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ABSTRACT

This paper introduces a newmetaheuristic algorithm calledMigration Algorithm (MA), which is helpful in solving

optimization problems. The fundamental inspiration of MA is the process of human migration, which aims to

improve job, educational, economic, and living conditions, and so on. The mathematical modeling of the proposed

MA is presented in two phases to empower the proposed approach in exploration and exploitation during the search

process. In the exploration phase, the algorithm population is updated based on the simulation of choosing the

migration destination among the available options. In the exploitation phase, the algorithm population is updated

based on the e�orts of individuals in the migration destination to adapt to the new environment and improve their

conditions. MA’s performance is evaluated on ��y-two standard benchmark functions consisting of unimodal and

multimodal types and the CEC 2017 test suite. In addition, MA’s results are compared with the performance of

twelve well-known metaheuristic algorithms. The optimization results show the proposed MA approach’s high

ability to balance exploration and exploitation to achieve suitable solutions for optimization problems. The analysis

and comparison of the simulation results show that MA has provided superior performance against competitor

algorithms in most benchmark functions. Also, the implementation of MA on four engineering design problems

indicates the e�ective capability of the proposed approach in handling optimization tasks in real-world applications.
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1 Introduction

Optimization problems are a type of problems that havemore than one feasible solution. Thus, the
optimization process consists of finding the best feasible solution among all the available solutions [1].
Numerous optimization problems in science, engineering, and industry, and real-world applications
have become more complex as science and technology advance. Therefore, solving these problems
requires effective optimization tools [2]. Problem-solving techniques in optimization studies are
classified into two groups: deterministic and stochastic approaches [3].

Deterministic approaches in gradient-based and non-gradient-based categories have good effi-
ciency in solving linear, convex, differentiable, continuous, low-dimensional, and simple problems
[4]. However, as optimization problems become more complex, deterministic approaches lose their
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efficiency and, by getting stuck in local optima, cannot provide suitable solutions. Meanwhile, many
existing and emerging optimization problems in science and real-world applications are nonlinear,
non-convex, non-differentiable, non-continuous, high-dimensional, and complex in nature. The diffi-
culties of deterministic approaches, on the one hand, and the increasing complexity of optimization
problems, on the other hand, have led researchers to develop stochastic approaches to deal with these
problems [5,6].

Metaheuristic algorithms are one of the most effective stochastic approaches that can solve
optimization problems based on random search in the problem-solving space using random operators
and trial and error processes [7]. The optimization process in metaheuristic algorithms is such that
first, several candidate solutions are initialized under the name of the algorithm population. Then,
in a repetition-based process, these initial solutions are improved based on algorithm update steps.
Finally, the best solution obtained during the iterations of the algorithm is presented as the solution to
the problem [8]. Advantages such as simplicity of concepts, easy implementation, no need for derivative
process, efficiency in complex, high dimensions, and NP-hard problems, and efficiency in unknown
and discrete search spaces have led to the popularity ofmetaheuristic algorithms among researchers [9].

Metaheuristic algorithms must be able to accurately search the problem-solving space at global
and local levels to achieve optimal solutions [10]. Global search with the concept of discovery leads
to the ability of the algorithm to comprehensively scan the problem-solving space and prevent the
algorithm from getting stuck in local optima. Local search with the concept of exploitation enables the
algorithm to converge to possible better solutions near the discovered solutions. In addition to having
high power in exploration and exploitation, the primary key to the success of metaheuristic algorithms
in optimization is balancing exploration and exploitation during the search process. Due to the nature
of random search in metaheuristic algorithms, there is no guarantee that metaheuristic algorithms
will provide global optimal. However, the solutions obtained from these methods are acceptable as
quasi-optimal solutions due to their proximity to the global optimal [11].

Since the search process and updating steps in metaheuristic algorithms differ, implementing
metaheuristic algorithms on a similar optimization problem provides different solutions. Therefore,
in comparing the performance of several metaheuristic algorithms, the more effectively an algorithm
provides the search process, it will converge to a better solution and be superior to other algorithms.
The desire to achievemore effective solutions for optimization problems has led to the design of numer-
ous metaheuristic algorithms. These algorithms are employed in various optimization applications
in science, such as energy [12–15], protection [16], energy carriers [17,18], and electrical engineering
[19–24].

The main research question is, considering that countless metaheuristic algorithms have been
designed so far, whether there is still a need for newer metaheuristic algorithms. In response to
this question, the No Free Lunch (NFL) theorem [25] explains that the effective performance of
an algorithm in solving a set of optimization problems is not a guarantee of providing the same
performance of that algorithm in other optimization problems. Hence, a successful algorithm in
solving some optimization problems may even fail in solving another optimization problem. Based
on the NFL theorem concept, no specific metaheuristic algorithm is the best optimizer for all
optimization problems. The NFL theorem encourages researchers to be able to provide more effective
solutions to optimization problems by designing newer algorithms. The NFL theorem also motivates
the authors of this paper to introduce and design a newmetaheuristic algorithm to handle optimization
tasks in science and engineering.
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The aspects of innovation and novelty of this paper are in the design of a new metaheuristic
algorithm called the Migration Algorithm (MA), which has applications in solving optimization
problems. The contributions of this article are as follows:

• The fundamental inspiration of MA is the strategies of choosing the migration destination and
adapting to the new environment in the migration process, which are mathematically modeled
in two phases of exploration and exploitation.

• The performance of MA in optimization applications is evaluated on fifty-two standard
benchmark functions and is compared with twelve well-known metaheuristic algorithms.

• The effectiveness of the proposed MA approach in real-world applications is evaluated on four
engineering design problems.

The rest of the paper is organized, so the literature review is presented in Section 2. Then the
proposed MA approach is introduced and modeled in Section 3. Simulation studies and results are
presented in Section 4. The efficiency of MA in handling real-world applications is evaluated in
Section 5. Finally, conclusions and suggestions for future works are provided in Section 6.

2 Literature Review

Metaheuristic algorithms are inspired by various natural phenomena, living organisms’ behaviors,
biological sciences, laws of physics, rules of games, human activities, etc. Based on the design idea,
metaheuristic algorithms are classified into five groups: swarm-based, evolutionary-based, physics-
based, game-based, and human-based approaches.

Swarm-based metaheuristic algorithms are designed based on the simulation of swarm behaviors
of living organisms such as animals, insects, birds, aquatic animals, plants, etc., in nature. Particle
Swarm Optimization (PSO) [26], Ant Colony Optimization (ACO) [27], Artificial Bee Colony (ABC)
[28], and Firefly Algorithm (FA) [29] are among themost widely used crowd-based approaches. Design
of PSO is based on the movement of flocks of birds or fish and their strategy in searching for food.
ACO is derived from the ant colony’s ability to identify the shortest path between the food source and
the nest. ABC is proposed based on modeling the hierarchical activities of honeybees in the colony to
access food resources. FA is inspired by the behavior of fireflies in attracting prey and the opposite
sex by using their luminous ability to produce flashing light based on the biological phenomenon
of bioluminescence. Grey Wolf Optimization (GWO) is a swarm-based method based on simulating
gray wolves’ hierarchical strategy during hunting [30]. Some other swarm-based algorithms are Peni-
cillium Reproduction Algorithm (PRA) [31], Dandelion Algorithm (DA) [32], Pelican Optimization
Algorithm (POA) [33], Emperor Penguin Optimizer (EPO) [34], Marine Predators Algorithm (MPA)
[35], Rat Swarm Optimization (RSO) [36], Mutated Leader Algorithm (MLA) [37], Reptile Search
Algorithm (RSA) [38], Cat andMouse BasedOptimizer (CMBO) [39], Donkey TheoremOptimization
(DTO) [40], AllMember BasedOptimizer (AMBO) [41], GroupMean-BasedOptimizer (GMBO) [42],
Tunicate Swarm Algorithm (TSA) [43], Two Stage Optimization (TSO) [44], White Shark Optimizer
(WSO) [45], and African Vultures Optimization Algorithm (AVOA) [46].

Evolutionary-basedmetaheuristic algorithms are developed inspired by the concepts of biological,
genetics sciences, and natural selection. Genetic Algorithm (GA) [47] and Differential Evolution (DE)
[48] are the most famous evolutionary-based algorithms that have been widely used in solving various
optimization problems. The design of these algorithms has been inspired by the reproduction process,
the concepts of survival of the fittest, Darwin’s evolutionary theory, and the use of random selection,
crossover, and mutation operators. Some other evolutionary-based metaheuristic algorithms are
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Biogeography-based Optimizer (BBO) [49], Artificial Immune System (AIS) [50], Evolution Strategy
(ES) [51], Cultural Algorithm (CA) [52], and Genetic Programming (GP) [53].

Physics-based metaheuristic algorithms are introduced based on modeling phenomena, laws,
forces, and physics concepts. Simulated Annealing (SA) is one of the most famous physics-based
algorithms developed based on the simulation of the physical process of metal annealing. In this
physical process, the metal is first melted under heat and then slowly cooled so that the crystals are
perfectly formed [54]. Physical forces have been sources of inspiration in designing algorithms such as
the Gravitational Search Algorithm (GSA) based on gravitational force [55] and Momentum Search
Algorithm (MSA) based on impulse force [56]. Cosmological concepts are employed in the design of
algorithms such as the Galaxy-Based Search Algorithm (GbSA) [57], Multi-Verse Optimizer (MVO)
[58], and Black Hole (BH) [59]. Some other physics-based algorithms are Small World Optimization
Algorithm (SWOA) [60], Magnetic Optimization Algorithm (MOA) [61], Ray Optimization (RO) [62]
algorithm, and Artificial Chemical Reaction Optimization Algorithm (ACROA) [63].

Game-based metaheuristic algorithms are proposed based on simulating the rules of different
individual and group games, as well as the strategies and behaviors of people influencing games such
as players, referees, and coaches. Holdingmatches in different sports has been the source of inspiration
for designing algorithms, such as Volleyball Premier League (VPL) [64] based on the simulation of the
volleyball league and Football Game Based Optimizer (FGBO) [65] based on the simulation of the
football league. The main idea in the design of the Orientation Search algorithm (OSA) has been
the players’ efforts to change the direction of movement on the playing field based on the direction
determined by the reference [66].

