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ABSTRACT

As indispensable components of superconducting circuit-based quantum computers, Josephson junctions deter-
mine how well superconducting qubits perform. Reverse Monte Carlo (RMC) can be used to recreate Josephson
junction’s atomic structure based on experimental data, and the impact of the structure on junctions’ properties
can be investigated by combining different analysis techniques. In order to build a physical model of the atomic
structure and then analyze the factors that affect its performance, this paper briefly reviews the development
and evolution of the RMC algorithm. It also summarizes the modeling process and structural feature analysis of
the Josephson junction in combination with different feature extraction techniques for electrical characterization
devices. Additionally, the obstacles and potential directions of Josephson junction modeling, which serves as the
theoretical foundation for the production of superconducting quantum devices at the atomic level, are discussed.
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1 Introduction

Quantum computing can outperform classical computing by using entangled quantum states as
the information carrier and achieve tremendous parallel power with quantum linear superposition
for some types of problems. The superconducting quantum computer is considered one of the
most advanced quantum computing schemes at present, which has been rapidly developed in both
experiments and simulation. As one of the critical devices, the preparation of the Josephson junction
has always been a research focus, but the development of the Josephson junction is limited [1–6] due
to the major impact of its technological conditions and microstructure on its performance.

Currently, Al-based Josephson junctions exhibit to be one of the highest performance and best
development among Josephson junctions for quantum devices [7]. However, the junction’s efficiency
falls short of expectations, as the critical current is not uniform, necessitating a deeper comprehension
and control of atomic structure [7]. The performance of the qubits for Josephson junction is greatly
influenced by the process conditions [3,8–10], bridge-ways [2,11], barrier layer defects [12,13], etc.,
particularly the effects of the local structure (such as the interface layer). The precise driving forces
and mechanisms of influence are still unknown.
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RMC is a general modeling technique that creates a structural model of disordered systems
using experimental data, typically diffraction data. The discrepancy between the estimated diffraction
pattern and the empirically measured pattern is reduced by repeatedly modifying the model setup.
Reproducing atomic structure models that are in line with the data is the goal. The additional examina-
tion of the structure model, when combined with other contemporary characterization techniques, aids
in the prediction and direction of the Josephson junction process. RMC can also be used to confirm
whether a new approach can create a Josephson junction with an optimal microstructure [14,15]. It is
friendly to single-crystal materials, polycrystalline materials, and disordered materials, notably those
with structures like amorphous alumina, and it does not require crystallographic information [16,17].
Using RMC to build the barrier layer model or even the entire junction model, explore the atomic
structure, and analyze the effect of process conditions and other defects on the junction region is vital
and advantageous.

In this paper, the structural properties of the Josephson junction barrier layer are reviewed using
simulation-based characterization techniques, and the underlying causes are examined. The second
section describes how the RMC method has evolved recently and lists the benefits and drawbacks of
applying RMC to modeling. The third section primarily covers the extraction of material structure
information by various characterization devices, starting from experimental data pertinent to RMC.
After the model building is complete, the fourth component shows the micro-analysis of the structure
based on the analysis data and identifies its macro characteristics. The fifth part reviews the barrier
layer research conducted using RMC modeling and concludes that the dearth of research is connected
to the inaccuracy of characterization equipment and incomplete data collection. Meanwhile, the
improvement of the RMC method is also prospected, and the research of other modeling software
applied to oxide barrier layers is also compared. Finally, the challenges and prospects of the Josephson
junction simulation are presented.

2 Developments of RMC Modeling Algorithm

The key to understanding the properties of a material is to determine its structure. It is difficult
to decide on atomic-scale structures from experimental data, especially for amorphous materials
lacking long-range order. The backward learning method is often called the “inversion problem” [18].
Modeling methods commonly used require constraints of interatomic potential, such as Monte Carlo
(MC) and Molecular Dynamics (MD), etc. Although the fitting effect of experimental data is well, the
structure simulation is qualitative. RMC provides algorithms that rely on experimental data to adjust
models to analyze more detailed structural features that experimental data cannot explore. By moving
the atomic coordinates randomly many times, the error between the model and the experimental data
is shortened, and finally, the model is consistent with the experimental data. Due to the simple basic
idea of its algorithm, low requirements in the initial model, fewer constraints than other modeling
methods (such as MD), more structural information in the later stage of modeling, etc., RMC has
been widely studied and applied [19].

2.1 The Basic RMC Algorithm
The RMC algorithm is a variation of the standard Metropolis Monte Carlo (MMC) method

[14,15]. The purpose is to construct a model that is self-consistent with the experimental data within
its error range under certain constraints. The error is statistical and conforms to a certain normal
distribution [15]. The specific algorithm flow is shown in Fig. 1:
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1) To build the initial configuration. N atoms are placed in periodic cells. It is important to note
that the density of atoms is set as close to the experimental value as possible. For the initial
model, the atomic positions can be arbitrary. Both regular and random are allowed.

2) From the initial configuration, the difference χ 2
o between the structure factor of the configura-

tion AC (Q) and the experimentally measured structure factor AE (Q) is calculated [14].

χ 2
o =

m∑
i=1

[
AC

o (Qi) − AE (Qi)
]2

/σ 2 (Qi) (1)

where

Ac
o (Q) = ρ

∫ ∞

0

4πr2
(
gC

o (r) − 1
) sin Qr

Qr
dr (2)

gC
o (r) = nC

o (r)
4πr2drρ

(3)

Here, m is the experimental points, σ is the experimental error term and Q is the momentum
transfer, note that the minimum value of Qi should be greater than or equal to 2π /L, where L is the
minimum scale of the configuration. The superscripts C and E denote the calculated and experimental
values, respectively, and the subscript o indicates the previous configuration. ρ is the atomic number
density, the function g is the radial distribution function. n(r) is the number of atoms at a distance
between r and r + dr from a central atom [14,20].

Figure 1: RMC algorithm flow chart

3) Randomly move atoms within the set maximum moving distance. Suppose the distance
between any two atoms is less than the cutoff distance after moving. In that case, the operation
is rejected and the algorithm automatically selects a new atom to start new moves until the
position is within the constraints. Execute Step 2 in a loop, and calculate the difference between
the new and old total structure factor, according to Eq. (1).
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4) Use Eq. (1) to calculate χ 2
n , and replace AC

O (Q), gC
o (r) with AC

n (Q), gC
n (r). Here, n is the new

value after moving. Compare χ 2
o and χ 2

n , if χ 2
o > χ 2

n , accept, and go to Step 5; if χ 2
o < χ 2

n , accept
with probability p = exp

(− (
χ 2

n − χ 2
o

)
/2

)
, and go to Step 5; otherwise, it is rejected, loop to

Step 3 [14].

5) If the accuracy of the comparison and difference value is less than the preset value or reaches the
preset time, the process ends; otherwise, go to Step 3 [14]. The process ends when the minimum
error value is stable or time is up.

2.2 Minimization Energy Model Algorithm
For disordered materials like liquids and glass, RMC produces a structural model (i.e., a group of

atoms) that corresponds to all structural factors that fall within its error bounds. In Fig. 1, the algo-
rithm flow is depicted. The program terminates after the error oscillates around its equilibrium value
for the predetermined amount of time and the algorithm successfully normalizes the structure factors.
The normalization of any experimental data might take the place of the algorithm’s normalization
of the structural factor when additional experimental restrictions are applied. For instance, the error
calculation formula becomes [21] when neutron diffraction (ND) data is included:

χ 2
n =

∑
k

m∑
i=1

[
FC

nek
(Qi) − FE

nek
(Qi)

]2

/σ 2
nek

(Qi) , (4)

where

Fnek
(Qi) =

∑
α,β

cαcβbαk
bβk

[
Aαβ (Qi) − 1

]
. (5)

Here, bαk
is the coherent neutron scattering coefficient of the α type atom of the sample k, cα is the

concentration, Aαβ (Q) is the partial structure factor, and σ is the experimental error term.

