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ABSTRACT

Geological hazard is an adverse geological condition that can cause loss of life and property. Accurate prediction
and analysis of geological hazards is an important and challenging task. In the past decade, there has been a great
expansion of geohazard detection data and advancement in data-driven simulation techniques. In particular, great
efforts have been made in applying deep learning to predict geohazards. To understand the recent progress in
this field, this paper provides an overview of the commonly used data sources and deep neural networks in the
prediction of a variety of geological hazards.
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1 Introduction

Geological hazards are caused by endogenous and exogenous geological processes or anthro-
pogenic factors on earth [1,2], which encompass a broad range of abnormal stratigraphic activity or
extreme changes in geological environments, such as landslides, avalanches, debris flows, earthquakes,
etc. Geological hazards pose a serious threat to human life and property [3]. Only by accurately
forecasting the occurrence of geohazards can emergency measures be devised to mitigate the damage
caused by the impending disaster. Geological hazard forecasting refers to the use of logical reasoning,
numerical simulation, and comprehensive analysis based on historical geological hazard activity
patterns, formation conditions, occurrence mechanisms, and other factors to speculate and assess the
development and changes of geological hazards and the possible degree of danger and damage in
a certain period in the future. Geohazard forecasting has attracted tremendous attention nowadays,
particularly considering natural resource scarcity, environmental degradation, population expansion,
sustainable development, and world economic integration.

Many efforts have been made in forecasting geological hazards in the past decades. The “3S
technology”, including Global Position System (GPS), Geographic Information System (GIS) [4], and
Remote Sensing (RS), has been widely applied in the field of geological hazard forecasting [5]. The
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Digital Disaster Reduction System (DDRS) [6], as a product of a high degree of integration between
earth system science and information science, uses multidimensional virtual reality technology [7]
based on mathematical and physical models to simulate the process of hazard occurrence and
propagation. With the continuous progress of science and technology, various technical means such as
synthetic aperture radar measurements [8], high-definition satellite remote sensing [9], aerial surveys
by unmanned aerial vehicles [10], and airborne lidar measurements [11] are making new waves in the
field of geological hazard forecasting.

The past decades have witnessed the revolutionary advancement of deep learning, which is a
branch of machine learning that relies on artificial neural networks with three or more layers. In
recent years, with the exponential growth of computational power and data sources, deep learning
[12–14] has achieved tremendous success in a variety of applications. A growing number of studies
have shown that deep learning techniques hold great promise for geohazard modeling and forecasting
[15,16]. However, because deep learning originates from the areas of computer vision and natural
language processing, when they are applied to the field of geohazard forecasting, the algorithm should
be adapted or improved, for example by incorporating domain knowledge and conventional model-
driven methods. The purpose of the paper is to provide systematic reviews of the advances and open
issues associated with deep learning development in the field of geohazard forecasting.

As a status review paper, the article is intended to cover the following topics:

• Current development and future trends of deep learning for geological hazards

• Common technical means of acquiring geological hazard data

• Model structures of frequently used neural networks

• Causes and harms of common geological hazards

• Typical applications of deep learning in geohazards

It is noted that many machine learning techniques that do not fall into the category of deep
learning have been applied to geohazard forecasting and obtained good results in the problems such
as regression, classification, and change detection [17], but the review in such techniques is beyond the
scope of the present status review.

2 Fundamentals of Deep Learning Methods
2.1 Data Sources

As a data driven method, deep learning requires iterative categorization of features from large
amounts of data, so data sources were once a hindrance to the development of deep learning. However,
recent developments in technologies such as sensors [18] and remote sensing [19] have made large-scale
data collection for geohazards easier.

• Field trips. A large amount of available data can be obtained through fieldwork, especially
the external features of geological hazards. For example, Guzzetti et al. [20] obtained the
landslide inventory map through field mapping. With the rapid development of technology,
this traditional approach is being gradually replaced due to its drawbacks of high time cost.

• Drone. Drones have started to enter many traditional engineering fields in recent years [10,21].
They are typically equipped with multiple camera sensors, allowing for more detailed image
analysis of the geologically hazardous area [22]. The most important feature of drone surveys
compared to fieldwork is that they do not require significant labor costs. In addition to this,
drones allow more information to be obtained in hazardous areas and have a high spatial
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resolution. Drones have now become a powerful tool in the field of geohazards for a rapid survey
and detailed situation analysis of large areas affected by disasters. For example, Suh et al. [23]
used drone measurements to map mine subsidence caused by hazardous mining at the Samsung
Limestone Mine. Aerial photos and investigation of the post-disaster area were carried out in
great detail.

