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ABSTRACT

With the increasing popularity of artificial intelligence applications, machine learning is also playing an increasingly
important role in the Internet of Things (IoT) and the Internet of Vehicles (IoV). As an essential part of the IoV,
smart transportation relies heavily on information obtained from images. However, inclement weather, such as
snowy weather, negatively impacts the process and can hinder the regular operation of imaging equipment and the
acquisition of conventional image information. Not only that, but the snow also makes intelligent transportation
systems make the wrong judgment of road conditions and the entire system of the Internet of Vehicles adverse.
This paper describes the single image snow removal task and the use of a vision transformer to generate adversarial
networks. The residual structure is used in the algorithm, and the Transformer structure is used in the network
structure of the generator in the generative adversarial networks, which improves the accuracy of the snow removal
task. Moreover, the vision transformer has good scalability and versatility for larger models and has a more
vital fitting ability than the previously popular convolutional neural networks. The Snow100K dataset is used for
training, testing and comparison, and the peak signal-to-noise ratio and structural similarity are used as evaluation
indicators. The experimental results show that the improved snow removal algorithm performs well and can obtain
high-quality snow removal images.
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1 Introduction

Artificial intelligence’s recent rapid development has driven the Internet of Things [1,2]. At the
same time, with the development of the automobile industry and the increasing number of vehicles,
vehicle safety and management issues have become increasingly important. The Internet of Vehicles
can improve the efficiency of road traffic and make it possible to exchange information between
vehicles [3,4]. As a considerable part of the Internet of Things, the Internet of Vehicles can use
multiple communication technologies for data interconnection. Specifically, based on the Internet
of Vehicles technology, through the camera, radar and other sensors [5], the information of vehicles,
people and roads can be scanned, and the real-time detection and sharing of vehicle information, road
traffic and personnel information can be realized. Therefore, vehicle networking technology can learn
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multiple connections between vehicles and roads, vehicles and people, and vehicles and vehicles. The
Internet of Vehicles can facilitate travel while ensuring the safety of people, cars and roads. In many
information collection methods, the sensor of machine vision technology can take the lead in cost,
interactivity and other aspects, so it has been a broad concern by researchers. Therefore, individual
vehicles in the Internet of Vehicles need to have the ability to extract information from visual data,
which is indispensable, such as pedestrian detection and recognition. Vision-based traffic information
extraction generally requires high-quality acquired data.

Most information obtained based on vision is the number of vehicles and pedestrians, vehicle
license plate number and traffic signs. These are collectively referred to as traffic images, which
contain a large amount of primary information. This information is of great significance for intelligent
transportation and autonomous driving. Most of the vehicle scenarios are outdoors. However, the
impact of bad weather is particularly significant. For example, on snowy days, the size of snowflakes
changes significantly, which usually causes different degrees of occlusion to the image, which may cause
the reduction of image quality, thus affecting the regular operation of vision-based sensors. For tasks
requiring high precision, such as intelligent transportation or automatic driving, the wrong signal of
the visual sensor may cause very severe consequences.

In daily life, the main ways people obtain information are visual and auditory, so it is crucial
to get clear images. Image degradation caused by lousy weather is widespread, and this kind of
weather significantly impacts human vision. For example, visibility is abysmal when driving in heavy
snow, rain or fog, which easily causes traffic accidents. In some monitoring systems, the blurring of
the image can also cause the degradation of the computer recognition performance and thus create
unpredictable dangers. In recent years, with the continuous development of computer vision, restoring
blurred images, especially those caused by bad weather, is in full swing. Snow is typically lousy weather
in daily weather, coupled with the complexity and difficulty of calculation recognition caused by the
different morphology and opacity. So, snow removal from a single image is a research work of practical
significance.

Image degradation caused by bad weather is usually due to atmospheric particle noise such as
fog, rain and snow. In the traditional image snow or rain removal algorithm, Luo et al. [6] proposed
an algorithm based on image decomposition to separate rain through sparse coding and dictionary
learning. Kim et al. [7] proposed an adaptive rain pattern algorithm. Chen et al. [8] proposed a rain-
grain removal method based on Error Optimized Sparse Representation Model (EOSR). Finally,
Li et al. [9] proposed a Gaussian mixture model for image rain removal. All of the above methods are
model-driven rain removal algorithms, which use the known prior knowledge such as the direction,
size and density of rain grain to establish the rain removal model and then design and optimize the
algorithm to obtain relatively clear rain-free images. With the development of deep learning, the data-
based rain removal algorithm has become more and more mainstream. For example, JORDER [10]
proposed a rain model based on location and regional distribution. Fu et al. [11] tried to remove
rain lines through a deep convolutional neural network (DerainNet). After that, many CNN-based
methods have been proposed, such as [12,13], which use labels to learn nonlinear mappings.