Although the RMC method is straightforward, this random movement produces a configuration
with maximum entropy. The model produces maximum disorder under constraints that may bring
about defective structures when the system finally reaches consistency, such as breaking chemical
bonds, twisting polyhedra, displacement of cations or atoms, etc. To address these problems, various
programs have been developed, such as Reverse Monte Carlo Algorithm (RMCA) [22] and RMCPro-
file [23].

Many studies have focused on the three-dimensional structural model of liquid and glass. How-
ever, due to the significant impact of multiple scattering on crystal materials [24,25], the calculation
cost in crystal modeling is very high. On this basis, much research has improved RMC algorithm.
RMCProfile is a free open source code sponsored by Oak Ridge National Laboratory. It is built from
McGreevy & Pusztai’s original RMCA code. The purpose is to determine the local structure of crystal
materials, analyze disordered systems, reduce computational cost and eliminate defects such as the
inability to maximize the use of Bragg diffraction information. At the same time, RMCProfile added
constraints such as polyhedron constraints, distance window constraints, magnetic structure factors,
lattice point disorder, and especially lattice point constraints. The initial stochastic model is guaranteed
by minimizing the energy of the system to ensure the correctness of the model. To integrate the contour
fitting of Bragg diffraction mode, the diffraction data is simplified as the correction function of the
flight time Iexp(t), where t is the neutron flight time [23].

χ 2 =
∑

j

[Ic

(
tj

) − sIexp(tj)]2/σI(i)2

(
tj

)
, (6)
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where

Ic

(
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) =
∑
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(
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)
, (7)

F (hkl) = 1
N

∑
jbJ exp

(
iUhkl · rj

)
(8)

Here, F(hkl) is the structure factor of the equation, and N is the number of atoms. Uhkl is the

scattering vector of Bragg reflection of the crystal plane,
−
bj is the coherent scattering length of the

atom j, Lhkl is the Lorentz factor of the reflection of the crystal plane, the item R is the reflection
peak of the crystal plane hkl from the instrument resolution. The specific gravity is adjusted by s, and
item B comes from the diffuse scattering component of the total scattering, ensuring the symmetry of
the model movement and reaching the minimum of the end energy. σ is the experimental error term.
Collecting a high-quality set of parameters is enough to get the best results from the RMCProfile, but
we can also see how cumbersome and time-consuming this move can be.

When Mcgreevy et al. [14] compared the structural factor of liquid argon with the curve produced
by RMC through experiments, they were able to demonstrate the accuracy of their approach. Since
then, numerous extended RMC methods have been developed, and RMC has been widely utilized to
model the atomic structure of liquid [26–29] and glass [19,30–36]. To increase the speed, Tóth et al. [37]
added the perspective of numerical calculation to the discretized RMC’s convergent process for
the Born-Green-Yvon problem. To create a silicon glass model that is closer in line with physical
reality, Keen [38] changed the concurrent conditions and imposed limitations. For the first time,
Tucker et al. [39] reported the RMC’s instantaneous atomic configuration and examined the long-
and short-range structures of quartz in a displacement phase transition. In order to compute the
conductivity of silver-based superionic glass using a straightforward random walk, Swenson et al. [40]
incorporated bond valence limitations. To get over the fluid limitation of adsorption in microporous
materials, Sánchez-Gil et al. [41] changed the structure factor method in accordance with the structural
properties of zeolite and investigated the adsorption of Ar on siliceous zeolite and siliceous pumice.
Pethes et al. [42]’s RMC modeling investigation of water and watery compounds used simple point
charge inter-atomic potential energy. Eremenko et al. [43] used the open multi-process computing
application interface to implement the parallel computation of RMCProfile while simultaneously
changing the technique for computing some difficult data, such as suggesting the parallel chain RMC
technique and exploiting the overlap of diffraction peaks to cut down on computation. Contrarily, the
gathered instrument resolution effect was properly and effectively rectified to ensure that the model
under the limited amount of data was closer to the actual structure [43].

The RMC++ software advances moving the unit based on a set of the rigid atomic or molecular
algorithm [44] to account for moving particles that easily break the physical structure itself because
the classical RMC takes longer to calculate the distance between the atoms. On the whole, RMC++
software is two times faster than RMCA. RMC++ improves the calculation speed and portability to
a certain extent while increasing experiments and constraints, such as X-ray absorption fine structure
(XAFS), coordination number, bond angle and other constraints.

With the development of high-performance computing, parallel algorithms are considered in
RMC modeling. RMC_POT merges RMC++_NEW and RMC++ _MULTI data format and real-
izes parallelization through a portable system operation interface, which allows the application of non-
bonded inter-atomic potential energy, including intra-molecular bond stretching, angular bending and
dihedral stretching potential functions. This algorithm is suitable for large molecular structures, such
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as molecules with more than 100 atoms [45]. In the structural model, particle distribution simulated
by MD is preferentially applied as the initial configuration, the different judgment of potential energy
changes before and after moving atoms is added to explore the disorderly system of molecules with
arbitrary complexity [26,46].

RMCPOW can directly simulate the structure of powder crystal and magnetic disorder materials,
calculate various structural factors, and characterize different crystal structures, such as time-average
or instantaneous lattice structures, by different parameters. The time-averaged crystal structure is
described by parameters such as lattice vector, the total average position of atoms in the unit cell,
and heat factor, while the instantaneous crystal lattice structure is characterized by the super-cell [25].

Based on the minimization energy model as well, some hybrid algorithms are developed to solve
the inherent problems of RMC, such as the hybrid reverse monte carlo (HRMC) method with bond
angle constraints and the relaxation brought by non-RMC method after alternate RMC modeling
with bond angle constraints iteratively executes until the minimum of user-defined potential energy
or force gradient is satisfied [18]. Angle-resolved scattering data obtained by rotating Bragg peak
was used for weakly disordered crystal samples. The magnetic flux line lattices of the second kind of
superconductor are studied, accurately reproducing observations from small-angle neutron scattering
[47]. Petersen et al. [48] proposed combining MMC and RMC to show that covalent disordered solids
produce physically reasonable structures. Maldonis et al. [49] added energy constraints to provide
appropriate supplements and corrections when the experimental data could not reproduce the atomic
structure. Petersen et al. [50] added Boltzmann weighted energy term to the error χ 2 term, and its
acceptance probability became:

p = exp
[
−

(
χ 2

n − χ 2
o

2

)]
exp

(
−�E

kT

)
. (9)

Here, k is the Boltzmann constant, and T is a weighted parameter used to combine weights with
other modeling constraints. χ 2

n and χ 2
o is the same as before.

Different procedures and ideas have contributed to the exploration of atomic-scale structure
models of materials, and the basic idea is to minimize energy to achieve system equilibrium. The
minimum energy model algorithm is the basic algorithm, and various algorithms are developed based
on this idea. However, we also find that each algorithm is well applied in some fields or certain
materials, but its universal applicability is not high, and the calculation cost is high.