• Satellite data. Low Earth Orbit (LEO) satellite technology is well developed [24,25] and has
provided a large amount of Earth observation data to the engineering field, leading to a
significant increase in geohazard monitoring capabilities [26]. Four types of satellite data are
commonly available [27]: Multispectral optical images for optical information analysis of the
affected area [28]; High-resolution digital elevation model (DEM) [29]; Synthetic aperture radar
images (SAR) [30] and interferometric synthetic aperture radar images (INSAR) [31]; GPS data
for measuring surface deformation in the affected area [32].

• Surveillance system. Currently, surveillance systems [33] are widely used in disaster-prone
areas [34] to monitor surface movements [35], rainfall [36], etc. Compared to remote sensing
techniques, surveillance systems can provide more information. Common monitoring devices
include inclinometers [37] pore water pressure sensors [38], rain gauges [39], etc.

• Artificial signal reflection. Seismic surveys generally model the subsurface space through the
reflection and refraction of artificially emitted signals. The seismic reflection wave method
[40] requires instrumentation consisting of three components: a seismic source, a receiving
device, and a recording system. The single-channel continuous profile method and the multi-
channel continuous profile method are the most commonly used methods for this technique,
and sometimes the common-depth point reflection technique is used to improve the signal-to-
noise ratio. Measurements of seismic reflection waves allow for a more accurate determination
of the depth and morphology of the interface and the determination of local tectonics and
stratigraphic lithology. In addition, groundwater [41] and resource exploration [42] studies can
be applied to this approach.

2.2 Convolutional Neural Network
Convolutional Neural Networks (CNNs) [43,44] inspired by the principles of human vision, are

a class of feed-forward neural networks that include convolutional computation and have a deep
structure. It contains three main modules-a convolutional layer, a pooling layer, and a fully connected
layer. A brief model of CNN is depicted in Fig. 1.
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Figure 1: CNN

The convolutional layer is responsible for extracting local features from different locations of the
original input or capturing intermediate features with learnable filters called kernels. These kernels
can also be optimized for a given problem to reduce the gap between the actual layer and the output
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layer by optimization algorithms like backpropagation and gradient descent. The pooling layer can be
considered as a subsampling layer that reduces the size of the input layer and specifies the maximum
or average value of each subregion of the previous layer. Finally, after completing the alternating stack
of convolutional and pooling layers, one or more fully connected layers are added for classification or
feature representation purposes.

When multiple CNN are stacked together to capture local geometric or spatial patterns, it is
referred to as a deep CNN [45]. Common mainstream CNNs architectures are AlexNet [46], VGGNet
[47], ResNet [48], etc. CNN has the advantage of being able to learn advanced features by capturing
ensemble and spatial features, but they are ineffective when dealing with overly complex data.
Currently, CNNs are widely used for the segmentation of captured features and damage assessment
of various geological hazards and are one of the most widely used deep learning models.

2.3 Recurrent Neural Network and LSTM
Convolutional neural networks can only process one input at a time and can only take into account

the influence of the current input and not the influence of other momentary inputs. However, in
geohazards, information from the previous moment or period is often required, which renders CNN
powerless. This problem was solved by introducing recurrent neural networks.

Recurrent Neural Networks (RNNs) [49,50] are neural networks with hidden states, which change
a two-dimensional neural network model, through hidden states, into a three-dimensional neural
network model with time series. The structure of RNN is shown in Fig. 2. When dealing with large
amounts of data, stacking many RNNs might cause gradient disappearance and explosion problems
[51], long and short-term memory (LSTM) [52,53] was proposed to solve this challenge. LSTM
implements information protection and control through three gate structures: the input gate, the
forgetting gate, and the output gate. The principle of LSTM is shown in Fig. 3.

h2 h3 h4

x1

h1

x2 x3

y1 y2 Y3

Hidden state

Input

Output

Figure 2: RNN

Recurrent neural networks and LSTM are able to capture temporal dynamics, but often suffer
from gradient disappearance [51] and short-term overdependence, and are unable to represent short-
duration non-periodic data. They are currently commonly used in the temporal evolution of geological
hazards, trend prediction and detection, and classification of infrastructure damage.

