain feature alignment. The above algorithms except TTDL do not consider triplet-induced ordinal
locality preserving term, Fisher discriminant term, and graph Laplacian regularization term in transfer
learning. The TTDL algorithm not only maintains the local structure in the subspace, but also makes
similar sparse representations as similar as possible, to enhance the discriminative performance of
sparse representations. Additionally, TTDL minimizes the intra-class scatter of atoms and maximizes
the inter-class scatter of atoms, which can greatly promote the discriminative performance of the
dictionary.

Table 2: Accuracy (%) with its standard deviation of each class in the U→R task (The bolds indicate
the best results)

Features Classes SRNN MMD G-JDA MIDA TIT TTDL

ResNet50

Grass 64.76 83.72 82.90 88.10 88.03 89.14
(1.76) (1.78) (1.03) (1.44) (1.35) (1.00)

Field 58.07 74.76 74.29 78.17 77.52 81.32
(1.13) (1.69) (0.81) (0.96) (1.78) (0.74)

Industry 50.76 62.68 68.77 70.01 68.07 71.76
(1.30) (2.10) (1.39) (1.55) (0.96) (1.03)

River/Lake 52.34 78.76 83.03 85.37 84.50 88.36
(1.15) (1.05) (1.65) (2.16) (1.03) (0.82)

Forest 88.54 89.99 90.99 91.18 90.39 91.49
(1.40) (2.09) (2.04) (1.69) (1.63) (1.42)

Resident 46.58 57.03 69.18 71.14 68.76 74.68
(1.30) (1.56) (1.93) (2.26) (1.69) (1.09)

(Continued)
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Table 2 (continued)

Features Classes SRNN MMD G-JDA MIDA TIT TTDL

VGG-VD-16

Grass 62.69 82.44 83.14 84.41 83.84 87.46
(1.11) (1.87) (1.42) (1.24) (0.70) (0.73)

Field 56.17 75.5 73.95 77.48 76.42 78.43
(0.65) (1.04) (0.90) (0.68) (0.80) (0.84)

Industry 48.66 61.33 67.85 67.87 66.08 69.75
(1.55) (0.96) (1.80) (0.77) (1.19) (1.08)

River/Lake 50.29 76.40 81.71 83.67 82.24 86.50
(0.78) (1.71) (1.86) (1.86) (1.08) (0.93)

Forest 84.10 87.97 87.45 88.83 88.01 90.01
(1.32) (2.00) (1.16) (0.85) (1.14) (0.77)

Resident 44.80 54.41 67.38 68.67 66.86 72.98
(1.35) (1.13) (1.00) (1.22) (1.19) (0.69)

Table 3: Accuracy (%) with its standard deviation of each class in the A→R task (The bolds indicate
the best results)

Features Classes SRNN MMD G-JDA MIDA TIT TTDL

ResNet50

Grass 67.33 84.22 85.09 89.22 89.31 90.13
(1.44) (1.85) (1.60) (1.89) (1.92) (1.66)

Field 60.59 77.99 79.65 80.41 82.60 83.13
(1.21) (1.08) (0.93) (2.35) (1.81) (1.05)

Industry 54.80 66.02 70.77 74.94 74.75 75.70
(2.09) (1.84) (1.60) (1.90) (1.52) (1.04)

River/Lake 55.07 80.47 86.24 87.06 85.88 90.70
(1.27) (1.37) (1.92) (0.85) (2.08) (1.07)

Forest 88.40 90.14 91.31 91.85 92.99 93.65
(1.55) (1.45) (1.45) (1.43) (0.94) (0.93)

Resident 50.75 70.36 73.81 72.65 73.02 76.52
(1.28) (0.93) (1.97) (1.56) (1.49) (0.83)

VGG-VD-16

Grass 65.49 82.55 83.62 87.19 86.23 89.25
(1.40) (1.91) (1.22) (1.31) (1.76) (0.97)

Field 58.52 75.41 76.10 78.87 80.50 82.74
(0.82) (1.58) (2.18) (1.52) (2.49) (1.09)

Industry 50.73 63.31 67.68 70.17 71.64 72.83
(0.86) (2.08) (2.10) (1.15) (0.98) (1.54)

River/Lake 50.49 75.55 83.26 84.85 83.67 86.84
(1.85) (2.97) (1.79) (1.77) (0.56) (1.13)