2.3 Environment-Dependent Algorithm for Potential Energy Selection
One of the most important limitations of the RMC algorithm is that it samples relatively

disordered arrangements more than the ordered ones, which can lead to reduced acceptance rates
and unreal structures [51], especially for materials with significant multibody correlations, such as
covalently bonded solids. Tóth et al. [51] improved the classical RMC algorithm by modifying the
structure factor A, adding the thermodynamic calculation of entropy to control the fitting degree of the
ordered system, and adjusting the acceptance probability p in the algorithm (as shown in Fig. 1). The
acceptance probability in the new method is the product of the classical probability and the entropy
term:

p∗ = p × ps = exp(−c1[x∗2
n − x∗2

o ]/2) × exp(−c2[AC
n2 − AC

o2]), (10)

where

AC

2
= −1

2
ρ

∫ ∞

0

4πr2
[
gC (r) ln

(
gC (r)

) − gC (r) + 1
]

dr. (11)
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Here, ρ is the number density. c1 and c2 are adjustable parameters. χ 2
n and χ 2

o is the same as before.

This method increases the energy fluctuation and improves the fitting speed in the directional
analysis of radial distribution function and structure factor. When the scale of the system becomes
larger, the advantages of the original system method are no longer available. The Tóth G’s team
proposed to reverse molecular dynamics (RMD), adding the calculation of the radial-dependent force
of each particle [51]:

Ftab
αβ

(rt) = −
ne∑
ie

m∑
i

cie

qi

(
FC

ie (qi) − FE
ie (qi)

) ×
(

qi cos (qirt)

rt

− sin (qirt)

r2
t

)
, (12)

The calculation of the force of the particle j on i:

Fx
ij = −cFtab

αβ

(
rij

) xij

rij

. (13)

Here, ne is the number of experimental data sets, m is the number of points in an experiment, c is
a constant, rij is the pair distance, xij is the x-distance between the particle i and j, and the item F is the
total structure factor.

The algorithm designs a dynamic way to create a 3D model of diffraction measurements with
different “compactness” to achieve a better fit [52]. Its advantages are that atoms or molecules are
rarely trapped in a minimum of the local configuration, and multithreaded programming in the
algorithm is easy to implement. However, its problems are similar to RMC, with high strain and
unstable structure. To obtain a physically more reasonable three-dimensional atomic structure by
modeling, a hybrid RMC algorithm combining RMC was developed by using MD [53] or MC during
initial model construction. The atomic configurations ware generated by integrating the classical
Newton equations of motion in MD, and combined with RMC to analyze the extended X-ray
absorption fine structure (EXAFS) data of nanocrystalline materials. Then the structural parameters,
including thermal disorder anisotropy, were obtained [54]. Ishida et al. [55] combined inter-atomic
radial dependence force with the MD method to minimize the difference between experimental and
simulated radial distribution functions, to reduce the difference in total energy. The rationality of the
physical structure was ensured by adjusting the atom movement by the force field, and the local
bonding environment was guaranteed by relevant constraints such as bond angles. The potential
energy selection environment depended on the inter-atomic potential energy, and the energy term was
contained in the acceptable probability of atomic movement, and the size of the weight was the key to
affecting the strength of covalent bond interaction [55,56]. This method not only utilized the selection
of the potential energy environment by MD&MC, but also combined the simplicity and convenience of
the RMC calculation model. However, the selection of weights has become the key to the formation of
the model. Hashimoto et al. [57] combined potential energy selection with RMC idea and explored new
ideas of alumina glass preparation from the preparation of new materials through structural models
of different phases of alumina.

Compared with classical RMC, these algorithms consider the effect of inter-atomic forces, which
add more constraints to the calculation of structural factors to achieve a physically reasonable
structural model and adjust the acceptance probability to promote the model convergence as fast as
possible. However, calculations may take longer and require more computational power. To further
improve the speed and search for more efficient and accurate model algorithms, RMC has been
developed.
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2.4 Machine Learning Training Algorithm
The HRMC algorithm combines RMC with additional modeling techniques and offers comple-

mentary benefits, improving the entire model’s ability to somewhat more closely match experimental
data. The local structure still has a few drawbacks, though. After Opletal et al. [58] proposed the
HRMC, Li et al. [59] modified the algorithm and combined machine learning to investigate the
absorption effect of doped amorphous carbon (aC) on various gases. The HRMC model was used
for deep network learning, using a data-driven approach and predicting its adsorption capacity and
selectivity. First, using the enhanced HRMC technique, a number of nitrogen-doped aC models were
built. Grand canonical Monte Carlo was used to determine each structure’s capacity for the various
gases after relaxation at a high temperature. Based on this model, a deep neural network was used to
predict the relationship between microstructure and adsorption capacity. In order to better calculate
the data, dimensionality reduction processing was carried out. In this big-data era, data collection is no
longer the biggest obstacle to research, and the problems of data processing and operation efficiency
are gradually becoming more important and difficult.

When the data is multi-dimensional, modeling can sometimes take a long time, even with the
current abundance of computational resources and the constant iteration of parallelized algorithms.
In order to shorten the time, Verdel et al. [60] combined decision trees (random forest) and RMC to
propose a mixed model, and used the model to obtain the predictive model as the initial model of
RMC to simplify the fitting time. Taking the structure and composition of human skin as parameters,
a random forest was composed of 100 decision trees constructed from the bootstrap samples and the
eigenvalue of the original data to construct a single-objective model. The learned value was used as
the initial value of RMC, combining with pulsed photo thermal radiometry and diffuse reflectance
spectroscopy to fit the RMC model. Compared with the original RMC algorithm, the number of
iteration steps was significantly reduced, which improved the efficiency and reduced their jection rate
of variance, and it had a good fitting effect. Although this study is applied to non-invasively detect
the compositional analysis of human skin structure and tissue, it is also an inspiration for our study
of crystalline and disordered materials.

In RMC modeling, the acceptance rate of random moving atoms has always been a restriction
that hinders its modeling speed. To improve computing efficiency and build a model more in line
with physical structure, Aoun et al. [61] combined the RMC algorithm with machine learning and
proposed the FullRMC program, which adopts intensive machine learning and is trained according
to behaviors results, data interaction and past experience. Changing the original RMC algorithm that
randomly moved the coordinates of atoms into a set of atomic positions (as shown in Fig. 1), and made
the moving process more intelligent and physically meaningful by customizing the group of atoms and
strengthening supervised learning, while reducing repetitive movements, the accepted move probability
was greatly improved, and the computational efficiency was improved. Traditional RMC took a single
atom as an object, while FullRMC took a group as an object, and proposed the concept of a group
selector, which is responsible for selecting a single group by indexing in each RMC step. The group
selector supported random selection and smart random selection, using a reinforcement machine
learning algorithm to select a more likely group through a probabilistic scheme that automatically
biases and eliminates the bias selector, which effectively improves the acceptable movement. And the
previously learned results were applied to subsequent selections, which plays a role in continuously
improving efficiency [61]. The combination with machine learning makes up for the low-speed and
inefficient trial-and-error mode of RMC. Especially, it provides a faster way to explore the structure of
microscopic materials in the age of the rapid development of high-performance computers. However,
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this algorithm becomes more efficient when the warm-up time is exceeded. Otherwise, traditional
RMC is better able to meet the model construction conditions.

The combination of RMC and machine learning is highly cited in disordered materials, rigid
matter, and modeling. At the same time, similar citations are reflected in chemistry, the discovery
of new materials, and biology (the red part in Fig. 2), indicating that this combination algorithm
has a good application prospect in the research of new materials and existing structure modeling.
Moreover, we also found that there are relatively few studies on amorphous structure modeling, which
provides better application guidance for future algorithm development. It is believed that more RMC
algorithms based on machine learning will be applied to the research of disordered structures.