2.4 Autoencoder
Autoencoder (AE) [54] is an unsupervised learning model consisting of two main parts: Encoder

and Decoder [55], as shown in Fig. 4. Depending on the learning paradigm, autoencoder can be
classified as contractive autoencoder [56], regularized autoencoder [57] and variational Autoencoder
[58]. The first two of them are discriminative models and the latter is a generative model. In terms
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of dimensionality reduction and denoising, AE provides certain advantages over traditional neural
networks [59], and the features of the data can be extracted without tagging information. Furthermore,
high-dimensional input data that cannot be handled by single-layer AE due to its simplistic structure
can be solved by a stacked AE (SAE) architecture [60]. AE is now widely used for geohazard prediction
and susceptibility analysis, and is often combined with LSTM to complete early warning systems.
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Figure 3: LSTM
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Figure 4: AE

2.5 Generative Adversarial Network
Generative Adversarial Networks (GANs) [61] is a system consisting of two models: a discrimi-

nator and a generator, as shown in Fig. 5. The discriminator is typically built using a binary neural
network to figure out whether the input image is from a dataset or created by a machine, usually
treating samples extracted from the dataset as positives and generated samples as negatives. The
generator’s task is to receive random noise and then use a deconvolutional network to create an image
that can provide further training samples to the discriminator. The original GAN paper [62] used MLP
to build the generative and discriminative models.
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Figure 5: GAN

The aim of the GAN’s dual system is for the generator to attempt to confuse the discriminator
while allowing the discriminator to make as many judgments as possible about the origin of the input
image. The two models are in an adversarial relationship with each other and are iteratively optimized
by gaming. After numerous rounds of training the discriminator and the generator, we hope that the
distribution of the generator and the real samples will be identical and the discriminator will be unable
to discriminate between them. In addition, providing other auxiliary information to the GAN can
help improve its performance. Conditional generative adversarial networks (CGAN) [63] have been
developed as a common variant of GAN, in which both generators and discriminators have the help
of auxiliary information to reduce the randomness of the data. GAN, as a typical data generation
model, is commonly used for data reconstruction of geohazards, especially for datasets containing
large amounts of noise and missing values.

2.6 Graph Neural Network
Graph Neural Networks (GNNs) [64] are a class of deep learning-based methods for processing

graph domain information. Due to its good performance and interpretability, GNN has recently
become a widely used method for graph analysis. GNNs can obtain information such as neighboring
regions of geohazards and spatial relationships between nodes and has unique advantages in cascading
effects of geohazards. GNNs usually includes graph convolution networks [65], Graph Attention
Networks [66], and Graph Autoencoders [67]. And the application of graph convolution networks
is more common in the current geohazard research.
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2.7 Deep Belief Network
As the following points show, traditional neural networks have many limitations that have stalled

the development of neural networks for a while:

• Primitive neural networks are generally single hidden layers [68], it has at most two hidden
layers because once the number of neurons is too large and there are too many hidden layers,
the number of parameters of the model grows rapidly and the model takes a very long time to
train.

• Traditional neural networks generally difficult to find the optimal solution with an increasing
number of layers if stochastic gradient descent [69] is used, and they are easy to fall into
local optimum solutions. It is also prone to gradient dispersion or gradient saturation in the
backpropagation process, leading to unsatisfactory model results.

• As the number of neural network layers increases, deep neural networks with many model
parameters require a large amount of labeled data for training, because it is difficult to find
the optimal solution when the training data is small, and although there are related studies [70],
ordinary deep neural networks cannot solve small sample problems.

The emergence of deep belief networks has changed this trend. Deep Belief Networks (DBNs)
[71] solve the optimization problem of deep neural networks by training layer by layer, assigning better
initial weights to the entire network so that the network can be fine-tuned to reach an optimal solution.
Playing the most important role in layer-by-layer training is the Restricted Boltzmann Machine
(RBM) [72], as shown in Fig. 6. The Restricted Boltzmann Machine (RBM) is a simplification of
the Boltzmann Machine (BM). A stack of multiple RBMs constitutes a DBN, where the output of
the hidden layer of the previous RBM becomes the input to the visible layer of the next RBM [73]
as shown in Fig. 7. The training of DBN is similar to that of an SAE in that the training process
is performed layer by layer from low to high, where the initial parameters are learned in a layer-by-
layer unsupervised mode so that additional layers are used at the top to fine-tune the parameters.
There are no connections between the nodes in the same layer, which means that the visible units are
independent [74]. This scheme allows learning a relatively better hierarchical representation, which can
better reflect the underlying structure in the input data. Due to its better performance and parallel
computing capabilities, DBN has recently become a widely used network in the field of geohazard
prediction.