Human behaviors, activities, interactions, and communication in individual and social life inspire
human-based metaheuristic algorithms. Teaching-Learning Based Optimization (TLBO) is one of
the most widely used human-based approaches, which is designed based on modeling students’
interactions with each other and students with the teacher in the classroom learning environment [67].
People’s effort to improve society by following the leader of that society has been used in the design
of the Following Optimization Algorithm (FOA) [68]. The process of learning a foreign language by
people by referring to language schools is employed in the design of Language EducationOptimization
(LEO) [69], and Election Based Optimization Algorithm (EBOA) [70] mimics the voting process
to select the leader. Some other human-based metaheuristic algorithms are Multimodal Nomad
Algorithm (MNA) [71], Archery Algorithm (AA) [72], War Strategy Optimization (WSO) [73], and
Brain Storm Optimization (BSO) [74].

A short description of the algorithms mentioned in this paper is presented in Table 1.

Table 1: Parameter values for the competitor algorithms

Class Algorithm Main idea

Particle Swarm Optimization (PSO) Swarming movement of flocks of birds and
fish

Ant Colony Optimization (ACO) The ability of ant colony to discover the
shortest path

Artificial Bee Colony (ABC) Activities of honey bees colony in finding
food sources

(Continued)
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Table 1 (continued)

Class Algorithm Main idea

Grey Wolf Optimization (GWO) Hierarchical strategy of gray wolves during
hunting.

Penicillium Reproduction Algorithm (PRA) Behavior of penicillium reproduction.
Dandelion Algorithm (DA) Biological intelligence of dandelion seeding.
Pelican Optimization Algorithm (POA) Natural behavior of pelicans during hunting.
Emperor Penguin Optimizer (EPO) Huddling behavior of emperor penguins in

nature.
Marine Predators Algorithm (MPA) Interaction between the prey and predator in

the ocean.
SB Rat Swarm Optimization (RSO) Social and hunting conduct of a group of rats.

Mutated Leader Algorithm (MLA) Concepts of mutated leader.
Reptile Search Algorithm (RSA) Encirclement and hunt mechanisms of

crocodiles.
Cat and Mouse Based Optimizer (CMBO) The interactions between the cat and the

mouse and the escape of the mouse towards
the haven.

Donkey Theorem Optimization (DTO) Concepts of donkey theorem and choosing
the shortest path to food.

All Member Based Optimizer (AMBO) Participation of all members of the swarm in
updating the algorithm population.

Group Mean-Based Optimizer (GMBO) Using composite members based on
averaging from two good and bad groups of a
swarm.

Tunicate Swarm Algorithm (TSA) Jet propulsion and swarm behaviors of
tunicates during the navigation

Two Stage Optimization (TSO) Two-step update of each population member
based on selected members from the good
and bad groups.

White Shark Optimizer (WSO) The great white shark’s exceptional hearing
and sense of smell are used for navigation and
foraging.

African Vultures Optimization Algorithm
(AVOA)

African vultures’ foraging and navigation
behaviors.

Genetic Algorithm (GA) Darwinian evolution theory.
Differential Evolution (DE) Natural phenomenon of evolution.
Biogeography-Based Optimizer (BBO) Biogeographic concepts.

EB Artificial Immune System (AIS) The defense mechanism of the human body
against microbes and diseases.

Evolution Strategy (ES) Darwinian evolution theory.
Cultural Algorithm (CA) Cultural-social evolution.
Genetic Programming (GP) The biological model of evolution.

(Continued)
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Table 1 (continued)

Class Algorithm Main idea

Simulated Annealing (SA) Metal annealing process.
Gravitational Search Algorithm (GSA) Gravity law.
Momentum Search Algorithm (MSA) Momentum law and Newton’s laws of

motion.
Galaxy-Based Search Algorithm (GbSA) Spiral arm of spiral galaxies.

PB Multi-Verse Optimizer (MVO) Concepts in cosmology: white hole, black
hole, and wormhole.

Black Hole (BH) Black hole phenomena.
Small World Optimization Algorithm
(SWOA)

Mechanism of the small-world phenomenon.

Magnetic Optimization Algorithm (MOA) Magnetic field theory.
Ray Optimization (RO) Snell’s light refraction law.
Artificial Chemical Reaction Optimization
Algorithm (ACROA)

Types and occurring of chemical reactions.

Volleyball Premier League (VPL) Football league and holding matches in the
football league.

GB Football Game Based Optimizer (FGBO) Volleyball league and behavior of players and
coaches during the game.

Orientation Search algorithm (OSA) The game of orientation and movement of
players in the direction determined by the
referee.

Teaching-Learning Based Optimization
(TLBO)

Interactions between teachers and students in
the classroom learning environment.

Following Optimization Algorithm (FOA) Relationships between members and the
leader of a community.

Language Education Optimization (LEO) The process of teaching and learning a
foreign language.

Election Based Optimization Algorithm
(EBOA)

The process of voting and holding elections.

HB Multimodal Nomad Algorithm (MNA) Migratory behavior of the nomadic tribes on
Mongolia grassland.

Archery Algorithm (AA) The archer’s effort in throwing the arrow
toward the panel.

War Strategy Optimization (WSO) Strategic movement of army troops during
the war.

Brain Storm Optimization (BSO) Human brainstorming process.

Based on the best knowledge obtained from the literature review, no metaheuristic algorithm
has been designed based on the modeling of the human migration process. Meanwhile, the migration
process is an intelligent human activity with extraordinary potential as a new metaheuristic algorithm
design. In order to address this research gap, in this paper, a new human-basedmetaheuristic algorithm
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is designed based on the mathematical modeling of the human migration process, which is discussed
in the next section.

3 Migration Algorithm

In this section, the proposed Migration Algorithm (MA) is introduced, and its mathematical
model is presented.

3.1 Inspiration

Human migration refers to the movement of people from one place to another for work or life
[75]. People usually migrate to escape adverse circumstances, such as poverty, disease, political issues,
food shortages, natural disasters, war, unemployment, and lack of security. In addition, the favorable
conditions of the migration destination, such as more health facilities, better education, more income,
better housing, political freedoms, and a better atmosphere, are the other reasons for people tomigrate
[76]. Based on their own needs and criteria, people choose the final destination among the immigration
options. After moving to the migration destination, people try to adapt to the new environment.

When people decide tomigrate, based on their expectations and conditions, theywill have different
candidates for the migration destination. After analyzing each destination’s conditions, they choose
their final migration destination. Then they immigrate. When a person is in a new situation, they try
to adapt themself to the new conditions in the immigration destination. The steps of the immigration
process are considered as follows:

• A person checks different destinations for immigration.

• From among the candidate destinations, a person finally chooses the immigration destination
based on examining their benefits and conditions.

• The person migrates to the chosen destination.

• In a new situation, a person tries to adapt to the conditions of the new society.

Among humans’ activities in the migration process, the two strategies of (i) choosing and moving
to the migration destination and (ii) trying to adapt to the new environment at the migration
destination are more significant. Mathematical modeling of these two strategies of the migration
process is employed in the design of the proposed MA approach.

3.2 Initialization

The proposed MA approach is a population-based metaheuristic algorithm that can solve
optimization problems by using the search power of this population in the problem-solving space in a
repetition-based process. The members of the MA population are people in different life situations
who are trying to improve their situation by migrating to new places. Each population member,
according to its position in the search space, determines the values for the decision variables of
the problem. Therefore, each member of the population is a candidate solution to the problem,
which is mathematically modeled using a vector. Together, these members form the population of
the algorithm, which can be represented from a mathematical point of view using a matrix according
to Eq. (1). At the beginning of the MA execution, the initial position of the population members in
the search space is initialized using Eq. (2).
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, i = 1, 2, . . . ,N, j = 1, 2, . . . ,m, (2)

where X is the population matrix of the proposed MA, N is the number of population members, m is
the number of decision variables, Xi is the ith candidate solution, xi,j is its jth variable, r is a random
number in the interval [0, 1], lbj is the lower bound, and ubj is the upper bound of the jth decision
variable.

Considering that each population member is a candidate solution for the problem, a value for the
objective function of the problem is evaluated corresponding to each population member. The set of
calculated values for the objective function can be represented using a vector according to Eq. (3).
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where F is the vector of values of the objective function and Fi is the value of the objective function
for the ith candidate solution.

The calculated values for the objective function are suitable for the qualitative assessment of
candidate solutions. Therefore, the best value calculated for the objective function corresponds to
the best member of the population. Similarly, the worst value calculated for the objective function
corresponds to the worst member of the population. Considering that the position of the population
members in the search space is updated in each iteration, the best member must also be updated. At
the end of the algorithm execution, the best member of the population is available as a solution to the
problem.

In the design of the proposed MA approach, the position of the population members is updated
based on the simulation of the human migration process in two phases, which are explained below. In
the following, mathematical equations of the proposed MA are presented to minimize the objective
functions of optimization problems. It should be noted that MA can also be used for maximization
problems, but the relevant equations would have to be rewritten for these problems.

3.3 Phase 1: Choosing and Moving to the Migration Destination (Exploration Phase)

One of the most important actions in the migration process is choosing the migration destination
among all the available options. When people migrate, they choose a destination based on their
criteria and move there. The simulation of this behavior is employed in the design of the first phase of
population update in the proposed MA approach. Modeling this strategy leads to significant changes
in the population position of the algorithm, which leads to increased algorithm ability in global search
and exploration. In the MA design, for each population member, the position of other population
members (with the better fitness function value) is considered a set of possible destinations for its
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migration. This set of candidate destinations for each member is determined using Eq. (4). Then,
the migration destination MD is randomly chosen for each member of the population among the
options selected in this set. Then, the proposed new position for each member is calculated based on
the displacement towards the migration destination using Eq. (5). Finally, if the value of the objective
function is improved in the new position, the proposed position is accepted as the position of the
corresponding member according to Eq. (6).

CDi = {Xk,Fk < Fi and k ∈ {1, 2, ..,N}} , where i = 1, 2, . . . ,N, (4)

xP1
i,j = xi,j + ri,j · (MDi,j − Ii,j · xi,j), (5)

Xi =
{

XP1
i
, FP1

i
≤ Fi,

Xi, else,
(6)

where CDi is the set of all possible candidate destinations for the ith member, Xk is the kth row of X
matrix which has better objective function value than the ith member,MDi is the migration destination
for ith member, MDi,j is its jth dimension, XP1

i
is the new position calculated for the ith population

member based on first phase of the proposed MA, xP1
i,j is its jth dimension, FP1

i
is its objective function

value, ri,j are random numbers from the interval [0, 1], and Ii,j are numbers which are randomly selected
as 1 or 2. The random numbers used in MA design create a random nature in changing the position
of the population members. Random parameters determined automatically during the execution of
the algorithm are used in many metaheuristic algorithms. These random numbers can cause random
changes in the population members in the search space and improve the optimization operation.