Forest 87.27 89.72 90.07 90.63 90.39 91.27
(1.15) (1.70) (1.45) (1.36) (2.03) (1.10)

(Continued)
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Table 3 (continued)

Features Classes SRNN MMD G-JDA MIDA TIT TTDL

Resident 48.35 70.08 71.80 73.90 70.76 74.65
(1.78) (1.70) (0.84) (2.58) (1.86) (0.83)

Table 4: Accuracy (%) with its standard deviation of each class in the S→R task (The bolds indicate
the best results)

Features Classes SRNN MMD G-JDA MIDA TIT TTDL

ResNet50

Grass
60.09 80.23 81.87 84.85 84.02 86.22
(1.59) (1.26) (1.50) (1.45) (1.49) (1.61)

Field
49.81 71.76 73.11 76.18 76.69 78.34
(1.50) (1.08) (0.90) (1.23) (1.34) (1.24)

Industry
45.89 66.00 66.81 67.32 65.83 70.68
(1.06) (0.85) (1.42) (0.86) (1.83) (1.08)

River/Lake
50.30 70.98 80.21 81.31 82.05 85.78
(1.58) (0.70) (0.95) (1.14) (1.32) (1.64)

Forest
80.11 81.65 84.55 85.53 84.97 87.89
(0.69) (1.74) (1.89) (1.11) (1.27) (1.44)

Resident
42.58 55.26 70.71 68.45 68.08 72.43
(1.29) (1.91) (2.15) (1.82) (1.19) (1.11)

VGG-VD-16

Grass
58.56 78.25 77.23 80.63 81.07 83.98
(1.42) (1.36) (1.63) (2.16) (0.86) (1.02)

Field
47.34 68.58 70.92 73.61 73.66 75.29
(0.98) (2.16) (1.14) (1.23) (1.56) (0.90)

Industry
43.17 62.24 64.12 65.05 64.59 68.82
(1.11) (0.78) (2.01) (2.16) (1.08) (1.14)

River/Lake
50.98 69.13 80.86 80.53 80.34 83.22
(2.42) (2.36) (0.63) (2.19) (0.86) (1.02)

Forest
77.68 79.35 82.44 83.29 83.94 85.38
(1.22) (1.04) (2.22) (1.51) (1.91) (1.15)

Resident
40.56 52.07 69.16 67.15 67.40 71.61
(1.99) (1.97) (2.41) (1.04) (1.99) (1.53)

The classification results using ResNet50 and VGG-VD-16 features are comparable. As we know,
the contained information in remote sensing scene images is often closely related to its class. The
traditional feature information such as color, texture, space, and spectral information is insufficient for
remote sensing images. Especially when the features corresponding to some classes are not significant
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enough, the accuracy of the classifier will be reduced. Thus, the deep features are effective in our
experiments.

Fig. 2 records the classification performance of each algorithm in three transfer learning tasks.
We can see that the average accuracy of TTDL is the highest among all sub-classes. For example, in
the U→R task, using the ResNet50 features, the average accuracy of TTDL is 22.62% higher than the
SRNN algorithm, and 3.25% higher than the second best. In the A→R task, using the VGG-VD-16
features, the average accuracy of TTDL is 22.17% higher than the SRNN algorithm, and 1.88% higher
than the MIDA algorithm. In the S→R task, using the ResNet50 features, the average accuracy of
TTDL algorithm is 25.53% higher than the SRNN algorithm, and 3.28% higher than the second best.
These results show that TTDL is effective in three classification tasks of U→R, A→R, and S→R.
Thus, the dictionary learning framework combined with subspace learning, Fisher discriminant, and
local information preserving is a good choice for cross-dataset remote sensing image classification.

(a)

(b)

(c)

Figure 2: Accuracy comparison of all algorithms in the, (a) U→R task, (b) A→R task, (c) S→R task
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4.3 Model Analysis
We show the confusion matrix using the ResNet50 feature in Tables 5–7. The value in confusion

matrices means the accuracy (%) of TTDL in each class. The testing data of each scene class in
the RSSCN7 dataset consists of 380 images. We can see that in the U→R task, TTDL classifies
scene classes of Grass, River/Lake, and Forest over 80%, and the accuracy of Industry is low. The
reason is mainly that Industry and Resident have the high similarity in the Ucmerced land and
RSSCN7 datasets. The performances of TTDL in the A→R and S→R tasks show similar results. The
classification performance in Grass, River/Lake, and Forest, are a higher than that of other classes.