bv

bh

Figure 6: RBM
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2.8 Physics-Informed Neural Network
CNN are a pure data-driven approach and lack physical prior knowledge, so in the engineering

field where the mathematical models based on physical mechanism are well developed, the traditional
numerical methods like the finite element method [75,76] and boundary element method [77,78] are
still dominant. Physical Information Neural Networks (PINNs) [79] are a class of neural networks used
to solve supervised learning tasks while incorporating physical laws described by partial differential
equations (PDE). It is capable of learning not only the distribution laws of training data samples,
as traditional neural networks do, but also the physical laws described by mathematical equations.
This is achieved by adding the difference between the physical equations before and after the iteration
to the loss function of the neural network so that the physical equations are also “involved” in the
training process. Compared to purely data-driven neural network learning, PINN imposes physical
information constraints on the training process and can therefore learn more general models with
fewer data samples. Compared to traditional numerical analysis methods in engineering, PINN is still
at a disadvantage in terms of accuracy and speed in approximating the solution of partial differential
equations. On the other hand, PINN has the advantage of incorporating the data into the model and is
much easier for conducting inverse analysis. Moreover, PINN can be viewed as a “meshfree” method,
which alleviates the meshing burden in the finite element method.

2.9 Bayesian Neural Network
As mentioned previously in the introduction, unlike other fields where deep learning is common,

the occurrence of geological disasters is full of uncertainties [80], restricting the practical applications
of basic neural networks and common numerical methods. To quantify the impact of various
uncertainty factors on the occurrence of geological hazards, deep learning needs to be employed
in a unified probabilistic model. Bayesian network (BN) [81,82], also known as belief network or
probabilistic directed acyclic graphical model, is a probabilistic graphical model that uses directed
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acyclic graphs (DAGs) to illustrate a set of uncertain variables and express their dependencies. The
acyclic is designed to represent the flow of information in a way that can have a definite direction, if it
is circular going this can produce some very troublesome things. The nodes of the network represent
some random variables, an arrow between two nodes indicates that there is a relationship between the
two nodes, some of which are observable and some of which are not. BNs have been applied to many
engineering problems that operate under uncertainty. By using BNs, the joint probability distribution
of a set of uncertain variables can be computed due to conditional independence and chaining rules.
Through this thought, Bayesian Neural Networks (BNNs) incorporate some elements of probabilistic
graphical models to compensate for the shortcomings of neural networks.

2.10 Meta-Heuristic Algorithm
Meta-heuristic algorithm (Meta-heuristic) [83–85] is a method for solving complex optimization

problems based on the mechanism of computational intelligence to find optimal or satisfactory solu-
tions, sometimes called intelligent optimization algorithm (Intelligent optimization algorithm) [86],
intelligent optimization through the biological, physical, chemical, social, artistic and other systems
or fields in the relevant behavior By understanding the relevant behaviors, functions, experiences,
rules, and mechanisms of action in biological, physical, chemical, social, and artistic systems or
fields, intelligent optimization reveals the design principles of optimization algorithms, refines the
corresponding feature models under the guidance of specific problem characteristics, and designs
intelligent iterative search-based optimization algorithms.

MH improves the traditional gradient optimization, but with relatively high computational com-
plexity. Common optimization algorithms such as Genetic Algorithm (GA) is an evolutionary-based
algorithm, Gray Wolf Optimizer (GWO) is a population behavior-based algorithm, etc. Ma et al. [87]
conducted an extensive comparison among more than twenty MHs based on a case study of landslide
displacement prediction, in which multiverse (MVO) has a good balance between accuracy, stability,
and efficiency, and is highly competitive in the future, and in the paper, they also proposed a method
based on k-fold cross-validation (K-fold CV), MHs and SVR (Support vector machines for regression
analysis) hybrid method, which uses NMSE of K-fold CV set as an adaptation index for performance
improvement, effectively improves the reliability and performance of geohazard modeling.