3.4 Phase 2: Adaptation to the New Environment in the Migration Destination (Exploitation Phase)

After a person migrates and enters a new environment and society, they try to adapt themself
to the new conditions. In this activity, a person achieves better performance and social needs. This
human activity in the migration process is employed in the second phase of population update in
the proposed MA algorithm. Modeling this behavior leads to small changes in the position of the
population members, which leads to an increase in the ability of local search and exploitation in the
proposed MA approach. To simulate people’s efforts in adapting to the new environment, for each
member of the population, a proposed random position near the same member is generated using
Eq. (7). This proposed position, if it leads to the improvement of the objective function value, replaces
the position of the corresponding member according to Eq. (8).

xP2
i,j = xi,j +

(

1 − 2ri,j
)

· ubj − lbj

t
(7)

Xi =
{

XP2
i
, FP2

i
≤ Fi

Xi, else
(8)

where XP2
i

is the new position calculated for the ith population member based on second phase of the
proposedMA, xP2

i,j is its jth dimension, FP2
i
is its objective function value, ri,j are random numbers from

the interval [0, 1], and t is the iteration counter.

3.5 Repetitions Process, Flowchart, and Pseudocode of MA

After updating all population members based on the first and second phases of the proposedMA
approach, the first iteration of the algorithm is completed. After that, with the new values calculated
for the position of the population members and the objective function, the algorithm enters the next
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iteration. The population update process is repeated until the last iteration of the algorithm based on
Eqs. (4) to (8). In each iteration, the best member of the population is updated as the best-obtained
solution until that iteration. After completing the implementation of the algorithm, the best candidate
solution saved during the iterations of the algorithm is presented as a solution to the problem. The
implementation steps of the proposed MA approach are shown in the form of a flowchart in Fig. 1
and the form of pseudocode in Algorithm 1.

Figure 1: Flowchart of the proposed MA

Algorithm 1: Pseudocode of the proposed MA
Start MA.

1. Input the optimization problem information.
2. Set the number of iterations T and the number of members of the population N.
3. Generate the initial population at random based on Eq. (2).

(Continued)
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Algorithm 1: (Continued)
4. Evaluate the initial population.
5. For t = 1: T
6. For i = 1: N
7. Phase 1: Choosing and Moving to the Migration Destination.
8. Determine candidate destinations for migration based on Eq. (4).
9. Calculate new position of population member based on Eq. (5).
10. Update the ith population member using Eq. (6).
11. Phase 2: Adaptation to the New Environment in the Migration Destination.
12. Calculate a new position of a population member based on Eq. (7)
13. Update the ith population member using Eq. (8).
14. end
15. Save the best proposed solution so far.
16. end
17. Output the best obtained proposed solution.
End MA.

4 Simulation Studies

In this section, the performance of the proposedMA approach in optimization tasks is evaluated.
For this purpose, a set of fifty-two standard benchmark functions consisting of unimodal, high-
dimensional multimodal, and fixed-dimensional multimodal types [77] and also the CEC 2017 test
suite [78] are employed. The details of these functions are specified in the appendix and in Tables A1
to A4. The results obtained from MA have been compared with the performance of twelve well-
knownmetaheuristic algorithms: GA, PSO,GSA,GWO,MVO,WOA, TSA,MPA, AVOA,WSO, and
RSA. The adjusted values for the control parameters are specified in Table 2. Optimization results are
reported using six statistical indicators: mean, best, worst, standard deviation, median, and rank. It
should be noted that the mean value is chosen as the ranking criterion of metaheuristic algorithms.

Table 2: Parameter values for the competitor algorithms

Algorithm Parameter Value

GA
Type Real coded.
Selection Roulette wheel (Proportionate).
Crossover Whole arithmetic (Probability = 0.8,

α ∈ [−0.5, 1.5]).
Mutation Gaussian (Probability = 0.05).

PSO
Topology Fully connected.
Cognitive and social constant (C1,C2) = (2, 2) .
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of the dimension range.

(Continued)
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Table 2 (continued)

Algorithm Parameter Value

GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1

TLBO
TF : the teaching factor TF = round [(1 + rand)].
random number rand rand is a random number from the interval

[0, 1] .

GWO
Convergence parameter (a) a: Linear reduction from 2 to 0.

MVO
Wormhole existence probability (WEP) Min(WEP) = 0.2 and Max(WEP) = 1.
Exploitation accuracy over the iterations (p) p = 6.

WOA
Convergence parameter a a: Linear reduction from 2 to 0.
Parameters r and l r is a random vector in [0, 1] ,

l is a random number in [−1, 1] .

TSA
Pmin and Pmax 1, 4
c1, c2, c3 random numbers lie in the range [0, 1] .

MPA
Constant number P = 0.5
Random vector R is a vector of uniform random numbers

from [0, 1] .
Fish Aggregating Devices (FADs) FADs = 0.2
Binary vector U = 0 or 1.

RSA
Sensitive parameter β = 0.01.
Sensitive parameter α = 0.1.
Evolutionary Sense (ES) ES are randomly decreasing values

between 2 and −2.

AVOA
L1, L2 (L1,L2) = (0.8, 0.2) .
w w = 2.5.
P1, P2, P3 (P1,P2,P3) = (0.6, 0.4, 0.6).

WSO
Fmin and Fmax (Fmin,Fmax) = (0.07, 0.75) .
τ , a0, a1, a2 (τ , a0, a1, a2) = (4.125, 6.25, 100, 0.0005) .
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4.1 Evaluation of Unimodal Objective Functions

Seven benchmark functions, F1 to F7, have been selected from the unimodal type to evaluate the
ability to exploit metaheuristic algorithms. The optimization results of unimodal functions F1 to F7
using MA and competitor algorithms are reported in Table 3. Based on the optimization results, MA,
with high exploitation ability in optimizing functions F1, F2, F3, F4, F5, and F6, has converged to
the global optimal. In the optimization of the F7 function, MA is the first best optimizer. The analysis
of the optimization results shows that MA has provided superior performance in the optimization of
unimodal functions F1 to F7 by providing high power in exploitation and local search compared to
competitor algorithms.

4.2 Evaluation of High-Dimensional Multimodal Objective Functions

Six benchmark functions F8 to F13, have been selected from the high-dimensional multimodal
type to evaluate the exploration ability of metaheuristic algorithms. The implementation results ofMA
and competitor algorithms on functions F8 to F13 are presented in Table 4. The optimization results
show that MA, with high exploration ability, in optimizing F9 and F11 functions, has converged to
the global optimal by accurately identifying the main optimal area in the search space. Also, MA is
the first best optimizer for solving functions F8, F10, F12, and F13. Based on the analysis of the
simulation results, it is concluded that the proposed MA approach with high exploration ability and
optimal global search has provided superior performance in the optimization of high-dimensional
multimodal functions compared to competitor algorithms.

4.3 Evaluation of Fixed-Dimensional Multimodal Objective Functions

Ten benchmark functions, F14 to F23, are selected from the fixed-dimension multimodal to
evaluate the ability of metaheuristic algorithms to balance exploration and exploitation during the
search process. The results of employing MA and competitor algorithms are reported in Table 5.
The results show that MA is the first best optimizer for functions F14, F15, F21, F22, and F23.
Furthermore, in solving functions F16 to F20, although MA has similar conditions with some
competitor algorithms in the mean criterion, by providing better results for the std index, it has
provided amore effective performance in optimizing these functions.What is clear from the analysis of
the simulation results is that the proposedMAapproach, with a high ability to balance exploration and
exploitation, has provided superior performance in the optimization of fixed-dimension multimodal
functions compared to competitor algorithms.
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Table 3: Evaluation results of unimodal objective functions

F MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

Mean 0 65.90797 0 0 1.92E-49 4.65E-47 1.4E-151 0.149636 1.77E-59 2.53E-74 1.33E-16 0.100957 30.50201
Best 0 5.295156 0 0 3.81E-52 1.44E-50 9.3E-171 0.105509 1.49E-61 5.87E-77 5.36E-17 0.000487 17.92696

F1 Worst 0 238.9103 0 0 1.66E-48 3.3E-46 2.7E-150 0.201297 7.72E-59 2.6E-73 3.74E-16 1.397744 56.92799
Std 0 52.77091 0 0 3.93E-49 1E-46 6E-151 0.027758 2.14E-59 6.16E-74 7.15E-17 0.31078 10.46286
Median 0 45.41997 0 0 4.16E-50 4.27E-48 2.2E-159 0.150528 1.08E-59 1.7E-75 1.13E-16 0.00972 28.19897
Rank 1 11 1 1 5 6 2 9 4 3 7 8 10

Mean 0 2.13984 1.1E-276 0 6.97E-28 2.11E-28 2.5E-105 0.259174 1.35E-34 6.76E-39 5.49E-08 0.895505 2.788395
Best 0 0.662477 1.3E-306 0 1.84E-29 2.03E-30 7.9E-118 0.160075 4.87E-36 8.82E-40 3.49E-08 0.045282 1.745356

F2 Worst 0 7.445497 2.2E-275 0 4.71E-27 1.82E-27 2.8E-104 0.36451 7.91E-34 2.44E-38 1.23E-07 2.493315 3.806556
Std 0 1.774278 0 0 1.09E-27 5.29E-28 6.9E-105 0.062992 1.96E-34 5.58E-39 1.87E-08 0.722723 0.544788
Median 0 1.530461 6.5E-290 0 3.51E-28 1.97E-29 3.4E-108 0.268348 6.5E-35 4.98E-39 5.13E-08 0.584164 2.741555
Rank 1 11 2 1 7 6 3 9 5 4 8 10 12

Mean 0 1786.31 0 0 2.51E-12 1.18E-10 19959.22 15.97333 2.17E-14 3.84E-24 475.4998 388.1315 2168.983
Best 0 1040.447 0 0 6.19E-19 1.37E-21 2064.881 5.974275 2.36E-19 2.2E-29 245.9638 21.76826 1424.187