Figure 2: RMC combined with machine learning citation heat maps

2.5 Other Related Studies
Since it was first developed, the RMC algorithm has experienced significant deformation as it

has been integrated with other technologies and methodologies. By merging the observed diffraction
pattern, Sánchez-Gil et al. [62] provided a parallel modeling technique for producing the constrained
fluid-structure model. The theoretical calculation of the diffraction pattern, peak shape fitting, and
N-RMC modeling comprised the bulk of the algorithm’s processing. To avoid adsorbed molecules in
the vicinity of porous material, N-RMC comprises attempts to insert and delete particles, in contrast
to the standard RMC approach. The approach was primarily employed to solve the model’s slow
diffusion problem under stringent limitations. Basko et al. [1] combined RMC with MC simulation of
high-energy resolution electron energy loss spectroscopy and Markov chain Monte Carlo sampling
of oscillator strength parameters. Yang et al. [63] proved through experiments that optical data
calculated by this algorithm was reasonable with high accuracy. Wei et al. [64] used Runge-Kutta ray-
tracing technology combined with RMC to solve the heat radiation transmission problem in gradient
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refractive index media with diffuse reflector, mirror surface and dual radial distribution function. That
included radiation intensity calculation in the non-balance problem and temperature calculation in
the radiation balance problem. Haita [65] modified the RMC algorithm by combining the 2D small-
angle scattering data and replaced its structure factor with a 2D structure factor. The RMC method
for the 2D scattering mode of the particle network was proposed to analyze the homogeneity of the
polymer under deformation. Sans et al. [66] proposed null-collision meshless MC algorithm by using
the integral formula and null-collision algorithm, which improves the efficiency of MC in solving
the radiation transfer in inhomogeneous media, and provides useful support for the experimental
characterization of particle radiation behavior. Norberg et al. [67] added bond valence constraints to
build more reasonable local regions of the configuration and provided additional chemical information
for fitting. RMC combines a variety of characterization methods and principle algorithms to improve
its performance at different stages of its algorithm, making up for its shortcomings and improving
performance.

Due to its simplicity and generality, the RMC method has been used with a variety of materials.
It does, however, have several restrictions, such as a ten thousand level limit on the number of atoms
in the model, a limited range of characterization data, and a lack of support for covalently bound
compounds, which is also where RMC will go in the future. The fundamental idea behind RMC
is to create 3D models out of 2D data and obtain multi-dimensional structural information from
experimental data in order to partially solve problems in material modeling or application, whether it
be the deformation algorithm paired with various technologies and algorithms or the algorithm based
on a minimization energy model, with the goal of enhancing the mechanical, thermal, and electrical
properties of materials. Currently, no universal program applies to all kinds of materials and practical
process constraints. Due to the development of characterization methods, there is an urgent need for
modeling methods that can fit more experimental data.

3 Application of Characterization Fitting Data in RMC

The accuracy of experimental data is the most important factor in RMC modeling, hence a lot of
experimental labor is required in the early stages of modeling. The basis for extracting and researching
material structural information is the collecting of experimental data. The goal of RMC structural
modeling is to analyze the structural behavior of materials, and the abundance of analytical tools
available makes it possible to completely comprehend how the structure was formed and what process
conditions still need to be addressed. Technology for material analysis encompasses not only analyzing
the composition and structure of the material as a whole but also analyzing the material’ surface
and interface, as well as its microstructure and morphology. The macroscopic characteristics and the
microstructure of materials are closely related. Some macroscopic phenomena and qualities can be
described and inferred from the microscopic characteristics by using the macroscopic performances
to identify the microscopic crystal structure characteristics. It can give information for the design and
processing of materials to fulfill the needs of industry and research via the comprehensive examination
of the structure and performance. X-ray diffraction (XRD) and ND are mostly used in Josephson
junction structure modeling in order to analyze pair distribution function (PDF), structural factor,
and distribution of coordination numbers. Beginning with the characterization of the data needed for
the analysis of the Josephson junction (as depicted in Fig. 3a), this chapter introduces the principle of
RMC typical characterization of fitting data and applications.
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Figure 3: The characterization methods applied to Josephson junction. (a) The wave patterns of
various substances produced by high-pressure electron shooting samples. (b) The characterization of
Josephson junctions

3.1 Extraction of Phase Information by Diffraction Technology
The foundation of XRD technology is the interference of periodic ordered atoms in the crystal

lattice’s elastic scattering waves [68]. It is a fundamental and significant approach for characterizing
the material structure that is mostly used for testing and analysis, including phase analysis, the
determination of crystallinity, and accurate measurement of the lattice parameters. The radiation is
sourced by X-rays, and the noise curve is eliminated by filtering the radiation using a monochromator.
The angle is finally obtained by modulating the atomic properties and relative positions, which can
be used for the qualitative and quantitative analysis of atomic structure, in order to better control the
angle. A slit is then introduced to better control the angle of incident light and diffracted light.

XRD technology as a primary means of characterization is widely used in the research of various
materials. Zhang et al. [69] used Transmission electron microscope (TEM)-XRD to analyze the
phase of different platinum samples from the microscopic morphology and diffraction peak position,
respectively, to verify the existence of platinum nanoparticles in the samples. The thin film was
composed of crystalline particles. The composition was determined by XRD through the position
of diffraction peaks, and the voltage was controlled, finally verifying the possibility of simultaneously
realizing data storage and neuromorphic computing on one device [70]. Hagita et al. [71] used small-
angle X-ray diffraction data and RMC to construct a three-dimensional configuration and analyze
topological data of silica nanoparticles [72]. In the research of metal oxides [73], the uniformity of
porous structure and the difference in skeleton and pore size were observed by scanning electron
microscope (SEM) and TEM before and after Ni-Mo-Al dealloying, and the dealloying process was
analyzed. XRD curves were added to analyze the composition to verify that they are both Ni and
Mo phases after dealloying, and their electrical properties were tested to verify the properties of the
nanoporous Ni-Mo alloy prepared by the combination of rapid solidification and dealloying. In more
cases, the XRD technique is combined with other characterization methods, such as ND. Researches
on liquids [42,74], glass [75–77], nanomaterials [78] and other aspects are reflected in three-dimensional
reconstruction, refinement of inter-atomic information and interaction between particles to reveal the
coordination number distribution, cluster and interface effects. Timm et al. [79] refined the randomly-
spin-configured NiO model using the RMC process combined with ND data, as shown in Fig. 4,
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showing that it was insensitive to the spin orientation in the {111} ferromagnetic plane. Although it
could be seen from Fig. 4d that the magnetic structure of the model was very disordered, since the
scales of the nuclear and magnetic phases in the refining were fixed to be the same, the ordered nuclear
structure can still correctly reflect the microscopic properties. Diffraction technology is mature and
easy to operate, so it is widely used as a primary method for phase analysis. Combined with RMC, it
can also be used to analyze the percentage of each component in the material semi-quantitatively by
analyzing its radial distribution function.