3 Application of Basic Neural Network in Geological Hazard
3.1 Seismic Analysis

Earthquakes [88–90] are geological hazards caused by the release of enormous energy from
the Earth’s crust in a short period, its damage to the ground building is huge, as shown in Fig. 8.
The collision of the Earth’s tectonic plates with each other [91] is the main cause of earthquakes,
which cause dislocations and ruptures at the plate edges and within the plates. Over the past decade,
researchers have been able to better study complex structures and dynamics deep within the Earth
thanks to the large amount of data collected by numerous monitoring systems [92]. The following
is a recent summary of seismic data interpolation and denoising as well as seismic detection and
localization.
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Figure 8: Earthquake

3.1.1 Seismic Data Interpolation and Denoising

Interpolation and denoising play a fundamental role in most seismic processing workflows.
Seismic data interpolation [93] is a basic method to reconstruct lost recording channels, and denoising
[94] separates or attenuates noise from the seismic signal. Inspired by the great contributions made in
image processing and computer vision, CNNs can obtain a large amount of information by acquiring
local features of images since most seismic data can be simply processed as images. For example,
Wang et al. [95] combined seismic data interpolation with the image reconstruction problem by
extracting high-level features of the training data through self-learning and successfully reconstructed
periodically lost trajectories with high accuracy using an 8-layer ResNet-based model, demonstrating
that CNN-based models can eliminate the linearity, sparsity, and low-order assumptions of traditional
algorithms. Wu et al. [96] proposed a novel CNN-based self-supervised method to simultaneously
attenuate seismic random noise and offset artifacts, called a self-adaptive denoising network (SaDN),
which uses the assumption that synthetic noise with mixed Gaussian-Poisson distribution can simulate
random noise and migration artifacts to modify the loss function of a denoising CNN (DnCNN)
to adapt to different field data. Mandelli et al. [97] investigated a specific architecture based on
convolutional neural networks, called U-Net [98,99], and implemented a convolutional self-encoder,
which can reconstruct more complex seismic data more efficiently and accurately compared to
traditional CNN models. To improve the performance of the U-Net. Tang et al. [100] added residual
blocks to the deep U-Net, a model mainly used to process seismic data acquired through sparse
2D acquisition and named SRT2D-ResU-Net, and the reconstructed missing trajectories correlated
with the true answers by more than 85\% on average. Huang et al. [101] trained a nested U-Net
structure with mixed loss functions (U-Net++) to automatically generate pseudo labels to simulate
continuous missing scenes by randomly masking the observed data so that local and global structural
information can be captured to ensure reconstruction quality. Recently, blind spot (BS) strategies in
image processing have attracted much attention. BS strategies allow one to estimate the denoiser from
the noisy data itself. Fang et al. [102] proposed an unsupervised blind spot network (BSnet) method,
in which two random mask operators are introduced to handle Gaussian white noise and bandpass
noise, respectively, and the experimental results demonstrate the great potential of this strategy in the
seismic field.

Seismic data in the temporal dimension cannot be represented by CNNs, so some researchers have
started to consider seismic data as time series. For example, Yoon et al. [103] used five RNN-based
deep learning models (basic RNN, LSTM, bi-directional LSTM, deep BiLSTM, and DBiLSTM with
jump connections) for the reconstruction of seismic data, and the results demonstrated the usability of
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RNN and its derived models for reconstructing seismic data, but the drawback was that the correlation
between multiple seismic traces could not be obtained.

In addition, GAN, a typical data generation model, can generate new seismic data from existing
data distributions, and the generated seismic data can have the same distribution and features as the
original data. For example, Kaur et al. [104] used the Cycle-GAN model, a derivative of GAN, to
implement the reconstruction of missing trajectories from seismic data by creating training labels by
randomly removing trajectories from different receiver indexes of the original dataset to simulate the
effects of missing trajectories. Alwan et al. [105] developed a generator network (GANAN) based
on U-Net [97], and the results demonstrated that GANAN can achieve more desirable results by
processing noisy images into clear images. Furthermore, Wei et al. [106] used Wasserstein distance to
train CGAN networks to improve the interpolation accuracy. Wasserstein distance can avoid gradient
disappearance and pattern collapse so that the network successfully avoids low-rank, sparse or linear
assumptions of seismic data. Dou et al. [107] proposed a multidimensional adversarial network that
uses three discriminators to ensure that the distribution of the reconstructed data in each dimension
is consistent with the original data, and embeds a feature stitching module (FSM) into the generator
of this framework to provide maximum preservation of the original information.

Spectral analysis of seismic data is also an important research direction. To improve the interpo-
lation accuracy, it is necessary to extend seismic data to the frequency domain. Chang et al. [108]
proposed a new GAN (DD-CGAN) for interpolating seismic data in both time and frequency
domains. DD-CGAN uses seismic datasets in the frequency domain and discrete Fourier transform
datasets as input vectors, and the reconstructed seismic bands have a high degree of consistency with
the actual trajectories. Feng et al. [109] developed a singular spectrum analysis-based novel denoising
neural network, the Multichannel Singular Value Decomposition Denoising Convolutional Neural
Network (SVDDCNN), which can simultaneously extract data features from the singular spectrum
rather than the time domain and can obtain more accurate geophysical features, and helps to separate
signals from noise.