In the study of single-image haze removal, Tian [14] removed haze locally by maximizing blurred
images; Fattal et al. [15] inferred the blurred image’s projection medium by estimating the scene’s
albedo to eliminate the blur. Huang et al. [16] proposed the Laplacian visibility restoration technology
to refine the projection graph and solve the colour transmission problem. However, this traditional
hand-made method is influenced by the prior clues, and the restored images could be better. Some
recent deep learning-based algorithms focus on learning the mapping between blurred pictures and
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their corresponding clear images, which are more effective than traditional methods. The dehazing
algorithm for a single image is devoted to extracting global features, which usually restores the blur of
the whole area.

Finally, a separate model algorithm is usually proposed to remove snow particles from a single
image. Unlike rain and fog particles, which are highly similar in their characteristics, transparency,
and trajectories, snow particles have a more complex variation in shape and size. Traditional snow
removal methods include [17,18], etc. Similar to the rain and fog removal model, the known prior
information is used to decompose frequency features and other image-based decomposition methods.
Liu et al. [19] first proposed a single-image snow removal network based on deep learning, which can
be divided into two stages: residual restoration and translucent restoration. Then Zhang et al. [20]
proposed a Deep Dense Multi-scale network (DDMSNet) using semantics and depth priors for snow
removal.

Before being introduced into the field of computer vision, Transformer [21] was an important
neural network model in the field of natural language processing. The success of Visual Transformer
(ViT) [22] also borrows heavily from its application in the field of natural language processing.
Dosovitskiy et al. [22] first introduced the Transformer structure into the visual realm and outper-
formed convolutional neural networks. Subsequently, the application of Transformer in vision covered
many research fields [23–27]. In terms of low-level vision tasks, Transweather [28] and Restormer [29]
have achieved quite good image restoration by combining convolutional neural networks with visual
transformers.

Influenced by deep learning and generative adversarial network, the generator network structure
of the traditional GAN is improved in this paper to incorporate the transformer attention mechanism.
A variety of Loss functions, such as SSIM Loss, MSE Loss and adversarial Loss, are applied to improve
the quality of snow removal images. The effectiveness of the proposed enhanced network structure
is verified by the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) on the
Snow100K dataset.

2 Related Works
2.1 Degraded Image Formation

The early formula for rainy and snowy image can be expressed in Eq. (1):

O = B + S (1)

O represents an image with noise, B represents a clean background layer, and S represents a noise
(rain streaks or snowflakes) layer. But this model can lead to excessive smoothing where there are
multiple densities and no noise in an image. Later, researchers put forward a new model, which can be
expressed in Eq. (2):

O = B + SR (2)

where R represents some values of 0 or 1, representing different regions, respectively, 0 represents
non-noise regions, and 1 represents noisy regions. Furthermore, due to the superposition of rain
streaks in extreme weather conditions, more complex models are needed to represent them. The models
representing multiple rain streaks are shown in Eq. (3):
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O = α

(
B +

s∑
t=1

St

)
+ (1 − α) A (3)

where t is the index of the rain-streak layers, A is the global atmospheric light, α is the atmospheric
transmission.

The model for snowy image particles adopted in this paper is shown in Eq. (3). Suppose that image
I with snowflake noise is composed of a snow-free image y and an independent snow mask z. Then,
the image with snowflake noise can be described in Eq. (4):

I = (1 − z) ◦ y + A ◦ r (4)

among them, ◦ represents the multiplication of elements between matrices, I ∈ RC×M×N represents
the image occluded by snow particles, y ∈ RC×M×Nrepresents the clean background layer, r ∈
RC×M×Nrepresents the snow particle layer, and A ∈ (0, 1)

C×M×Nrepresents the transparency matrix.