Figure 4: RMC final model and the results matched the diffraction values [79]. This figure by
Timm et al. is licensed under CC BY 3.0. (a and b) Representative RMC fits to Bragg values (a) and the
total scattering data (b), respectively, for NiO [79]. (c and d) Spin orientations of Ni in RMC refined
structures of NiO are shown as arrows. (c) The entire magnetic model with RMC, (d) Highlights the
{111} ferromagnetic planes [79]

3.2 Extraction of Composition and Valence Bond Information by Electron Transition Theory
The energy transition of the input wave that is absorbed by electrons outside the nucleus is

used in X-ray absorption spectroscopy (XAS) to identify some features of the sample. The X-ray is
significantly absorbed when the material’s inner shell electrons are stimulated to the free or unoccupied
state, causing a sizable jump in the spectrum that is known as X-ray absorption near edge structure
(XANES). As X-ray energy increases, electrons are driven to the continuous region where they can
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interfere with the atoms’ outgoing and scattered waves to create the oscillation of spectral waves
known as EXAFS [80]. Among them, EXAFS has the benefit of allowing for the investigation of
the ensemble’s atomic and electronic structures, primarily because of its local structure sensitivity and
high spatial resolution. By measuring the coordination number, bond length and the disorder of the
fifth shell coordination number, the size and shape of nanoparticles and the surface morphology and
disorder of 1–2 nm clusters were analyzed according to external conditions such as temperature, alloy
composition and substrate, etc. [16].

EXAFS technology is usually combined with various characterization methods for quantitative
and rapid determination of atomic structure. Harada et al. [16] constructed a 3D model based on the
RMC modeling method of experimental data based on XRD to obtain a complete atomic structure.
Coordination number and bond angle distribution can be calculated from the RMC model, which
is helpful in analyzing the crystal system composition and distribution characteristics of the crystal
structure. In order to obtain a model that was closer to the experimental value, multi-scale analysis
was necessary. After Adam et al. team [81] integrated the ND and EXAFS data (as shown in Fig. 5c
and 5d), the model would help analyze more subtle structural changes. The final model is shown in
Fig. 5a and 5b, and the calculated structure factors match the experimental values well.

RMC with the data of EXAFS has been widely used in disordered molecules and finite systems,
such as super-cooled copper and nickel, block metallic glass, polyatomic molecules in the gas phase,
etc. For complex systems, RMC fits multiple diffraction techniques such as PDF and EXAFS to
achieve refinement. Atomic models of different sizes were compared by minimizing a goodness-of-
fit indicator (called Rw) as a benchmark to determine the appropriate size of the model. The total
scattering experimental structure factor S(Q) obtained by high-energy X-ray diffraction (HEXRD)
was used to refine the model and the details of atomic-scale structure were calculated in combination
with EXAFS data. Rw is defined as:

Rw =
{∑

wi(GE
i − GC

i )2∑
wi(GE

i )2

}1/2

(14)

where GE and GC are the experimental and calculated data, respectively. wi is the weighting factor
reflecting the statistical quality of the individual data points.

Nataf et al. [82] described the potential of high-pressure energy dispersion X-ray absorption
spectroscopy (XANES/EXAFS) in the reconstruction of a nanocrystalline material model. They
explored the reduced sensitivity of copper oxide nanoparticles under X-ray irradiation. And the
possibility of local environmental changes during two-dimensional layered molybdenum trioxide
phase transition was tracked by RMC during the pressure induced phase transition. Guo et al. [34]
constructed the RMC model by combining the data of XRD and EXAFS. By comparing the
interatomic distance, bond length, Voronoi clusters and other microstructure characteristics, it was
concluded that the volume of each cluster in the ZrCu metallic glass adulterating Al relatively
shrinking in terms of microstructure, which leads to the denser atoms in the cluster. Comprehensively
using a variety of characterization methods to measure the microstructure from qualitative and
quantitative perspectives, the influencing factors such as composition, defect sources and process
differences can be analyzed, providing theoretical support for improving the properties of materials.
Trigub et al. [83] used RMC combined with enhanced EXAFS spectroscopy to study the distortion
of atomic structure around some elements of substances. They supplemented computational data
by density functional theory (DFT) and XANES to detect local atomic structures of In and Cu in
sphalerite. The combination of XAS and RMC has been effectively applied in liquid materials such
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as molten metal, molten salt and molecular liquid [28,84], oxide metal compounds [82] and gaseous
molecular materials [85].

Figure 5: RMC is combined with experimental data. (a and b) Experimental and RMC-simulated
total structure factor S(Q) profiles for the Pt, Pd, and Rh nanoparticles with different particle sizes,
prepared by the photo reduction in the presence of PVP and benzophenone. The initial model is based
on (a) the face-centered cubic (FCC) bulk crystal structure represents and (b) the computer-generated
random atomic configuration [16]. Fig. 5a and 5b by Harada et al. [16] is licensed under CC BY-NC
3.0 (c and d) fits shown for k space for the Ce K-edge (left) and Ce L3-edge (right) respectively of the
ceria sample [81]. Fig. 5c and 5d by Adam et al. is licensed under CC BY 3.0
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The foundation for developing the model that can qualitatively examine the elemental compo-
sition is diffraction data, which serves as the fundamental fitting data for RMC. The local atomic
structure of matter, including metastable and transient states, can be studied effectively using XAS.
It is a cutting-edge and trustworthy data analysis technique for structure determination technology.
EXAFS can be employed for various purposes, including refining RMC models, elemental analysis,
bonding analysis, element valence and coordination environment analysis, among others, to produce
a reliable reconstruction of short-range structures surrounding atoms [28].

3.3 Extraction of Structural Information by Multiple Characterization Methods
Microscope technology has experienced the optical microscope, electron microscope, and the

development of scanning probe microscope. The difference in imaging principle (as shown in Fig. 3)
created a microscope to observe the differences in the microstructure. In recent years, it has been
mainly applied in the morphology observation of two-dimensional materials [86–94], metals [95–98],
superconductors [99,100], composite materials [101,102], catalysts [103,104], etc. In practice, diverse
resolutions of the microscope in different research areas play an essential role. Although modern
microscopy techniques have theoretically reached the atomic level, it is still difficult to directly obtain
the atomic arrangement and fine structure from the morphology directly. Therefore, it is necessary
to combine various characterization methods and simulation tools for construction, verification and
precision analysis. In addition to obtaining the microscopic morphology and phase information of
materials, RMC modeling requires more characteristic information, such as composition, valence
bond and other information. So, the combination of electron microscopy and other characterization
methods provides the possibility to study more structural features of materials. The electron micro-
scope can observe the molecular and even atomic structure to get the microscopic structure, with other
characterization means which can be from the multidimensional analysis of the sample, qualitative and
quantitative to obtain the composition of the sample material, valence bond and molecular structure
information.