Supervised learning-based approaches largely require a large training sample of high-quality
labeled data, which hinders the generalization ability of the model. Fang et al. [110] considered that
seismic data have good nonlocal self-similarity and used self-similarity blocks to rearrange the data
and construct multiple pseudo-observations to achieve unsupervised training, allowing the study to get
rid of the reliance on noiseless field data. Wang et al. [111] proposed an unsupervised denoising method
that reduces the reliance on high-quality labeled data. The method is based on an improved network
iterative soft thresholding algorithm (ISTA) that omits soft thresholds to mitigate the uncertainty
introduced by the empirical choice of thresholds and enhances the generalization ability of the model.

3.1.2 Earthquake Detection and Location

CNNs are the most commonly used neural networks in earthquake detection and localization.
Perol et al. [112] developed a CNN-based model called ConvNetQuake for earthquake detection,
which is a highly scalable convolutional neural network for earthquake detection and localization
from a single waveform. This model provides significant improvements in detection and localization
accuracy compared to conventional seismic monitoring methods but is unable to classify seismic wave
rows generated from the same source when a large number of seismic waves are received. To address
this problem, McBrearty et al. [113] input seismic waveforms between two locations into a four-layer
classical CNN and predict whether the waveforms are from the same or different sources for binary
classification. In addition, Kriegerowski et al. [114] used a three-layer CNN to analyze full-waveform
multichannel seismic records and completed the localization of the exact coordinate system.
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CNNs have long been trained in a supervised manner using historical or synthetically generated
datasets for earthquake source localization, but in recent years, PINN has been proposed as a
new mainstream approach that effectively reduces the reliance on large amounts of labeled data.
Yildirim et al. [115] proposed an approach for earthquake source localization based on the emerging
PINN paradigm. Using the observed event P-wave arrival times and training the neural network by
minimizing the loss function given by the mismatch between the observed and predicted travel times
and the residuals of the eikonal equation, the source location is finally obtained by finding the location
of the minimum travel time in the computational domain. Through comprehensive tests, the results
demonstrate the effectiveness of the proposed method in obtaining robust earthquake source locations
even in the presence of sparse travel time observations. This is due to the use of the eikonal residual
term in the loss function, which acts as a physical information regularizer. Smith et al. [116] proposed a
scheme for probabilistic seismic source inversion using Stein variational inference, a method that uses
a differentiable forward model in the form of physics-informed neural networks, which are trained to
solve the eikonal equation. The results prove to be very helpful in nucleating Stein variational iterative
optimization particle ensembles to rapidly approximate the posterior without the need to build a walk-
time table and to deal well with highly multi-peaked posterior distributions, which are common in
seismic source inversion problems and have a very high potential for application. In addition, due
to the advantages of graph neural networks, there are unique advantages to the earthquake source
mechanism, for example, McBrearty et al. [117] trained graph neural networks to predict estimates
directly from the input selected data. And each input allows for a variable number of stations and
locations for different seismic networks, where the inputs include theoretical predictions of the data,
given model parameters, and local elements of the adjacency matrix link space of the defined graph.
The architecture uses one graph to represent the station set and another graph to represent the model
space, and the model is experimentally shown to have unique advantages in inference, data fusion, and
outlier suppression.

On the other hand, RNN and LSTM as typical time series models can capture the time-domain
features of seismic signals. For example, Linville et al. [118] obtained features from spectrograms by
CNN and LSTM, respectively. The results show that for the acquisition of event-related signals, the
LSTM model performs better and can obtain correlations promptly. In addition, since RNN and its
derived models can acquire temporal features, they can have more promising applications in the real-
time detection of earthquakes in the future.

According to the relevant studies in recent years, hybrid models are one of the research trends
in recent years. According to this idea, a hybrid model of CNN and RNN should be able to obtain
more information from seismic data. Zhou et al. [119] treated seismic signals as a combination of non-
sequential and sequential signals and detected seismic events from a 30-second-long three-component
seismogram by an 8-layer CNN, and a two-layer bidirectional RNN to select P- and S-wave arrival
times. Similarly, Bai et al. [120] trained an attention-based long short-term memory full convolutional
network (LSTM-FCN) model that uses FCN to extract high-level features and LSTM to model
temporal dependencies, improving the detection and localization accuracy of seismic events compared
to the model alone. The advantages of both models are reflected in the hybrid model, but in this hybrid
approach, the two models are trained in two separate steps.