F3 Worst 0 3543.114 0 0 1.44E-11 1.95E-09 34688.44 48.93977 4.05E-13 3.61E-23 1186.317 1025.393 3458.935
Std 0 627.7929 0 0 4.38E-12 4.36E-10 8557.149 10.76486 9.02E-14 1.08E-23 220.2836 288.4306 639.6914
Median 0 1558.29 0 0 1.83E-13 1.08E-13 20324.26 11.87926 4.66E-16 4.04E-26 400.3348 293.0444 2100.7
Rank 1 9 1 1 4 5 11 6 3 2 8 7 10

Mean 0 17.29599 3.2E-265 0 2.98E-19 0.004423 51.82134 0.547118 1.23E-14 1.84E-30 1.235881 6.279883 2.829395
Best 0 11.91482 0 0 3.02E-20 9.65E-05 0.904572 0.265926 6.55E-16 5.81E-32 9.9E-09 2.290268 2.216469

F4 Worst 0 23.83573 4.5E-264 0 9.61E-19 0.035828 91.70973 0.963047 5.74E-14 8.12E-30 4.927695 13.36024 3.992738
Std 0 2.887421 0 0 2.29E-19 0.007944 29.61469 0.192208 1.46E-14 2.4E-30 1.387146 2.502379 0.466936
Median 0 17.77269 2E-282 0 2.59E-19 0.00147 55.42445 0.531045 6.35E-15 6.53E-31 0.906948 5.882471 2.783478
Rank 1 11 2 1 4 6 12 7 5 3 8 10 9

Mean 0 10799.4 1.43E-05 12.99862 23.32398 28.47735 27.3097 96.22156 26.58159 26.78794 44.0499 4611.934 595.3854
Best 0 1347.31 1.39E-06 8.7E-29 22.80862 25.67105 26.72206 27.63173 25.56655 25.58869 25.8846 26.28099 228.808

F5 Worst 0 92715.88 5.91E-05 28.99021 24.04927 28.89167 28.73536 377.9041 27.15605 28.75268 167.2442 90077.28 2257.058
Std 0 20068.39 1.45E-05 14.74463 0.388633 0.78813 0.577718 101.4641 0.52633 0.936343 44.3234 20116.61 424.9867
Median 0 5609.695 9.38E-06 1.22E-28 23.29493 28.82258 27.08683 30.01805 26.23168 26.32785 26.34642 86.09804 475.573
Rank 1 13 2 3 4 8 7 10 5 6 9 12 11

Mean 0 100.9068 4.98E-08 6.457884 1.81E-09 3.681907 0.081573 0.151003 0.660849 1.261405 1.05E-16 0.063446 34.14746
Best 0 16.953 7.11E-09 3.663258 8.08E-10 2.552812 0.010521 0.079233 0.246729 0.233121 5.52E-17 1.9E-06 15.61244

F6 Worst 0 382.4943 1.36E-07 7.250003 4.8E-09 4.787676 0.326748 0.25011 1.252278 2.164793 1.81E-16 0.541731 62.76702
Std 0 95.47735 3.29E-08 1.027942 9.36E-10 0.693358 0.10162 0.047381 0.306609 0.497225 3.71E-17 0.148563 13.54999
Median 0 69.57653 4.61E-08 6.884954 1.6E-09 3.795995 0.031607 0.160156 0.727316 1.217425 9.48E-17 0.002057 31.68218
Rank 1 13 4 11 3 10 6 7 8 9 2 5 12

(Continued)
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Table 3 (continued)

F MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

Mean 2.54E-05 9E-05 6.25E-05 3.01E-05 0.000547 0.004343 0.001278 0.011614 0.000831 0.00153 0.052809 0.184141 0.010589
Best 2.35E-06 1.06E-05 8.55E-07 2.43E-06 0.000111 0.001493 2.02E-05 0.003971 0.000182 9.01E-05 0.014124 0.069017 0.003032

F7 Worst 6.89E-05 0.000339 0.000261 0.000133 0.000899 0.009973 0.005399 0.022569 0.001957 0.002947 0.095575 0.411351 0.021939
Std 1.98E-05 8.95E-05 7.33E-05 3.45E-05 0.000215 0.002341 0.001445 0.005034 0.000467 0.00088 0.024958 0.079015 0.004819
Median 1.83E-05 6.38E-05 4.01E-05 1.54E-05 0.000533 0.003721 0.000818 0.011315 0.000845 0.001506 0.051832 0.177731 0.010178
Rank 1 4 3 2 5 9 7 11 6 8 12 13 10

Sum rank 7 72 15 20 32 50 48 59 36 35 54 65 74
Mean rank 1 10.28571 2.142857 2.857143 4.571429 7.142857 6.857143 8.428571 5.142857 5 7.714286 9.285714 10.57143
Total ranking 1 12 2 3 4 8 7 10 6 5 9 11 13
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Table 4: Evaluation results of high-dimensional multimodal objective functions

F MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

Mean −12498.6 −7051.29 −12470.7 −5436.21 −9687.45 −6139.18 −11065.1 −7832.95 −6079.64 −5598.39 −2781.26 −6547.41 −8421.5
Best −12622.8 −9000.4 −12569.5 −5656.07 −10475.5 −7319.04 −12569.5 −9188.24 −6863.36 −7028.14 −3974.43 −8244.17 −9681.18

F8 Worst −11936.3 −6082.61 −11896.8 −4909.67 −9090.67 −4369.92 −7740.1 −6879.62 −5047.96 −4549.98 −2148.32 −4988.99 −7028.99
Std 190.3992 734.4512 195.8589 225.527 370.2257 729.8809 1735.097 728.446 481.8826 609.125 495.5458 748.5216 641.2242
Median −12577.8 −6972.73 −12569.5 −5491.24 −9719.53 −6097.61 −12040.8 −7710.82 −6072.83 −5613.67 −2692.95 −6693.09 −8399.11
Rank 1 7 2 12 4 9 3 6 10 11 13 8 5

Mean 0 24.63015 0 0 0 173.1242 0 97.82972 1.71E-14 0 28.50556 67.7144 54.68123
Best 0 14.61964 0 0 0 89.74484 0 52.78684 0 0 13.92943 39.79836 23.23239

F9 Worst 0 45.95061 0 0 0 288.1844 0 149.2806 1.14E-13 0 48.75295 114.5621 76.90086
Std 0 8.618138 0 0 0 51.00724 0 25.19698 3.25E-14 0 9.166096 18.84112 13.80758
Median 0 22.68872 0 0 0 166.6755 0 97.08297 0 0 26.3664 65.06856 52.61443
Rank 1 3 1 1 1 8 1 7 2 1 4 6 5

Mean 8.88E-16 5.291383 8.88E-16 8.88E-16 4.26E-15 1.242493 4.09E-15 0.577899 1.67E-14 4.44E-15 8.21E-09 2.727233 3.5751
Best 8.88E-16 3.38294 8.88E-16 8.88E-16 8.88E-16 7.99E-15 8.88E-16 0.1006 7.99E-15 4.44E-15 4.66E-09 1.693449 2.881962

F10 Worst 8.88E-16 8.198706 8.88E-16 8.88E-16 4.44E-15 3.373453 7.99E-15 2.515189 2.22E-14 4.44E-15 1.45E-08 5.057072 4.641967
Std 0 1.221469 0 0 7.94E-16 1.569506 2.28E-15 0.677185 3.55E-15 0 2.34E-09 0.857798 0.396644
Median 8.88E-16 5.179479 8.88E-16 8.88E-16 4.44E-15 2.22E-14 4.44E-15 0.194315 1.51E-14 4.44E-15 7.72E-09 2.733921 3.62958
Rank 1 11 1 1 3 8 2 7 5 4 6 9 10

Mean 0 1.716157 0 0 0 0.008843 0 0.399675 0.00134 0 7.208015 0.185266 1.473471
Best 0 1.103877 0 0 0 0 0 0.254148 0 0 2.995643 0.002367 1.288095

F11 Worst 0 3.284729 0 0 0 0.020547 0 0.535986 0.018824 0 12.63778 0.875849 1.725859
Std 0 0.542611 0 0 0 0.006293 0 0.081857 0.004484 0 2.720906 0.228487 0.123868
Median 0 1.600984 0 0 0 0.008994 0 0.416518 0 0 7.31113 0.122356 1.447709
Rank 1 7 1 1 1 3 1 5 2 1 8 4 6

Mean 1.57E-32 3.269703 2.58E-09 1.317616 2.04E-10 5.792791 0.020096 0.914642 0.039878 0.071329 0.210037 1.501058 0.274894
Best 1.57E-32 0.953135 4.03E-10 0.769179 5.19E-11 1.036858 0.001227 0.000999 0.012562 0.02411 4.75E-19 0.000107 0.060841

F12 Worst 1.57E-32 7.388687 7.83E-09 1.645905 3.81E-10 14.13599 0.136901 3.848045 0.086783 0.135135 0.931771 5.21922 0.650842
Std 2.81E-48 1.829413 1.65E-09 0.303868 9.61E-11 3.880435 0.040002 1.196737 0.021332 0.02095 0.307418 1.285627 0.138648
Median 1.57E-32 2.891986 2.39E-09 1.389398 2.05E-10 4.304904 0.005783 0.42028 0.03791 0.06869 0.080199 1.285267 0.264424
Rank 1 12 3 10 2 13 4 9 5 6 7 11 8

Mean 1.35E-32 3599.682 1E-08 3.13E-31 0.002498 2.716891 0.214604 0.032775 0.513821 1.101997 0.056661 3.607621 2.707835
Best 1.35E-32 13.7976 1.15E-09 6.53E-32 9.95E-10 2.012451 0.037203 0.006442 4.69E-05 0.588492 4.66E-18 0.009572 1.291959

F13 Worst 1.35E-32 62161.32 3.81E-08 5.43E-31 0.025313 3.713937 0.700345 0.091627 0.95012 1.541205 0.958375 12.58563 3.940231
Std 2.81E-48 13853.99 8.78E-09 2.25E-31 0.006343 0.55753 0.183521 0.024787 0.25783 0.23137 0.213649 3.031014 0.754476
Median 1.35E-32 44.23045 6.52E-09 4E-31 2.82E-09 2.53517 0.165798 0.023634 0.517151 1.114617 1.78E-17 3.305798 2.867222
Rank 1 13 3 2 4 11 7 5 8 9 6 12 10

(Continued)