2.2 Transformer Model
The transformer model was proposed in [21], including two parts: encoder and decoder, as

shown in Fig. 1. The encoder part is composed of a multi-head self-attention mechanism and a fully
connected feedforward network. Residual connection and Layer normalization operations are used
in each module. Instead of using the recurrent neural network in the encoder, there is a self-attention
mechanism. The calculation method can be described in Eq. (5):

Attention (Q, K, V) = softmax
(

QKT

√
dk

)
V (5)

where Q represents the query matrix, K represents the key value matrix, V represents the value matrix,
and dividing by

√
dk is more convenient. The multi-head self-attention mechanism comprises multi-

group attention mechanisms, which extract and splices the relationships among Q, K, V . The formula
can be described as follows:

MultiHead (Q, K, V) = Concat (head1, headn) W ◦

whereheadi = AttentionQW Q
i , KW K

i , VW V
i

(6)

where W Q
i ∈ Rdmodel∗dq , W K

i ∈ Rdmodel∗dk , W V
i ∈ Rdmodel∗dv , W O ∈ Rhdv∗dmodel , dmodel represents the number of

hidden units of the model. headi illustrates the transformation matrix of the heads.

Figure 1: Structure of transformer
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The Add & Norm layer consists of add and norm, which the formula can be expressed as:

LayerNorm (X + MultiHeadAttention (X))

LayerNorm (X + FeedForward (X))
(7)

X indicates the input of Multi-Head Attention or Feed Forward Network, and FeedForward (X)

and MultiHeadAttention (X) illustrate the output. Add represents X +MultiHeadAttention (X), which
is a residual connection. Norm represents Layer Normalization.

The feed forward network module of the framework comprises a two-layer full connection and
RELU activation function. The formula can be described as follows:

FFN (x) = max (0, xW1 + b1) W2 + b2 (8)

where b1 and b2 are different bias, W1 and W2 are different weights.

2.3 Generative Adversarial Network
The GAN [30] is an unsupervised learning model consisting of generator and discriminator, as

shown in Fig. 2. The generator is constantly optimized to generate more realistic simulated data to
deceive the discriminator. Meanwhile, the discriminator is updated and iterated to make its judgment
more accurate. Eq. (8) can describe the antagonistic relationship between these two:

minGmaxDV (D, G) = Ex∼Pdata(x)
[logD (x)] + Ez∼Pdata(z)

[(1 − logD (G (z)))] (9)

among them, x represents the input real data, z illustrates the input noisy data (gaussian noise),
Ex∼Pdata(x) means the expectation of the input real data, D (·) represents the output of the discriminator,
and G (·) represents the output of the generator.

Figure 2: Structure of traditional GAN

Generative adversarial networks have been widely used in many deep learning tasks since their
inception. With the in-depth study, the generative adversarial network also has many variants,
including DCGAN [31], WGAN [32], CGAN [33], improved WGAN [34] and other network models.
DCGAN combines a GAN network with convolutional neural networks for the first time to improve
the stability of the network and has achieved very good results in the field of image processing. WGAN
theoretically explains the EM distance and solves the disadvantage of instability in the training process
of the GAN. The improved WGAN uses the gradient penalty instead of weight clipping and can
generate higher-quality samples while accelerating convergence. CGAN can generate real samples
that meet the constraints, which further improves the performance of generative adversarial networks.
Compared with traditional generative adversarial networks, conditional generative adversarial net-
works input additional conditional variables into discriminators and generators, so they can avoid
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pattern collapse to a certain extent and make the generated images more realistic. For the underlying
vision task, the conditional generative adversarial network behaves as feeding a degraded image into
the generator. For example, for a single image rain pattern removal task, the input image received
by the generator is a rain pattern attachment image; For single-image desnow task, the input image
is the snowflake attachment image, not random noise. In this paper, we use conditional generative
adversarial network to recover sharp images in an end-to-end manner, and in order to take into account
the overall performance of the model, the WGAN network model is adopted simultaneously.

2.4 U-Net
The U-Net [35] structure was first proposed to be applied in medical image segmentation. This

network structure can effectively extract context information and location information. The network
structure diagram is shown in Fig. 3. The left side of the structure (encoder) is the feature extraction
part, that is, the convolution and pooling operations. The second part (decoder) is for up-sampling
processing and feature stitching. The model can extract different spatial scale features when processing
image features. At the same time, the low-resolution image features can be fused and stacked with the
up-sampled high-resolution features by skip connection, and the rich multi-scale features can finally
be obtained.