End-to-end hybrid models are a good way to deal with the above difficulties. Instead of training
each component in turn, all components in such models can be learned simultaneously [121], and
this approach maximizes the amount of data that can be extracted while also improving performance
[122]. Mousavi et al. [123] developed the CNN-RNN seismic detector (CRED), CRED cleverly blends
the two models into a residual structure that allows the model to capture deeper and higher-level
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information while reducing computational complexity, and the results demonstrate that the model
holds great promise for minimizing false alarm detection rates while reducing detection thresholds.
Zhu et al. [124] proposed a new end-to-end architecture consisting of three sub-networks: the main
network for extracting features from the original waveform, a phase pickup network based on P-
and S-wave arrival selection based on extracted features, and an event detection sub-network that
can be used for multi-station processing of seismic waveforms recorded on seismic networks. Another
major advantage of hybrid models is that they can perform numerous related activities. simultaneously,
making them more widely used in practice. Mousavi et al. [125] developed an end-to-end hybrid model
called EQTransformer, which consists of an encoder and three independent decoders integrated with
a CNN and unidirectional and bidirectional LSTM. The model accomplished both seismic detection
and phase pickup, and its performance in both tasks was not weaker than that of a single model.

In addition, many scholars are investigating unsupervised learning for seismic detection, which
can be used for unlabeled seismic events. For example, Seydoux et al. [126] developed an unsupervised
framework for detecting and clustering seismic signals in continuous seismic data that combines a
deep scattering network with a Gaussian mixture model to successfully process multiple complex
seismic signals. Wang et al. [127] used CGAN and additional (seismic/non-seismic) label information
to overcome the limitation of random samples generated by Gaussian noise, and the synthesized
high-quality waveforms (seismic and non- The synthesized high-quality waveforms (seismic and non-
seismic) increase the available training data and therefore improve the accuracy of the seismic event
detection task.

Blasting is widely used in geoengineering projects, but improper blasting-induced ground vibra-
tions expressed as PPV can pose a threat to the environment and residents, and to reduce the dangerous
effects of blasting, Abbaszadeh Shahri et al. [128] used a generalized feedforward neural network
(GFFN) structure combined with a novel automatic intelligent parameter setting method, using
GFFN combined with firefly and imperialist competing metaheuristic algorithms (FMA and ICA) to
develop two new optimized hybrid models, which have significantly improved the prediction accuracy
for PPV in real detection events.

3.1.3 Prediction of Seismic Liquefaction

Seismic liquefaction [129,130] is the process by which an originally stable, predominantly solid-
like sandy soil layer is transformed into an unstable mixed liquid under seismic action, resulting in a
reduction in the support of the sandy soil layer. Before the earthquake, the saturated sandy soil body
below the water table carried the weight of the soil and buildings above. Most of this weight is carried
by the sandy soil particle skeleton like a spring, which presents a stable state. When an earthquake
occurs, the tremendous energy inside the earth’s crust causes vibrations in a rapid release process,
creating misalignments and ruptures in the interior and surface layers of the earth’s crust. The sandy
soil below the groundwater level is instantly subjected to the strong action of the huge seismic force, the
pore water in the sandy soil layer cannot be discharged quickly, and the pore pressure suddenly rises,
resulting in the originally stable sandy soil layer to show liquid-like characteristics. The main disaster
manifestations are surface cracking, sandblasting, and water bubbling, which leads to landslide and
foundation failure, and puts buildings at risk of sinking, tilting, cracking [131], etc.

Due to the high cost and difficulty of collecting high-quality in-situ soil samples and testing
granular soils, to evaluate soil liquefaction potential, geotechnical engineers normally adopt in situ
testing or semi-empirical equations (liquefaction boundary curves) such as standard penetration tests
(SPT) and cone penetration tests (CPT) based on machine learning methods [132]. For example,
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Karthikeyan et al. [133] used a correlation vector machine (RVM) based on SPT to determine the
liquefaction trend of soil and compared it with an artificial neural network (ANN). Xue et al. [134]
proposed a hybrid model based on a combination of support vector machines (SVM) and particle
swarm optimization (PSO), and tested the robustness of the model based on CPT field data. and tested
the ability of SVM in assessing liquefaction trends based on CPT field data, and the accuracy of the
developed PSO-SVM approach exceeded many methods such as grid search by predicting the results.