C
M
E
S,2023,vol.137,no.2

1711
Table 4 (continued)

F MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

Sum rank 6 53 11 27 15 52 18 39 32 32 44 50 44
Mean rank 1 8.833333 1.833333 4.5 2.5 8.666667 3 6.5 5.333333 5.333333 7.333333 8.333333 7.333333
Total ranking 1 11 2 5 3 10 4 7 6 6 8 9 8
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Table 5: Evaluation results of fixed-dimensional multimodal objective functions

F MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

Mean 0.998004 1.097407 1.097209 3.107269 1.009791 8.646875 2.569752 0.998004 3.695176 0.998005 3.561315 3.595793 1.048667
Best 0.998004 0.998004 0.998004 0.998036 0.998004 1.992031 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004

F14 Worst 0.998004 1.992031 2.982105 12.67051 1.233486 15.50382 10.76318 0.998004 10.76318 0.998019 11.86988 12.67051 1.992037
Std 0 0.305955 0.443659 3.056678 0.052652 5.051266 2.946269 5.66E-12 3.730984 3.27E-06 2.754069 3.787922 0.222066
Median 0.998004 0.998004 0.998004 2.225114 0.998004 11.71684 0.998004 0.998004 2.982105 0.998004 2.891705 1.992031 0.998004
Rank 1 7 6 9 4 13 8 2 12 3 10 11 5

Mean 0.000307 0.001357 0.000356 0.001123 0.001207 0.016426 0.000809 0.002647 0.003365 0.000594 0.002352 0.002499 0.015388
Best 0.000307 0.000307 0.000307 0.000711 0.000309 0.000308 0.000311 0.000308 0.000307 0.000311 0.000887 0.000307 0.000782

F15 Worst 0.000307 0.020363 0.000732 0.00288 0.001674 0.110282 0.002252 0.020363 0.020363 0.001249 0.006959 0.020363 0.066917
Std 2.54E-19 0.004478 0.000101 0.000468 0.000547 0.03002 0.000491 0.006065 0.007329 0.000401 0.001368 0.006126 0.016221
Median 0.000307 0.000307 0.000311 0.001022 0.0016 0.000871 0.000686 0.000681 0.000308 0.000325 0.002169 0.000307 0.014273
Rank 1 7 2 5 6 13 4 10 11 3 8 9 12

Mean −1.03163 −1.03163 −1.03163 −1.02941 −1.02929 −1.03005 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Best −1.03163 −1.03163 −1.03163 −1.03161 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

F16 Worst −1.03163 −1.03163 −1.03163 −1 −1.00093 −1 −1.03163 −1.03163 −1.03163 −1.03162 −1.03163 −1.03163 −1.03161
Std 1.84E-16 2.64E-07 1.02E-16 0.006998 0.006906 0.007073 4.05E-11 5.49E-08 8.6E-09 1.68E-06 1.02E-16 1.14E-16 4.78E-06
Median −1.03163 −1.03163 −1.03163 −1.03129 −1.0316 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Rank 1 5 1 9 10 8 2 4 3 7 1 1 6

Mean 0.397887 0.397887 0.397887 0.410593 0.398401 0.397924 0.397888 0.397887 0.397888 0.39796 0.397887 0.744637 0.466023
Best 0.397887 0.397887 0.397887 0.398539 0.397887 0.39789 0.397887 0.397887 0.397887 0.397891 0.397887 0.397887 0.397887

F17 Worst 0.397887 0.397889 0.397887 0.485262 0.401154 0.398206 0.39789 0.397888 0.39789 0.398172 0.397887 2.791184 1.75218
Std 0 4.03E-07 0 0.019449 0.000956 6.83E-05 7.27E-07 6.64E-08 8.87E-07 6.77E-05 0 0.709302 0.302731
Median 0.397887 0.397887 0.397887 0.403776 0.397974 0.397907 0.397888 0.397887 0.397888 0.397948 0.397887 0.397887 0.397905
Rank 1 3 1 9 8 6 4 2 5 7 1 11 10

Mean 3 3 3.000001 5.77479 6.161661 11.50179 3.000026 3 3.000013 3.000001 3 3 7.302903
Best 3 3 3 3 3.013933 3.000001 3 3 3 3 3 3 3

F18 Worst 3 3 3.000007 31.31493 30.00128 92.03536 3.000156 3.000002 3.000063 3.000006 3 3 34.94955
Std 1.17E-15 5.85E-16 1.88E-06 8.513419 6.359267 26.20036 4.26E-05 4.46E-07 1.46E-05 1.73E-06 3.57E-15 3E-15 10.54375
Median 3 3 3 3.00004 3.563655 3.000008 3.000002 3 3.00001 3 3 3 3.00117
Rank 1 1 5 9 10 12 8 4 7 6 3 2 11

Mean −3.86278 −3.86278 −3.86278 −3.83693 −3.72483 −3.86238 −3.86042 −3.86278 −3.86126 −3.86168 −3.86278 −3.86278 −3.86262
Best −3.86278 −3.86278 −3.86278 −3.85894 −3.86278 −3.86278 −3.86276 −3.86278 −3.86278 −3.86269 −3.86278 −3.86278 −3.86278

F19 Worst −3.86278 −3.86278 −3.86278 −3.77916 −3.2931 −3.85597 −3.8549 −3.86278 −3.85496 −3.85488 −3.86278 −3.86278 −3.86183
Std 2.28E-15 2.28E-15 1.94E-11 0.022957 0.137426 0.00151 0.002902 2.15E-07 0.00261 0.00232 1.97E-15 2.06E-15 0.000295
Median −3.86278 −3.86278 −3.86278 −3.8442 −3.72574 −3.86273 −3.86188 −3.86278 −3.86276 −3.8624 −3.86278 −3.86278 −3.86278
Rank 1 1 2 9 10 5 8 3 7 6 1 1 4

Mean −3.322 −3.30416 −3.26849 −2.76525 −2.53258 −3.25505 −3.24989 −3.27434 −3.25903 −3.24275 −3.322 −3.26462 −3.2283
Best −3.322 −3.322 −3.322 −3.06927 −3.22483 −3.32157 −3.32199 −3.32199 −3.32199 −3.31585 −3.322 −3.322 −3.32163

F20 Worst −3.322 −3.2031 −3.2031 −1.67014 −1.78365 −3.08946 −3.08934 −3.20229 −3.08401 −3.01379 −3.322 −3.13764 −2.99723
Std 4.44E-16 0.043556 0.060685 0.312143 0.336978 0.071193 0.083878 0.059884 0.076101 0.080187 3.81E-16 0.074972 0.078203

(Continued)
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Table 5 (continued)

F MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

Median −3.322 −3.322 −3.322 −2.83538 −2.58954 −3.26107 −3.3181 −3.32199 −3.32199 −3.29176 −3.322 −3.322 −3.23661
Rank 1 2 4 11 12 7 8 3 6 9 1 5 10

Mean −10.1532 −8.40651 −10.1532 −5.0552 −7.55876 −5.9252 −9.38543 −8.8855 −9.39035 −6.85273 −7.19413 −5.62381 −6.26023
Best −10.1532 −10.1532 −10.1532 −5.0552 −10.1515 −10.1295 −10.1531 −10.1532 −10.1532 −9.41523 −10.1532 −10.1532 −9.73855

F21 Worst −10.1532 −2.68286 −10.1532 −5.0552 −5.0552 −2.60302 −5.0551 −5.05518 −5.05519 −3.24272 −2.68286 −2.63047 −2.38578
Std 2.08E-15 3.143351 1.31E-14 3.39E-07 2.052467 3.235554 1.866342 2.252712 1.861953 2.077471 3.457706 2.883857 2.711083
Median −10.1532 −10.1532 −10.1532 −5.0552 −7.90122 −4.99925 −10.1511 −10.1531 −10.1527 −7.31397 −10.1532 −5.10077 −7.06069
Rank 1 6 2 13 7 11 4 5 3 9 8 12 10

Mean −10.4029 −10.0204 −10.4029 −5.08767 −8.0897 −6.8844 −8.10852 −8.4347 −10.4024 −7.94981 −10.1293 −6.38293 −7.37187
Best −10.4029 −10.4029 −10.4029 −5.08767 −10.4005 −10.3392 −10.4029 −10.4029 −10.4028 −10.0628 −10.4029 −10.4029 −9.9828

F22 Worst −10.4029 −2.75193 −10.4029 −5.08767 −5.08767 −1.83282 −1.83745 −2.76589 −10.4015 −4.04839 −4.92953 −2.75193 −2.67682
Std 3.51E-15 1.710817 2.94E-14 1.07E-06 2.092584 3.509365 3.051708 2.796754 0.000408 1.673445 1.223892 3.469587 1.916626
Median −10.4029 −10.4029 −10.4029 −5.08767 −9.04577 −7.4911 −10.3981 −10.4029 −10.4026 −8.38543 −10.4029 −5.10825 −7.86313
Rank 1 5 2 13 8 11 7 6 3 9 4 12 10

Mean −10.5364 −10.5364 −10.5364 −5.12847 −9.15341 −7.41502 −8.58345 −9.46185 −10.5359 −8.08614 −10.2874 −6.42082 −6.36016
Best −10.5364 −10.5364 −10.5364 −5.12848 −10.4492 −10.4805 −10.5362 −10.5364 −10.5363 −9.69083 −10.5364 −10.5364 −10.1845

F23 Worst −10.5364 −10.5364 −10.5364 −5.12847 −5.12848 −2.42013 −1.67654 −5.12847 −10.5352 −4.2682 −5.55587 −2.42173 −2.38229
Std 2.76E-15 3.78E-15 8.2E-15 2.14E-06 1.473974 3.472863 3.262135 2.204851 0.000322 1.660896 1.113682 3.847923 2.608634
Median −10.5364 −10.5364 −10.5364 −5.12847 −9.54713 −10.2904 −10.5339 −10.5363 −10.536 −8.67926 −10.5364 −3.83543 −6.88826
Rank 1 2 3 13 7 10 8 6 4 9 5 11 12

Sum rank 10 39 28 100 82 96 61 45 61 68 42 75 90
Mean rank 1 3.9 2.8 10 8.2 9.6 6.1 4.5 6.1 6.8 4.2 7.5 9
Total ranking 1 3 2 12 9 11 6 5 6 7 4 8 10
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The performance ofMAand competitor algorithms in optimizing functions F1 toF23 is presented
in the form of boxplot diagrams in Fig. 2. Also, the effectiveness of MA and competitor algorithms
in obtaining the first rank of the best optimizer and solving the set of unimodal functions, high-
dimensional multimodal, and fixed-dimensional multimodal is presented in the form of the bar graphs
in Fig. 3. These charts visually show that MA has been ranked as the first best optimizer in 100% of
the objective functions in the mentioned sets.