The association of electron energy loss spectroscopy (EELS) and electron microscopy technology
has significant characteristics in high spatial resolution and high momentum resolution [105]. It is
applied in the fine particle size detection of materials and the understanding of mechanical, thermal
and electrical properties, improving the structure and performance of materials. In the research
of superconducting quantum Josephson junction, the scanning transmission electron microscope
(STEM)-EELS combination was used to reconstruct the three-dimensional model of Josephson
junction, calculating the coordination and crystal phase of Al atoms in the alumina barrier layer.
Through the combination of nanobeam electron diffraction (NBED)-RMC, the cut-off radius of
AlOX was calculated, and the causes of defects and key factors in the process of preparation
were analyzed [8]. In the α-Fe2O3 nanowires obtained by thermal oxidation, the long-range order
of oxygen vacancies leads to the emergence of modulation structures, which release the stress of
the nanowires during the generation process [106]. TEM and high-resolution transmission elec-
tron microscopy (HRTEM) were used to investigate the crystallinity of nanowires and their cross-
section respectively. Using the energy loss function (ELF) to effectively combine EELS with the
RMC showed a good fitting effect with the experimental data (as shown in Fig. 6), indicating that
more experimental data would be integrated into the RMC in the future modeling process. The
formation mechanism was obtained by analyzing the elemental valence bond of EELS, which is
a technology that provides nanoscale analysis. Its high spatial resolution, high energy resolution,
high sensitivity and other characteristics make it have important applications in obtaining elemental
information.
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Figure 6: The comparison of RMC fitting EELS data. (a) The comparison among the atomic photo-
absorption experiments (blue triangle), RMC fitted curve (red line) and other literature (dark Cyan
dots) are shown for comparison [107]. Fig. 6a by Xu et al. [107] is licensed under CC BY 3.0. (b) The
inset of the figure shows the ELF obtained by the RMC method (blue line) in comparison with the
results in databases of Palik (red circles) and Henke (black squares) [63]. Fig. 6b by Yang et al. [63] is
licensed under CC BY 3.0

The microstructure and structure of materials have been the subject of an increasing number
of studies in recent years, and many characterisation techniques have permeated all areas of mate-
rial research, offering a more natural and vivid way to represent feature extraction. For instance,
Krayzman et al. [17] constructed the structure model of titanium KNbO3 by combining RMC with
ND, Bragg spectrum, EXAFS, and electron diffraction data, demonstrating the correlation of its
element structure. Soft magnetic amorphous alloys were studied and calculated by Babilas et al. [108]
using XRD, transmission Mossbauer spectroscopy, RMC simulation, and relative permeability mea-
surements. By studying the local structure around Nb atoms using X-ray reflectance, thermal des-
orption spectroscopy, and fluorescence XAFS, Sajiki et al. [109] estimated the density using quartz
glass. Niobium oxide amorphous films’ atomic structure model was investigated using synchrotron
radiation, including HEXRD, XAFS, and RMC. In order to expose the three-dimensional spatial
distribution of its polarization vector from the atomic scale, Sun [110] fitted RMC simulation tool and
collected local structure and ferroelectric spontaneous polarization displacement information. Lattice
dynamics and electronic structure viewpoints were used to study the mechanism of valence bond
and nearest neighbor coordination at the same time, which offers a fresh perspective for ferroelectric
material microscopic localization investigation. The anomalous X-rays of X-ray scattering and Zn
absorption edge were fitted by Waseda et al. [111]. To explore the indium gallium zinc oxide layer
and nanocrystalline indium gallium zinc oxide film, they built an atomic-scale model using RMC.
Harada et al. [16] used the total structure factor S(Q) obtained based on HEXRD and the data
obtained from EXAFS measurements in combination with RMC to determine the three-dimensional
atomic-scale structure of nanoparticles with a size of less than 5 nm. More and more advanced
characterization methods are used to extract material structure information, and RMC structure
modeling is combined to better explore the structural characteristics of materials from the microscopic
structure.

RMC is used to calculate, relate, and cluster diffraction data query results from the Web of Science
database. There are 1170 papers that are connected as of April 2022. In VosViewer, the graphical data
gathered from the Web of Science is obtained. The database’s pertinent literary data was analyzed using
the co-occurrence counting approach. 219 entries in the records met the measurement requirement,
which required that the minimum keyword occurrence times be greater than or equal to 2. Fig. 7
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displays the visualization outcomes of overlay following data cleaning. Using information from the
Web of Science, Fig. 7a displays the network, relations, clusters, and links in a form graph of this
query. Fig. 7b and 7c show the correlation and references from the website of Pubmed over the past
few years. From this picture, it can be seen that relevant researches have been going deeper and have
been hot topics of concern.

Figure 7: The picture shows the inverse Monte Carlo and diffraction data combined with correlation
calculation results. (a) shows the visualization result of overlay combining RMC with diffraction data;
(b) shows the correlation between RMC and diffraction techniques; (c) shows the histogram of the
influence factor IF combined with the RMC and diffraction data

4 Simulation of Josephson Junction Barrier Layer

Quantum computing has ushered in a prosperous era in recent years. Gradually more advances
are being made in the study of the Josephson system, including studies of thermal noise [112–114],
quasiparticles [115,116], and other impacts on quantum circuits. The “Zuchongzhi” of USTC has
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achieved 64 qubits [117], and the computational complexity is six orders of magnitude higher than that
of Google’s “Sycamore” [118]. In superconducting, IBM introduced a processor with 127 qubits [119].
Quantum computer measurements heavily rely on the quantity of quantum bits. The LC resonant
circuit produces the quantum bits. The level of the uniform resonator is changed by the introduction
of a Josephson junction to produce a nonlinear two-level system [120]. This allows the quantum effect
to be stated. Decoherence time is a crucial metric for gauging performance. It is planned to investigate
ways to enhance coherence time in multi-scale and multi-dimensional aspects, whether the research
or analysis is conducted from a microscopic or macroscopic perspective. Our project team’s research
was conducted along this path. First principles [121], RMC, and MD are used to investigate the
microstructure of the Joseph junction from a microscopic perspective. The design of quantum circuits
is enhanced from a macroscopic perspective [122], and the Hamiltonian calculation is optimized [123].
We hope to raise the coherence time and advance the development of quantum computers while
simultaneously focusing on improving the process parameters and yield rate of quantum chips.

Josephson junction is composed of three layers (as shown in Fig. 8a). Between the two layers of
superconducting material is an ultra-thin insulating layer, in which the superconducting material is
metal Al or Nb, and the ultra-thin insulating layer (also called barrier layer) is mostly aluminum oxide
or aluminum nitride [8,124,125]. Due to the excellent properties of alumina, Al and its oxides are
mainly studied here.

4.1 Influence of Alumina Barrier Layer Process on Modeling
Alumina thin films have low interfacial defect density and high fixed negative charge density

[126], and are widely used in superconducting electronic devices, such as Josephson junction, whose
structure and nano chemical properties determine the performance of advanced electronic devices
[3,127]. The thickness variation of the alumina layer in the Josephson junction and the structural
defects in the AlOX tunnel barrier create noise, limiting the sensitivity of superconducting devices and
the decoherence time of qubits [3].

The thickness of the alumina barrier has an effect on electrical properties. Zeng et al. [12]
analyzed the morphology of Al/AlOX/Al interfacial layer oxides by annular dark field-scanning
transmission electron microscopy (ADF-STEM) and obtained their thickness distribution. The I-
V curves of different samples were obtained by conductive atomic force microscopy (CAFM) and
STEM to analyze their barrier layer parameters, including barrier thickness and barrier height. The
influence of barrier thickness change on tunnel current was obtained. In order to further calculate
the distribution of tunnel current with barrier thickness, the conductivity theoretical formula was
introduced to calculate. It showed that less than 10% of each barrier layer was active in the three
samples. Fritz et al. [3] proved that different oxidation conditions lead to changes in film thickness,
such as oxidation temperature and oxygen pressure. EELS curves were used to analyze changes in
AlOX composition and alterations in Al-O coordination (i.e., the average bond number of Al-O), which
would affect the resistivity of the barrier layer, requiring atomic-scale analysis of AlOX composition. By
comparing HRTEM images, it was observed that the contents of crystalline Al inclusions were different
in AlOX under different process conditions. Oxygen pressure had a great influence on the content of
Al inclusions, but the change of oxygen temperature had no obvious influence on the content of Al
inclusions. Residual oxygen may have a strong effect on the grain size and growth process of Al. The
inclusion of such crystalline Al may also be generated by high pressure electron beam irradiation, and
the electron excitation would lead to the formation of amorphous clusters in the defects of the film,
leading to the formation of crystal domains [13].
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The two-level system in Josephson junction is thought to be primarily caused by atomic structural
flaws in the tunnel barrier. The formation of extra electronic states causes a sub-gap leakage of the
Josephson junction as energy dissipation traps on the interface as a result of the presence of vacancies
[90]. The orderly distribution of point defects, such as oxygen vacancies or aluminum vacancies (as seen
in Fig. 8b), in the crystal structure of metal oxides frequently causes a phase shift from high symmetry
to low symmetry. The reduction of symmetric elements that occurs along with this transition typically
results in the formation of domain structures [128–130]. Particularly when characterizing materials,
high pressure may cause radiative decomposition, resulting in Al-O bond separation (as shown in
Fig. 8c) and O-O bond defects, forming O-O clusters, leading to metal ion reduction and structural
deformation, which is undesirable. In order to avoid this situation, low-temperature oxidation can be
adopted [9].