Due to its ability to extract multi-scale features and simple implementation, the U-Net network
model has been widely used in various low-level tasks, such as image restoration, and has achieved
excellent performance.

Figure 3: Structure of U-Net. As a symmetric neural network, U-Net can first extract the abstract
features of the input image, compress them, and then gradually obtain the feature information that
needs to be output at a specific size



CMES, 2023, vol.137, no.2 1981

3 Proposed Method
3.1 Network Structure of the Generator and Discriminator

Inspired by the attention module and U-Net, the network structure of the generator proposed in
this paper is shown in Fig. 4. Enter a 256 × 256 color image with three channels, after the convolution
operation with a convolution kernel size of 7 × 7 and a step size of 1, two downsampling operations
are performed, and the number of channels becomes 256. Then the patch embedding operation is
performed, and the output image is generated after 5 Transformer Block structures, two layers of
upsampling and one layer of convolution. Finally, the predicted residual image and the input image
are added globally by element and output as an RGB image.

Figure 4: Structure of generator. The features in the input picture are first extracted by a multi-
layer convolutional neural network, then further processed by the Transformer module stacked in the
middle, and finally upsampled by a multi-layer convolutional neural network to obtain a clear image
after removing snowflakes

This paper uses the classical PatchGAN [33] as the discriminator. In the original GAN, the
discriminator is designed to output only one evaluation value, which is the overall evaluation of the
image generated by the generator. PatchGAN is a discriminator that punishes only within the range
of patches. It performs a convolution operation on images and classifies each n × n patch in the image
to judge whether they are true or false. PatchGAN designed five convolution layers to superimpose
patches and expand the receptive field to 70 times. See Fig. 5 for details, the image is effectively
modelled as a Markov random field, which can retain the high resolution and details of the image.
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Figure 5: Structure of PatchGAN

3.2 Loss Function
The choice of loss function has a great influence on the training result. This paper uses a

combination of different loss functions to improve the performance. In this paper, MSE loss function
is used, which is expressed in Eq. (10):

Lmse = 1
N

N∑
i=1

|y − f (x)|2
2 (10)

where N represents the number of sample data, y represents the actual value of the sample, and f (x)

represents the predicted value of the sample.

The SSIM loss in [36] is used to enhance further and refine the structure awareness of the network
model, which can be expressed in Eq. (11):

LSSIM = 1 − SSIM(f (x), y) (11)

The perceptual loss [37] measures the gap between the feature maps of restored images and clear
images after VGG-19 [38] conv3.3. It can be expressed in Eq. (12):

LPerp = 1
Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(
�i,j

(
IS

)
x,y

− �i,j

(
GθG

(
IB

))
x,y

)2

(12)

where Φi,j is the feature map obtained by the convolution layer within the VGG19 [38] network and
Wi,jHi,j are the dimensions of the feature maps.
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The loss function of the generator and discriminator of the generative adversarial network can be
defined in Eq. (13):

LADV = −D (f (x))

LGenerator = LADV

LDiscriminator = Ef (x)∼PG
[D (f (x))] − Ey∼Pr [D (y)] (13)

where D represents the discriminator model, and PG represents the distribution of generators, and Pr

represents the distribution of actual data.

4 Experimental Results and Analysis
4.1 Experimental Details

The comparison and ablation experiments in this paper are carried out on the server configured
as NVIDIA RTX3060. The server system is CentOS7, and the overall framework is Pytorch. Adam
optimizer is used in ablation experiments and comparison experiments. Among them, the initial
learning rate of the ablation experiment part is 1e−4, with 200 epochs of training. The learning rate
warm-up is used to prevent the network from over fitting. The batch is set to 8, and the image size is
128 × 128. In the final experiment, the learning rate is 2e−4, the batch is set to 4, and the image size
is 256 × 256. The learning rate is attenuated by cosine annealing. After several iterations of training,
the final learning rate is linearly attenuated to 10−6. In the training process, the images are flipped
randomly, horizontally and vertically to increase the generalization performance and robustness of
the model. The structure similarity and peak signal-to-noise ratio are used as evaluation indexes. This
paper uses Snow100K data set to evaluate the effect of the snow removal experiment. The Snow100K
dataset contains 1 × 105 composite snow images, as well as corresponding clear images and snow
masks. The test set is divided into three parts, Snow100K-S, Snow100K-M, and Snow100K-L, which
contain snow grains from less to more.