Figure 2: (Continued)
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Figure 2: Boxplots of MA and competitor algorithms performances on the F1 to F23
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Figure 3: Bar graph of MA and competitor algorithms performances on the F1 to F23
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4.4 Evaluation of the CEC 2017 Test Suite

In this subsection, the performance of the proposed MA approach has been tested in optimizing
the CEC 2017 test suite benchmark functions. The CEC 2017 test suite has thirty benchmark functions
C17-F1 toC17-F30. TheC17-F2 function is not considered in the simulation studies due to its unstable
behavior. The optimization results of this test suite using MA and competitor algorithms are reported
in Table 6. Based on the optimization results, MA is the first best optimizer for functions C17-F1,
C17-F3 to C17-F6, C17-F8 to C17-F21, and C17-F23 to C17-F30. Analysis of the simulation results
shows that the proposed MA algorithm, by providing better results in most functions, has delivered
superior performance in optimization of the CEC 2017 test suite compared to competitor algorithms.
The effectiveness of the proposed MA approach and competitor algorithms in solving the CEC 2017
test suite is presented in Fig. 4. The visual analysis of these graphs shows that MA has been ranked as
the first-best optimizer in 92% of the functions of this test suite.

Table 6: Evaluation results of the CEC 2017 test suite
MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBBO GSA PSO GA

C17-F1
Avg 100 5448.254 2609.297 8.53E+09 1.22E+10 1.41E+09 4027220 7773.088 1644467 71474843 1018.466 516.7751 21102276
Std 1.7E-05 4872.753 2078.791 2.28E+09 2.81E+09 1.94E+09 1941308 3491.036 3136967 20225343 903.4716 605.5315 6453371
Rank 1 5 4 12 13 11 8 6 7 10 3 2 9

C17-F3
Avg 300 718.4464 309.6546 16366.7 10620.6 6486.396 3493.403 300.6303 1020.12 845.603 12712.89 708.8861 32974.59
Std 8.88E-11 593.2109 14.04486 1278.807 507.1204 3969.481 3779.991 0.027016 992.2169 84.21148 3684.697 806.7733 12565.83
Rank 1 5 3 12 10 9 8 2 7 6 11 4 13

C17-F4
Avg 400 404.5963 411.0693 762.0799 1329.035 598.4949 478.3435 405.7807 418.2254 419.9729 406.4805 406.4603 417.8162
Std 6.61E-08 3.056472 10.79775 263.8552 260.0972 161.9093 70.38746 0.559332 19.0207 11.57954 0.9126 4.934397 4.118445
Rank 1 2 6 12 13 11 10 3 8 9 5 4 7

C17-F5
Avg 510.9445 516.3407 556.8287 569.8813 590.7058 562.6056 538.9635 515.9566 511.7988 538.6003 554.3365 523.6805 533.9824
Std 3.589474 6.817304 28.42219 8.645956 21.09107 13.27814 7.949781 5.022443 0.30121 1.748629 11.64052 6.144633 13.77461
Rank 1 4 10 12 13 11 8 3 2 7 9 5 6

C17-F6
Avg 600.0006 602.5057 629.0535 650.2351 647.7861 630.4929 633.9744 601.8596 604.2087 609.1517 626.5182 616.7245 611.1823
Std 0.000106 0.869028 9.282709 2.195644 5.418509 17.90023 8.881193 0.487208 3.716772 2.660889 4.948045 15.72331 2.492215
Rank 1 3 9 13 12 10 11 2 4 5 8 7 6

C17-F7
Avg 722.5537 717.7378 773.3652 804.9964 807.5509 816.9533 788.5726 733.3692 741.8852 760.3543 718.5491 739.805 737.0977
Std 2.754451 4.802381 25.70196 1.837584 16.78011 48.47718 20.97234 8.726856 15.06105 8.166037 3.027647 21.55877 8.601992
Rank 3 1 9 11 12 13 10 4 7 8 2 6 5

C17-F8
Avg 807.9597 808.3296 831.0099 862.4313 849.9782 854.3809 847.4582 822.0418 814.6341 827.6841 828.7668 826.0252 822.4269
Std 1.794737 2.829137 8.062428 7.203307 8.365379 8.9807 6.166724 9.009571 4.138677 7.95629 1.864517 9.93155 6.406589
Rank 1 2 9 13 11 12 10 4 3 7 8 6 5

C17-F9
Avg 900 935.0944 1034.168 1530.759 1668.499 1466.187 1574.528 902.0567 918.6234 936.4737 901.8 903.2044 908.5793
Std 3.38E-08 43.21674 41.81114 162.3298 152.9708 377.5842 231.1458 0.286841 32.73898 25.70718 0 1.694174 2.118464
Rank 1 7 9 11 13 10 12 3 6 8 2 4 5

C17-F10
Avg 1379.646 1448.599 2216.291 2797.641 2615.554 2007.697 1826.678 1718.811 1799.504 1915.856 2785.793 2305.845 1624.998
Std 211.5795 185.4203 266.0006 191.6339 143.9072 335.6777 493.448 208.9451 364.2204 67.76721 383.299 477.6513 239.1756
Rank 1 2 9 13 11 8 6 4 5 7 12 10 3

C17-F11
Avg 1101.505 1126.453 1139.788 5337.953 1468.933 2471.929 1195.477 1143.356 1138.476 1141.471 1124.515 1133.854 3420.189
Std 1.269139 9.351585 9.209205 3721.554 120.0295 2242.55 27.35466 15.64004 10.6613 11.27831 1.087726 21.44905 4168.907
Rank 1 3 6 13 10 11 9 8 5 7 2 4 12

C17-F12
Avg 1264.785 7468 1876420 4.2E+08 3.61E+08 3106602 3697769 548252.1 1753782 3059993 541145 2073325 787895.9
Std 70.77641 3951.574 2825571 2.36E+08 2.42E+08 3940521 3837263 398111.2 2888611 1950729 234214.8 4042504 1175629
Rank 1 2 7 13 12 10 11 4 6 9 3 8 5

C17-F13
Avg 1305.286 1410.749 9335.84 48808051 158023.6 10852.69 11372.2 8952.713 7393.659 7835.741 12260.65 4030.027 17635.36
Std 3.253005 91.8257 4844.05 34687926 159470.4 4122.611 7246.567 11787.44 3628.673 3028.571 3224.931 2861.429 14292.38
Rank 1 2 7 13 12 8 9 6 4 5 10 3 11

C17-F14
Avg 1404.229 1421.576 4099.722 4180.239 1532.07 3454.497 3952.096 1455.049 4865.523 1557.597 5499.921 4834.248 5142.65
Std 3.247945 11.66315 3639.562 2144.977 18.78965 2202.283 1760.147 13.23297 550.3441 53.49639 2325.243 2269.872 2341.673
Rank 1 2 8 9 4 6 7 3 11 5 13 10 12

(Continued)



1718 CMES, 2023, vol.137, no.2

Table 6 (continued)

MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBBO GSA PSO GA

C17-F15
Avg 1500.466 1535.669 5500.962 18950.77 9998.102 8581.481 6278.955 2104.386 4307.278 1795.41 16812.02 7748.302 3175.22
Std 0.306769 15.43699 4281.135 7065.287 3448.643 8305.207 3561.047 708.5334 2121.008 62.23526 5117.109 7257.003 2658.747
Rank 1 2 7 13 11 10 8 4 6 3 12 9 5

C17-F16
Avg 1601.334 1683.232 1841.462 2172.515 2073.709 1981.934 1849.222 1766.712 1782.375 1706.716 2242.427 1991.839 1795.945
Std 0.862582 91.62543 144.9967 136.225 96.36129 220.7645 87.522 54.42363 184.3148 62.85258 175.7021 151.383 122.9042
Rank 1 2 7 12 11 9 8 4 5 3 13 10 6

C17-F17
Avg 1720.654 1752.82 1758.844 1885.033 1846.92 1937.379 1815.276 1781.881 1812.56 1764.681 1800.573 1769.714 1757.453
Std 1.727903 13.60695 26.56794 19.82602 59.27428 181.4092 44.08472 49.43639 78.18535 16.08293 87.91088 29.44371 5.50491
Rank 1 2 4 12 11 13 10 7 9 5 8 6 3

C17-F18
Avg 1800.479 1826.811 15340.91 23615012 65596574 30607.68 8020.974 21984.93 23524.13 36562.87 16400.59 15682.72 10677.83
Std 0.05863 14.06095 13427.33 35424891 71910858 22596.6 6123.919 3569.621 16918.14 26288.33 6379.593 12880.49 4442.434
Rank 1 2 5 12 13 10 3 8 9 11 7 6 4

C17-F19
Avg 1900.702 1913.454 12351.64 441147.9 5849.714 6886.935 197278.1 2194.503 4819.379 2141.324 35035.32 8300.611 7838.698
Std 0.427842 4.482875 12447.67 671766.4 4145.302 5888.936 366611.8 481.8209 4737.382 117.2737 12800.73 6128.356 5499.438
Rank 1 2 10 13 6 7 12 4 5 3 11 9 8

C17-F20
Avg 2019.37 2033.366 2129.624 2240.741 2274.791 2182.601 2232.391 2041.174 2082.864 2107.236 2378.645 2157.594 2062.76
Std 2.038897 18.03211 74.19837 41.57804 71.14648 110.5259 53.72554 23.65441 62.35375 59.39264 117.8283 32.63644 24.84904
Rank 1 2 7 11 12 9 10 3 5 6 13 8 4

C17-F21
Avg 2200 2291.547 2276.781 2293.98 2388.661 2357.99 2321.637 2297.953 2321.928 2308.287 2367.167 2306.049 2280.548
Std 1.53E-05 55.34638 78.81185 63.88033 10.38995 14.80519 49.37911 60.32195 3.591627 65.14029 11.75605 64.26354 68.08475
Rank 1 4 2 5 13 11 9 6 10 8 12 7 3