The Josephson junction’s oxide layer thickness is typically kept at or below 2 nm, and the
likelihood of tunneling is exponentially linked to the barrier layer thickness. The characterization
results demonstrate that as the barrier thickness lowers by 0.2 nm, the tunnel current increases by
order of magnitude [131]. The development of key parts for quantum computers has been accelerated
by research on the control and uniformity of barrier layer thickness. In terms of labor, materials, and
financial costs, the characterization of its atomic structure and defect analysis have contributed to the
advancement of its high-precision industry research, particularly the use of simulation techniques to
enhance and optimize the device performance of the material through repeated trial and error.

Figure 8: Demonstration of RMC modeling and the electrical performance of Al-AlOx-Al junction
model calculated with non-equilibrium Green’s function (NEGF) model. (a) Al-AlOx-Al junction
model with RMC; (b) oxygen vacancies appear in the barrier layer; (c) Al-O bond defects appear
in the barrier layer; (d) the I–V response of Al-AlOx-Al junction model calculated with NEGF model
[132]; (e and f) the calculated resistance area of the junctions is exponentially dependent on both (e) the
thickness of the tunneling barrier and (f) the density of the barrier oxide, respectively [132]. Fig. 8d–8f
by Cyster et al. is licensed under CC BY 4.0
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4.2 RMC Is Applied to Feature Extraction and Structural Analysis of Josephson Junctions
Superconducting qubits contain Josephson junctions, which are crucial parts. The study and char-

acterization of the Josephson junction’s structure have gradually improved thanks to the advancement
of microstructure observation techniques. RMC is a widely used modeling tool that is important in
assessing the microstructure of materials, particularly in defect analysis. Few systematic research on
the influences of oxidation factors on structure and nanochemical characteristics have been done up
to this point, according to Fritz et al. [3]. Through STEM, Zeng et al. [8] studied the microstructure
of the sandwich structure from the standpoint of flaws. It was assumed that there was substantial
contact between the Al-O interface layers due to the high distortion at the Al/AlOX interface. This
reaction occurred in PDF Al-O bond with multiple small peaks in 2∼4 angstrom interval, which
is the performance of the amorphous phase, and was also verified by the EELS curve. Through
NBED—PDF and RMC fitting analysis of data structure, such as nearest-neighbor distance between
different atoms, coordination number and ring distribution, exploring its alumina film defect structure,
this defect structure was one of the main reasons for the degradation of device performance. This
paper analyzed the causes of defects, which are crucial for correcting defects, and improving process
conditions, and material performance. Later, the team studied the changes in the structure of the
interface layer between the lower Al and the substrate Si, found the layered structure through ADF-
STEM and bright field-TEM, and further studied the element distribution presented by EFTEM and
the energy peaks of different elements provided by EELS in order to analyze the causes. It was found
that the existence of defect states may cause the interference factors of decoherence in amorphous
alumina and Si between the interface layers, or the destruction of the coherence of Josephson qubits
on the amorphous substrate by two-level fluctuation [133–135].

From the standpoint of crystallographic orientation, the effects of various substrate temperatures
and deposition rates on the microstructure of aluminum and alumina layers were investigated.
It was discovered that as the temperature of the Si substrate decreased and the rate of deposi-
tion increased, the overall Si/Al grain boundary grooves gradually disappeared. High-temperature
annealing experiments on silicon substrates were conducted to create the ideal environment for
aluminum epitaxial growth in order to generate a more homogeneous aluminum layer on the substrate
[136–139]. The planarity of the Al/AlOX interface does, however, improve at higher substrate temper-
atures and slower deposition rates [4]. The short-range order of nanoscale alumina films was studied
from the perspective of size in order to control the short-range order of amorphous materials, and the
degree of crystallization of materials with various thicknesses was observed at various temperatures
by combining EELS and X-ray photoelectron spectroscopy [140]. Jasim et al. [9] examined the
bond length and coordination environment between elements from the standpoint of the process
circumstances using theoretical calculations by RMC modeling, and then examined the causes of
the variations by contrasting various temperatures. Combining TEM and SEM, it was discovered
that the AlOX barrier layer’s thickness varied during the development of several substrates. It was
determined that this discrepancy was brought on by the various hydroxyl group densities at various
temperatures. The analysis of the ePDF coating growth image at low temperatures demonstrates the
benefits of ePDF technology in enhancing the development of amorphous atomic layer deposition
(ALD) coating materials, allowing for widespread use. AlOX has a variety of crystalline Al inclusion
contents that were produced under various oxygen pressures and temperatures. Al inclusion content is
significantly influenced by oxygen pressure, but Al inclusion content is not visibly affected by changes
in oxygen temperature. A method to lessen the noise of the Josephson junction potential barrier
from the oxidation condition was investigated [3]. Residual oxygen may have a significant impact
on the size of the Al-grain and the growth process of Al [8]. In order to demonstrate how the ALD
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cycle number affected the atomic structure of AlOX and consequently the performance of the film,
Young et al. [10] built an atomic model of amorphous alumina and examined structural data, including
material composition, bonding, and atomic coordination. The Josephson junction’s microstructure
and characteristics are greatly aided by the characterisation apparatus.

The reconstruction of atomic structure is to find the structural differences under different process
conditions and then find the process factors that affect the properties of materials. For RMC, the
analysis methods include PDF, structure factor, the coordination number of each element, the bond
length of the element, n-fold ring distribution [8], Voronoi [141], etc. The differences between model
structure and ideal structure are analyzed from the aspects of atomic distribution density, atomic
bonding rate, atomic defect density, etc.

The experimental data, which includes the various characterisation and test data previously
described, is directly related to the atomic structure, which is the numerical performance of the
atomic structure, on which the RMC structure model depends. The physical characteristics of a
material are determined by its atomic structure, and as physical characteristics may be used to validate
structural models, structural models are crucial for examining the microscopic characteristics of
materials. Particularly, the study of amorphous materials has produced reasonably developed findings.
We discovered, however, that the structural modeling of Josephson junction by RMC has received
relatively little attention. The previous literature focuses too much on the oxide in the barrier layer
rather than a whole connection. Using the analysis, we also discovered that the parameters of the
base material and process conditions have an impact on the barrier layer or interface layer, and these
are important factors influencing the performance of the junction. It is also the focus of our future
research.