Table 5: Confusion matrix of TTDL on the U→R task

Grass Field Industry River/Lake Forest Resident

Grass 89.14 5.04 0 2.50 3.32 0
Field 13.32 81.32 0 3.71 1.65 0
Industry 0 3.21 71.76 9.47 0 15.56
River/Lake 2.25 2.06 3.33 88.36 1.03 2.97
Forest 0 4.83 0 3.68 91.49 0
Resident 0 0 25.32 0 0 74.68

Table 6: Confusion matrix of TTDL on the A→R task

Grass Field Industry River/Lake Forest Resident

Grass 90.13 3.01 0 2.13 3.82 0.91
Field 10.24 83.13 0 4.79 1.84 0
Industry 0 3.06 75.70 6.29 0 14.95
River/Lake 3.11 2.11 2.29 90.70 0.26 1.53
Forest 0 4.11 0 2.24 93.65 0
Resident 0 0.95 20.79 0.89 0.85 76.52

Table 7: Confusion matrix of TTDL on the S→R task

Grass Field Industry River/Lake Forest Resident

Grass 86.22 6.41 0 3.92 3.45 0
Field 14.21 78.34 0.24 4.51 2.07 0.63
Industry 0 2.49 70.68 8.99 0 17.84
River/Lake 2.58 2.84 4.58 85.78 2.06 2.16
Forest 0 4.84 0.46 6.81 87.89 0
Resident 0 0.47 26.05 0.26 0.79 72.43
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4.4 Ablation Experiment
To further analysis three components in TTDL, we show the ablation experiment results using

ResNet50 feature in Table 8. TTDL with θ2 = 0 means Φ(P̃) is removed. TTDL with θ3 = 0 means
Z (D) is removed. TTDL with θ4 = δ = 0 means Γ(Ã, Qt) is removed. The experimental results
validate the effectiveness of triplet-induced ordinal locality preserving term, Fisher discriminant term,
and graph Laplacian regularization term in TTDL. The triplet-induced ordinal locality preserving
term finds a suitable projection subspace to preserve the data structure. The Fisher discriminant term
builds a discriminant dictionary to bridge two different domains. The graph Laplacian regularization
term learns the discriminant sparse representation. With the joint learning of three terms, the TTDL
algorithm has achieved satisfactory results in cross-dataset remote scene image classifications.

Table 8: Component evaluation in TTDL

θ2 = θ3 = θ4 = 0 θ2 = 0 θ3 = 0 θ4 = δ = 0 TTDL

U→R 53.23 77.28 76.17 78.92 81.55
A→R 67.20 77.36 75.29 76.13 80.70
S→R 60.04 75.26 77.20 76.45 81.87

5 Conclusion

The ecological environment has become one of the root factors affecting human health. Environ-
mental and health management is a comprehensive and complex work across departments, fields, and
disciplines. The rapid development of aerospace, satellite remote sensing, and data communication
technology makes the application of remote sensing technology in ecological environmental moni-
toring more extensive. Reducing the workload of manual annotation and achieving high-precision
classification of remote sensing images are difficult problems in ecological environmental monitoring.
Benefiting from the previous manual labeling work, there are a large number of labeled datasets
in the source domain. Because of the large differences between different datasets, it is difficult to
achieve the ideal classification by directly training the classifier with these labeled datasets. To solve
this problem, this paper proposes a transductive transfer dictionary learning algorithm TTDL. To
obtain the representation of different domain samples, TTDL uses a subspace projection strategy
to eliminate the distribution difference. In TTDL, the triplet induced ordinal locality preserving
term, Fisher discriminant term, and graph Laplacian regularization term are introduced, so that the
dictionary has intra-class compactness and inter-class differences. The TTDL algorithm has achieved
satisfactory results in remote sensing image classification across datasets. Our work in the next stage
includes integrating statistical information from data into subspace projection to eliminate feature
distribution differences. For remote sensing images, the class imbalance often exists; it will lead to a
high misclassification rate for classes with fewer samples. How to solve this problem is also our future
research work. In addition, the transfer learning algorithm proposed in this paper is only applied to a
single feature perspective. How to use multiple feature perspective data to accurately describe the data
structure has important research significance and application value.
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