C17-F22
Avg 2300.224 2314.831 2303.985 3237.317 2903.671 2511.896 2294.845 2308.597 2314.282 2323.166 2304.7 2692.041 2322.973
Std 0.269337 2.109835 17.6283 278.36 330.9787 157.9215 23.87328 1.378707 11.26983 6.558206 0.197455 457.4206 2.687915
Rank 2 7 3 13 12 10 1 5 6 9 4 11 8

C17-F23
Avg 2609.635 2645.705 2634.449 2722.862 2723.433 2718.165 2650.951 2632.754 2632.614 2638.827 2744.996 2645.45 2664.474
Std 1.438651 31.83799 16.747 24.70995 25.64097 43.81511 12.68692 9.625373 7.650694 7.34203 13.70838 11.61482 10.10757
Rank 1 7 4 11 12 10 8 3 2 5 13 6 9

C17-F24
Avg 2525.171 2754.51 2785.302 2883.228 2864.007 2735.114 2770.687 2760.304 2743.654 2773.51 2584.442 2731.396 2663.883
Std 49.73738 12.37697 25.86773 38.34163 65.95106 139.95 8.17377 16.69422 4.298292 5.820181 156.9782 151.954 140.8002
Rank 1 7 11 13 12 5 9 8 6 10 2 4 3

C17-F25
Avg 2823.318 2930.355 2930.764 3334.08 3601.275 3072.219 2949.671 2927.476 2952.861 2976.754 2949.306 2931.062 2959.25
Std 147.0641 28.35548 29.67163 18.93201 167.8605 137.7503 37.03455 26.73677 8.759469 39.27112 0.035844 24.68336 4.992824
Rank 1 3 4 12 13 11 7 2 8 10 6 5 9

C17-F26
Avg 2850.001 2980.052 3102.972 4220.038 4353.33 4228.957 3647.311 3157.326 3150.046 2966.358 3502.279 2932.257 3061.582
Std 57.04117 37.36052 168.5553 277.532 215.2719 514.5373 527.3119 496.7817 482.2802 29.75685 805.1704 96.24618 125.6092
Rank 1 4 6 11 13 12 10 8 7 3 9 2 5

C17-F27
Avg 3089.072 3109.342 3109.977 3166.764 3159.247 3204.307 3137.73 3097.685 3122.9 3100.388 3242.941 3142.068 3136.073
Std 0.149314 5.469064 1.052491 15.78007 23.80812 75.64033 47.71376 2.375189 37.85936 1.927928 23.26766 30.23941 8.668241
Rank 1 4 5 11 10 12 8 2 6 3 13 9 7

C17-F28
Avg 3100 3223.421 3340.534 3749.113 3791.321 3395.719 3286.578 3355.456 3345.938 3359.479 3489.174 3255.45 3405.515
Std 5.84E-05 119.8243 154.348 155.3563 95.98989 115.4105 94.5982 88.76547 71.58004 117.4031 24.00222 170.6543 161.0559
Rank 1 2 5 12 13 9 4 7 6 8 11 3 10

C17-F29
Avg 3146.525 3165.086 3256.773 3447.096 3431.013 3309.431 3446.593 3228.585 3208.791 3223.425 3502.994 3254.785 3230.251
Std 9.568595 10.40137 71.65968 169.8153 67.29951 77.04566 152.4582 116.6436 62.75773 19.0736 263.8243 35.43839 36.41003
Rank 1 2 8 12 10 9 11 5 3 4 13 7 6

C17-F30
Avg 3400.543 5068.011 1169501 11422827 9796336 6556000 450834.7 739073.4 766163.8 397371.5 1737204 562674.6 2889564
Std 8.742004 1555.344 580777.1 6852472 7455823 7292446 475610.2 839365.2 737649 703017.7 2083052 737836.8 2687823
Rank 1 2 8 13 12 11 4 6 7 3 9 5 10

Sum rank 32 94 192 343 330 288 241 134 175 187 244 180 199
Mean rank 1.103448 3.241379 6.62069 11.82759 11.37931 9.931034 8.310345 4.62069 6.034483 6.448276 8.413793 6.206897 6.862069
Total rank 1 2 7 13 12 11 9 3 4 6 10 5 8
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Figure 4: Bar graph of MA and competitor algorithms performances on the CEC 2017 test suite

4.5 Statistical Analysis

In this subsection, statistical analysis is presented on the performance of MA and competitor
algorithms to determine whether the superiority of the proposed approach is significant from a
statistical point of view. Wilcoxon sign-rank test [79] statistical analysis is employed for this purpose.
Wilcoxon sign-rank test is a non-parametric test used to determine the significant difference between
the averages of two data samples. In this test, the presence or absence of a substantial difference is
determined using an index called “p-value”.

The results of implementing Weil’s statistical analysis on the performance of MA compared to
each of the competing algorithms are presented in Table 7. Based on the obtained results, in cases
where the p-value is less than 0.05, the proposed MA approach has a significant statistical advantage
compared to the corresponding competing algorithm.

Table 7: Obtained results from the Wilcoxon sum-rank test

Compared algorithms Unimodal High-multimodal Fixed-multimodal CEC 2017 test suite

MA vs. WSO 1.85E-24 1.97E-21 3.68E-06 6.44E-17
MA vs. AVOA 3.02E-11 4.99E-05 2.56E-21 5.92E-21
MA vs. RSA 4.25E-07 1.63E-11 1.44E-34 1.97E-21
MA vs. MPA 1.01E-24 1.04E-14 2.09E-34 1.97E-21
MA vs. TSA 1.01E-24 1.31E-20 1.44E-34 1.97E-21
MA vs. WOA 2.44E-24 6.13E-11 1.44E-34 5.64E-21
MA vs. MVO 1.01E-24 1.97E-21 1.44E-34 4.98E-21
MA vs. GWO 1.01E-24 5.34E-16 1.44E-34 4.85E-21
MA vs. TLBO 1.01E-24 6.98E-15 1.44E-34 1.97E-21
MA vs. GSA 1.01E-24 1.97E-21 4.64E-13 3.86E-19
MA vs. PSO 1.01E-24 1.97E-21 3.92E-17 7.58E-20
MA vs. GA 1.01E-24 1.97E-21 1.44E-34 2.02E-21
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5 Application of MA to Real-World Problems

In this section, the effectiveness of the proposedMAapproach in solving real-world applications is
evaluated. For this purpose, MA is employed in the optimization of four engineering design problems,
including tension/compression spring (TCS) design, welded beam (WB) design, speed reducer (SR)
design, and pressure vessel (PV) design. The full description andmathematicalmodel of these problems
are provided for TCS in [80], WB in [80], SR in [81,82], and PV in [83].

The results of implementing the proposedMA approach and competing algorithms on these four
engineering problems are reported in Table 8. The optimization results show that the proposed MA
approach has provided the optimal solution for the TCS problemwith the values of the design variables
equal to (0.051689, 0.356718, 11.28897) and the value of the corresponding objective function is equal
to 2996.348. MA has presented the optimal design of the WB problem with optimal values of the
design variables equal to (0.20573, 3.470489, 9.036624, 0.20573) and the value of the corresponding
objective function equal to 5882.901. In optimizing the SR problem, the proposed MA approach has
provided the optimal design with the optimal values of the design variables equal to (3.5, 0.7, 17,
7.3, 7.8, 3.350215, 5.286683) and the value of the corresponding objective function equal to 1.724852.
In dealing with the PV problem, the MA has provided the optimal design with the found values of
the design variables equal to (0.778027, 0.384579, 40.31228, 200) and the value of the corresponding
objective function equal to 0.012665. The analysis of the simulation results shows that the proposed
MA approach by providing better outcomes for statistical indicators and more suitable designs for
engineering problems has delivered superior performance compared to competitor algorithms. The
simulation results show that the proposed MA approach has effective performance in real-world
handling applications. The efficiency of MA and competitor algorithms in dealing with engineering
design problems is drawn as bar graphs in Fig. 5. The visual analysis of these graphs indicates that
MA was the first best optimizer in 100% of the investigated engineering problems (including four
problems).

Table 8: Evaluation results of real-world applications
DP MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

Mean 2996.348 2996.351 3001.892 3254.038 2996.348 3032.837 3276.675 3035.441 3005.299 5.44E+13 3561.954 1.45E+14 9.81E+13
Best 2996.348 2996.348 2996.351 3103.959 2996.348 3014.196 3009.707 3005.881 2999.371 4672.036 3296.523 4948.149 4462.424

TCS Worst 2996.348 2996.369 3009.676 3363.873 2996.348 3051.492 4667.37 3071.27 3012.814 2.49E+14 4250.992 7.02E+14 6.95E+14
Std 9.35E−13 0.004769 4.33969 64.50182 8.82E−06 9.086276 451.4213 17.96723 3.663097 6.56E+13 235.7865 2E+14 1.57E+14
Median 2996.348 2996.349 3001.809 3243.146 2996.348 3032.381 3143.825 3036.836 3005.224 2.83E+13 3522.305 4.11E+13 5.47E+13
Rank 1 3 4 8 2 6 9 7 5 11 10 13 12

Mean 5882.901 5882.914 6278.229 10968.96 5882.901 6247.711 7903.704 6520.619 6078.76 30630.33 22626.22 45671.21 34486.36
Best 5882.901 5882.901 5882.909 6663.599 5882.901 5911.724 6392.426 5931.347 5889.819 14279.64 6845.673 15910.56 13646.15

WB Worst 5882.901 5883.162 7316.027 20408.23 5882.901 7377.195 10589.99 7269.453 7177.259 46757.48 48860.27 96299.35 62432.29
Std 1.87E−12 0.058514 414.0676 3052.863 3.22E−05 431.0263 1310.97 369.9664 375.1106 9473.362 11116.72 22564.51 11511.76
Median 5882.901 5882.901 6199.966 10557.51 5882.901 5990.947 7409.241 6492.134 5907.476 29767.04 21605.73 38252.71 33157.34
Rank 1 3 6 9 2 5 8 7 4 11 10 13 12

Mean 1.724852 1.724852 1.747098 2.319169 1.724852 1.744186 2.463605 1.746994 1.727296 2.79E+13 2.364869 7.46E+13 6.22E+12
Best 1.724852 1.724852 1.724899 1.937455 1.724852 1.733362 1.798388 1.729715 1.725573 2.00194 1.774802 2.756985 2.647148