4.3 Contribution of Other Modeling Methods to the Study of the Barrier Layer
There are many methods for modeling and analyzing the structure of Josephson junctions, such

as MD, first principles, etc. which analyze the barrier layer or junction region in different directions
respectively. Cyster et al. [142] constructed Al/AlOX/Al tunnel junction structure by MD, and obtained
the amorphous structure of the oxide layer in an iterative manner. Under the influence of two potential
(reactive force field & the Streitz and Mintmire potential), the formation and closure of holes in oxide
layer were dynamically observed. The density drops in the interfacial layer and rises in the oxide. The
method of determining the thickness of the oxide layer by the position of the outermost oxygen atom
layerput forward when distinguishing the interface boundary, and its rationality is proved in density
analysis. In terms of potential energy selection, the self-limiting behavior of reactive force field was
consistent with that observed in the experiment by comparing the density distribution and charge
distribution of the two potential energies. This team combined first-principles with MD to conduct
a multi-dimension alanalysis on the reproducibility and drift of circuit parameters in the Josephson
junction, and found that the change of the local atomic structure in the junction affects the uniformity
of the current [132]. The I–V curve (shown in Fig. 8d) and the influence curve of oxide morphology
with resistance area (shown in Fig. 8e and 8f) among them both explained the effects of the atomic
structure of various stoichiometric ratios, densities, and charge density distributions on the resistance
value from various levels. To correct and reduce the time complexity of modeling, Mei et al. [143,144]
modified the charge transfer ionic and embedded atom method potential and added damped shifted
force in order to obtain the potential energy that can reasonably describe the interaction between
atoms in each phase elemental material of the interface system and the interaction between atoms on
both sides of the interface through molecular dynamics. Building the model for determining adhesion
required the use of Lammps software [143,145]. The Lammps software was used to build the model
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of calculating the adhesion function for three termination modes and three kinds of packing modes,
determining the most likely interface system [144,145]. Based on this analysis, the layered structure of
the interface was analyzed, and its atomic distribution characteristics were obtained. The analysis of
PDF interface layer structure features and the research on interface charge distribution characteristics
provided reference value for studying the structural characteristics of the boundary layer by MD
method.

The Josephson junction or other device structure dynamic evolution can be simulated using
MD methods, so there are many applications for this technique. However, the choice of potential
energy in model building still has a lot of room for improvement, and molecular dynamics only
approximate molecular motion in aspects like reaction time, where it is impossible to match real-
world conditions. While the production of alumina takes minutes, molecular dynamics reactions take
place over a picosecond time scale (ps). First-principles [146], ab initio calculation [147], and other
superconducting device studies appear to have greater advantages in contrast, and some algorithms
integrate various theories to maximize the effect of the model authenticity. DuBois et al. [125]’s atomic
structure model of the Josephson junction was created by fusing molecular mechanics, conventional
modeling, and ab initio computation. As a function of density and stoichiometry, the stability of the
barrier and the structure are taken into account and compared to empirically measured characteristics.
On the one hand, the superiority of the ab initio computations is shown. However, complicated
mathematics is avoided. In order to confirm the impact of various empirical potentials on the model,
Laurens et al. [148] compared the framework of four empirical potentials ranging from a few atoms
to 12 nm particle size. They combined this analysis with DFT analysis of the AlOX configuration
structure, crystal phase, and energy at various sizes. Ness et al. [127] revealed how supercurrent
decays exponentially with thickness and identified two defects (exchange splitting and significant
dispersion of quasiparticle velocity and transverse momentum) by studying the role of thickness,
magnetization and crystal orientation in the ferromagnets mechanism. DFT and Bogoliubov-de
Gennes models were combined to optimize the material composition of the magnetic Josephson
junction and superconducting magnetic spin valve.

Table 1 compares the model size, analytical tools, and elements influencing the Josephson junction
barrier layer structure using various modeling techniques. It is clear that RMC and experiment are
strongly associated, and the effect factors are more focused on how preparation circumstances affect
the junction’s structure and functionality, which is tightly related to the actual process parameters.
There is a gap in our knowledge of Josephson junction because the full-size structure has not yet been
completely reconstructed at the atomic level. RMC should resort to other modeling approaches that
are more thorough and complete in their analysis of Josephson junctions while studying structures.

The performance of superconducting computers is significantly impacted by the Josephson
junction barrier’s construction. Different process factors have an impact on the structure, and they also
have an impact on the morphology and distinctive information of the junction. These data contain
junction structure. Hence it is crucial to investigate how characterisation techniques affect junction
structure and even performance. Currently, the major goals of junction characterization and analysis
are to identify structural flaws and the impact of environmental factors on the barrier structure.
In order to create atomic-level structures that are consistent with the natural form, RMC carefully
combines experimental data, which has promising applications in the research of Josephson junction
barrier structure.
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Table 1: Comparison of different modeling methods in the application of Josephson junction

Method Size of material Scale of model Analysis methods Factors of effect

RMC [8] Junction 7 ∗ 7 mm2 1137 PDF, coordination
number distribution,
bond angle
distribution, ring
distribution

Oxygen density

RMC [10] 14 + 1 nm — PDF, coordination
number distribution

ALD cycle
number

RMC [9] 7–14 nm 7840 PDF, coordination
number distribution

Temperature

Ab initio [123] — 16.168 ∗ 16.168 ∗
20.183 Å

PDF, coordination
number,
stoichiometry-energy
distribution,
density-energy
distribution

Density and
stoichiometry

MD [143] — 300 Density,
stoichiometry
coordination
number, bond angle,
charge, etc.

Preparation
conditions
(temperature)

MD [148] — 6∼20000 molecules PDF, coordination
number, structure
factor

Potential energy

5 Conclusion and Outlook

RMC is still a new and dynamic tool despite having been developed for almost 30 years. The
development of RMC is constrained when characterization methods are unable to accurately mimic
the structural properties of experimental samples because of its substantial reliance on experimental
data. The benefits of RMC modeling tools will become more obvious, and more academics will use
them in growing domains as a result of the increased precision of various characterisation methods,
the diversification of analytic methods, and the richness of file types incorporated in RMC.

A typical example is the use of superconducting quantum technology. The efficiency of the
Josephson junction, a key element of superconducting quantum computers, is directly correlated with
the caliber of the quantum bits.

The development of superconducting quantum devices has also been pushed forward by junction
research. However, it is discovered from the analysis of this work that there have not been many
studies on the junction’s structure utilizing a modeling tool like RMC. This is particularly true
when characterisation data is combined with electrical, thermal, magnetic, structural, and other
performance factors. The setting of technological circumstances is further guided by structural
modeling of full-scale junctions, numerous analysis techniques, and the enhancement of junction
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performance, resulting in simulation analysis results that have real-world application. Simulating
large-scale Josephson junctions and even devices is difficult at the same time since it affects both the
performance of computers with billions of atoms and the way algorithms can produce basic structures.

In summary, this article examines the development and use of the RMC algorithm, identifies its
flaws, and then uses those flaws to address the issue at the Josephson junction. It is expected to catalyze
the further development of superconducting quantum computers and offers a special framework for
their development. The characterization technique with the RMC algorithm is summarized in the
aspects of the Josephson junction modeling and analysis, which shows that complete modeling tech-
nology is an efficient way to dig the Josephson junction performance. Experiments can also be based
on simulation results, and the RMC modeling tool depends on complete and reliable experimental
data. This is a process of reciprocal promotion and a positive feedback loop. With advancements
in characterization techniques, computer simulation capabilities, optimization of simulation software
algorithms, and analytic techniques, it is anticipated that RMC will support superconducting quantum
machine research and development to a greater extent.
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