4.2 Ablation Experiments
For the structure part of the generator, we replaced it with residual blocks and compared the

performance. At the same time, we compare the two models that estimate the snowflake mask at the
same time, and find that this will cause performance loss, so the final model structure only estimates
the prediction image of snow removal. The loss function of this part is MSE. The results of the ablation
experiment are shown in Table 1.

Table 1: Ablation study of network structure

ResBlock PSNR/SSIM Mask residual
PSNR/SSIM

Mask
PSNR/SSIM

Transformer
PSNR/SSIM

L 21.32/0.6668 18.80/0.3592 24.96/0.6874 25.10/0.7121
M 23.31/0.7450 19.24/0.4148 27.58/0.7938 28.07/0.8112
S 23.86/0.7524 19.30/0.4306 28.48/0.8098 29.12/0.8260
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As shown in the above table, ResBlock and Transformer represent the BackBone used in the
network, respectively; Mask represents simultaneous prediction of snowflake mask; Mask Residual
indicates the predicted value of the network will be as residual snow image, that is, the final desnowing
image is obtained by subtracting the entire neural network prediction image from the input snowflake
attachment image. Experimental results show that this method significantly reduces the image quality,
so it is not used in the end.

For the loss function selection part of the generator, we compared a variety of loss functions,
including perceptual loss, adversarial loss, and structural similarity loss function, as shown in Table 2.

Table 2: Ablation study of loss function

Perceptual loss
PSNR/SSIM

Adversarial loss
PSNR/SSIM

Perp.+
Adv.PSNR/SSIM

Adv.+ SSIM loss
PSNR/SSIM

L 24.82/0.7061 24.99/0.7089 24.84/0.7063 24.91/0.7135
M 27.95/0.8023 28.03/0.8096 27.92/0.8029 28.08/0.8106
S 28.95/0.8144 29.07/0.8246 28.89/0.8146 29.21/0.8237

The final experimental results show that the best effect can be achieved using MSE loss to combine
adversarial loss and structural similarity loss. Therefore, the final loss function is shown in the Eq. (14):

Lossall = αLossmse + βLossADV + γ LossSSIM (14)

4.3 Comparison Experiments
In the comparison experiment part, we compared our method with various related methods,

including Zheng et al. [39], DerainNet [11], DehazeNet [40], DeepLab [41], JORDER [10] and other
methods, as shown in Table 3. At the same time, Figs. 6 and 7 show the visual effect comparison
between ours and other methods. The snowflake mask in the bottom row of Fig. 7 is output using
the Mask network structure in the ablation experiment. In the overall method, our method does not
predict the snowflake mask. From the table and figure, we can see that our method has a stronger
snowflake removal ability than other methods and can restore the results closer to the real image.

Table 3: Quality evaluation results of different algorithms on Snow100K dataset

Method L PSNR/SSIM M PSNR/SSIM S PSNR/SSIM

Synthesized 18.67/0.73 22.82/0.83 25.10/0.86
Zheng [39] 19.95/0.72 22.99/0.79 24.32/0.81
DerainNet [11] 19.18/0.74 23.36/0.84 25.74/0.86
DehazeNet [40] 22.61/0.79 24.16/0.86 24.96/0.88
DeepLab [41] 21.29/0.77 24.36/0.85 29.94/0.87
JORDER [10] 23.40/0.80 24.97/0.87 25.62/0.88
Ours 27.27/0.83 30.41/0.89 31.73/0.91
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Figure 6: The visual effect of our algorithm and other algorithms on synthetic images

Figure 7: Effect comparison between different algorithms in natural images. The image of the
underlying row is a snowflake mask predicted by the corresponding method

5 Conclusion

Aiming at the problem that snowflakes in the image reduce the image quality, this paper proposes a
single image snow removal algorithm based on the transformer and conditional generative adversarial
network. This paper first introduces the related works, such as vision transformer, snowflake image
formation process, and generative adversarial network. Secondly, we present the transformer-based
conditional generative adversarial network model proposed in this paper. Finally, through ablation
studies and comparative experiments, the rationality and effectiveness of the proposed method are
proved. Compared with other algorithms, the algorithm proposed in this paper can effectively remove
snowflakes from images. More in-depth content will be carried out in the future.
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