SR Worst 1.724852 1.724852 1.805932 4.009434 1.724852 1.751246 4.554507 1.781098 1.731518 4.71E+14 2.667656 9.04E+14 1.21E+14
Std 6.85E−16 1.09E−10 0.024366 0.43966 2.59E−08 0.005629 0.806302 0.014574 0.001752 1.05E+14 0.219963 2.14E+14 2.7E+13
Median 1.724852 1.724852 1.738136 2.226703 1.724852 1.745158 2.06409 1.743206 1.726559 5.103654 2.377888 5.414863 5.296107
Rank 1 2 7 8 3 5 10 6 4 12 9 13 11

Mean 0.012665 0.012666 0.013018 0.017829 0.012665 0.012935 0.013487 0.017115 0.012722 0.018439 0.020159 3.97E+13 0.024713
Best 0.012665 0.012665 0.012667 0.01307 0.012665 0.012717 0.01269 0.012915 0.01269 0.017845 0.01432 0.017773 0.018482

PV Worst 0.012665 0.012671 0.014139 0.093677 0.012665 0.013343 0.015486 0.01809 0.012743 0.019051 0.025478 3.97E+14 0.034116
Std 9.77E−19 1.33E−06 0.000415 0.018046 3.37E−09 0.000156 0.000945 0.001561 1.19E−05 0.000362 0.003595 1.23E+14 0.004044
Median 0.012665 0.012665 0.012856 0.013267 0.012665 0.012943 0.013139 0.017804 0.012726 0.018378 0.019806 0.017773 0.023866

(Continued)
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Table 8 (continued)

DP MA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
Rank 1 3 6 9 2 5 7 8 4 10 11 13 12

Sum rank 4 11 23 34 9 21 34 28 17 44 40 52 47
Mean rank 1 2.75 5.75 8.5 2.25 5.25 8.5 7 4.25 11 10 13 11.75
Total ranking 1 3 6 8 2 5 8 7 4 10 9 12 11

Figure 5: Bar graph of MA and competitor algorithms performances on the engineering problems

6 Conclusion and Future Works

In this paper, a new human-based metaheuristic algorithm called Migration Algorithm (MA)
was introduced to solve optimization problems in various sciences. Human activities in the migration
process are the fundamental inspiration in MA design. The proposed approach was mathematically
modeled based on the simulation of two strategies of choosing the migration destination and adapting
to the new environment in two phases of exploration and exploitation. Fifty-two standard benchmark
functions including unimodal, multimodal, and the CEC 2017 test suite were employed to evaluate
MA performance in solving optimization problems. The optimization results showed that the proposed
MA approach with high ability in exploration and exploitation has a favorable performance in opti-
mization. The quality of MA was compared with the performance of twelve well-known metaheuristic
algorithms. The results obtained from solving the unimodal functions showed that MA had provided
high efficiency in 100% of the functions of this set by winning the first rank. The findings obtained
from optimizing unimodal functions showed that MA is highly capable of exploitation and local
search. The results of solving high-dimensional multimodal functions indicated the 100% efficiency of
the proposed approach and the high capability of MA in exploration and global search. The results
of solving fixed-dimensional multimodal functions show 100% efficiency of the proposed approach
in getting the rank of the first best optimizer compared to competitor algorithms. The findings
obtained from solving the CEC 2017 test suite showed that MA was ranked the first-best optimizer
in 92% of the functions of this test suite. Also, the Wilcoxon sign-rank statistical analysis showed
that the superiority of the proposed MA approach against competitor algorithms is significant from a
statistical point of view. The simulation results showed that the proposed approach with a high ability
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to balance exploration and exploitation has a superior and far more competitive performance against
the compared algorithms. Moreover, the implementation of MA on four engineering design problems
indicated the effective performance of the proposed approach in handling real-world applications.

Introducing the proposed MA approach enables several research topics for further studies. One
of the most special research potentials for future works is the design of binary and multi-objective
versions of the proposed approach. Employing MA in optimization problems in different sciences as
well as optimization tasks in real-world applications are other research suggestions for future work.
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39. Dehghani,M., Hubálovský, Š., Trojovský, P. (2021). Cat andmouse based optimizer: A new nature-inspired
optimization algorithm. Sensors, 21(15), 5214. https://doi.org/10.3390/s21155214

40. Dehghani, M., Mardaneh, M., Malik, O. P., NouraeiPour, S. M. (2019). DTO: Donkey theorem optimiza-
tion. Proceedings of the 27th Iranian Conference on Electrical Engineering (ICEE2019), pp. 1855–1859.
Yazd, Iran. https://doi.org/10.3390/math9111190

41. Zeidabadi, F. A., Doumari, S. A., Dehghani, M., Montazeri, Z., Trojovský, P. et al. (2022b). AMBO: All
members-based optimizer for solving optimization problems. Computers, Materials & Continua, 70(2),

2905–2921. https://doi.org/10.32604/cmc.2022.019867
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Appendix A. Objective Functions

The information of the objective functions used in the simulation section is specified in Tables A1
to A4.

Table A1: Unimodal objective functions

F1 (x) =
m
∑

i=1

x2
i

[−100, 100]m

F2 (x) =
m
∑

i=1

|xi| +
m
∏

i=1

|xi| [−10, 10]m

F3 (x) =
m
∑

i=1

(

i
∑

j=1

xi

)2

[−100, 100]m

F4 (x) = max {|xi| , 1 ≤ i ≤ m} [−100, 100]m

F5 (x) =
m−1
∑

i=1

[

100
(

xi+1 − x2
i

)2 + (xi − 1)2)
]

[−30, 30]m

F6 (x) =
m
∑

i=1

⌊xi + 0.5⌋2 [−100, 100]m

F7 (x) =
m
∑

i=1

ix4
i
+ random (0, 1) [−1.28, 1.28]m

https://doi.org/10.1115/1.2919393
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Table A2: High-dimensional objective functions

F8 (x) =
m
∑

i=1

−xi sin
(

√

|xi|
)

[−500, 500]m

F9 (x) =
m
∑

i=1

[

x2
i
− 10 cos (2πxi) + 10

]

[−5.12, 5.12]m

F10 (x) = −20 exp



−0.2

√

√

√

√

1

m

m
∑

i=1

x2
i



− exp

(

1

m

m
∑

i=1

cos (2πxi)

)

+ 20 + e [−32, 32]m

F11 (x) = 1

4000

m
∑

i=1

x2
i
−

m
∏

i=1

cos
(

xi√
i

)

+ 1 [−600, 600]m

F12 (x) = π

m

{

10 sin (πy1) +
m
∑

i=1

(yi − 1)2
[

1 + 10 sin2
(πyi+1)

]

+ (yn − 1)2
}

+
m
∑

i=1

u (xi, 10, 100, 4)

where yi = 1 + 1 + xi

4
, u (xi, a, i, n) =











k (xi − a)
n , xi > −a;

0,−a ≤ xi ≤ a;

k (−xi − a)
n , xi < −a,

[−50, 50]m

F13 (x) = 0.1
{

sin2
(3πx1) +

m
∑

i=1

(xi − 1)2
[

1 + sin2
(3πxi + 1)

]

+ (xn − 1)2
[

1 + sin2
(2πxm)

]

}

+
m
∑

i=1

u (xi, 5, 100, 4)

[−50, 50]m

Table A3: Fixed-dimensional objective functions

F14 (x) =
(

1

500
+

25
∑

j=1

1

j +
∑2

i=1

(

xi − aij
)6

)−1

[−65.53, 65.53]2

F15 (x) =
11
∑

i=1

[

ai −
x1

(

b2
i
+ bix2

)

b2
i
+ bix3 + x4

]2

[−5, 5]4

F16 (x) = 4x2
1 − 2.1x4

1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5]2

F17 (x) =
(

x2 − 5.1

4π 2
x2

1 + 5

π
x1 − 6

)2

+ 10
(

1 − 1

8π

)

cos x1 + 10 [−5,10]× [0,15]

(Continued)
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Table A3 (continued)

F18 (x) =
[

1 + (x1 + x2 + 1)2
(

19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

)]

×
[

30 + (2x1 − 3x2)
2
(

18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)]

[−5, 5]2

F19 (x) = −
4
∑

i=1

ci exp

(

−
3
∑

j=1

aij
(

xj − Pij

)2

)

[0, 1]3

F20 (x) = −
4
∑

i=1

ci exp

(

−
6
∑

j=1

aij
(

xj − Pij

)2

)

[0, 1]6

F21 (x) = −
5
∑

i=1

[

(X − ai) (X − ai)
T + 6ci

]−1
[0, 10]4

F22 (x) = −
7
∑

i=1

[

(X − ai) (X − ai)
T + 6ci

]−1
[0, 10]4

F23 (x) = −
10
∑

i=1

[

(X − ai) (X − ai)
T + 6ci

]−1
[0, 10]4

Table A4: The CEC 2017 test suite objective functions

Functions fmin

C1 Shifted and Rotated Bent Cigar Function 100
C2 Shifted and Rotated Sum of Different Power Function 200
C3 Shifted and Rotated Zakharov Function 300
C4 Shifted and Rotated Rosenbrock’s Function 400
C5 Shifted and Rotated Rastrigin’s Function 500
C6 Shifted and Rotated Expanded Scaffer’s Function 600
C7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700
C8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
C9 Shifted and Rotated Levy Function 900
C10 Shifted and Rotated Schwefel’s Function 1000
C11 Hybrid Function 1 (N = 3) 1100
C12 Hybrid Function 2 (N = 3) 1200
C13 Hybrid Function 3 (N = 3) 1300
C14 Hybrid Function 4 (N = 4) 1400
C15 Hybrid Function 5 (N = 4) 1500
C16 Hybrid Function 6 (N = 4) 1600
C17 Hybrid Function 6 (N = 5) 1700
C18 Hybrid Function 6 (N = 5) 1800

(Continued)
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Table A4 (continued)

Functions fmin

C19 Hybrid Function 6 (N = 5) 1900
C20 Hybrid Function 6 (N = 6) 2000
C21 Composition Function 1 (N = 3) 2100
C22 Composition Function 2 (N = 3) 2200
C23 Composition Function 3 (N = 4) 2300
C24 Composition Function 4 (N = 4) 2400
C25 Composition Function 5 (N = 5) 2500
C26 Composition Function 6 (N = 5) 2600
C27 Composition Function 7 (N = 6) 2700
C28 Composition Function 8 (N = 6) 2800
C29 Composition Function 9 (N = 3) 2900
C30 Composition Function 10 (N = 3) 3000
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