But limited to SPT and CPT based, the relevant parameters are not sufficient to improve the
performance of these models, shear wave velocity is a more important parameter to reduce field
conditions and laboratory environment. For example, Zhang et al. [135] proposed a multilayer fully
connected network (ML-FCN)) based on the shear wave velocity Vs and trained DNN models based
on the dataset collected by Hanna et al. [136]. The DNN models were trained by Vs and SPT data
in the dataset and demonstrated that high prediction accuracy could be achieved even without the Vs

prediction model, while the presence of V s allowed the training rate to be unaffected.

In addition, plasticity index (PI) has considerable influence on measuring the liquefaction
behavior of fine-grained soils on the liquefaction sensitivity of highly plastic soils. Ghani [137,138] and
others compared Culture Algorithm (CA), Firefly Algorithm (FA), Genetic Algorithm (GA), Gray
Wolf Optimizer (GWO), Particle Swarm Optimization (PSO) and Gradient-based optimizer (GBO)
combined with artificial neural network for soil liquefaction assessment and concluded that PI and
GBO based ANN models are a promising new tool and can help geotechnical engineers to be able to
estimate the occurrence of liquefaction in the early stages of engineering projects.

3.2 Volcanic Activity Detection
Volcanic eruption [139] is a geological phenomenon that refers to the movement of the Earth’s

crust accompanied by the release of magma and other ejecta from the crater to the surface within a
short period, as shown in Fig. 9. About a quarter of the global population lives in the zone affected by
volcanic activity, and according to statistics, volcanic eruptions have claimed the lives of about 270,000
people over nearly 400 years. In addition to the danger of volcanic activity itself, it can cause a variety of
secondary hazards that may even have serious impacts on global transportation and the environment,
in addition to causing distress to people in the areas involved [140], to reduce the negative effects of
volcanic eruptions, identifying and monitoring volcanic activity is an effective approach [141,142].

Figure 9: Volcanic eruption

3.2.1 Classification of Volcanic Activity

Monitoring systems are now deployed at volcanoes around the world to monitor volcanic seismic
events. Benefiting from this background, researchers have access to an increasing number of signals
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in the form of continuous data streams [143,144], and the rapid classification of collected volcanic
seismic signals is crucial in eruption crisis scenarios.

As mentioned earlier, CNNs have shown excellent performance in the recognition and extraction
of advanced features from images. The same idea applies to volcanic activity. Lara et al. [145]
fed spectrograms generated by periodogram theory with different types of windows into a CNN
with a recognition (detection + classification) time response of about one minute, and the system
performance showed 99% accuracy in the detection phase and 97% accuracy in the classification phase.
Curilem et al. [146] converted spectrograms into 20 × 20 pixel RGB images fed into a simple CNN
with only two convolutional layers and successfully classified various volcanic seismic source signals
with an accuracy of over 95%. In addition, Canario et al. [147] compared the performance of three
traditional neural network models, MLP, CNN, and LSTM, for signal classification and designed a
new CNN-based model named SeismicNet. SeismicNet can directly input the acquired raw signals
without converting them to images and ignores the preprocessing step. It successfully accelerates the
classification of four types of volcanic events.

Similar to the difficulties encountered in seismic deep learning, high-performance deep learning
models require a large number of high-quality labeled datasets. Another common solution to such
problems is to introduce migration learning, using models already trained in different domains as
starting points for the target model. For example, Titos et al. [148] used LeNet [149] as a feature
extractor based on the idea of migration learning to effectively implement the classification of
seismic-volcanic signals in a representative dataset containing regional earthquakes, volcanic tectonic
earthquakes, long-period events, volcanic tremors, explosions, and collapses.

3.2.2 Detection of Volcanic Deformation

Volcanic activity and magma transport often lead to a series of surface deformation called volcanic
deformation. The development of remote sensing technology provides a good opportunity for the
development of volcanic deformation detection and alleviates the situation where volcanic activity
cannot be detected due to a lack of data. The large coverage of satellite image data provides more
data for learning volcanic activity detection in remote areas where in situ monitoring is not possible
[140]. InSAR data commonly used today contain multiple interferometric stripe maps, which are ideal
inputs for deep learning studies and are suitable for edge detection in CNNs.

Based migration learning strategy. Anantrasirichai et al. [150] used a pre-trained AlexNet for the
accurate classification of interference stripes. However, the CNN-based model is easily classified as
volcanic deformation when atmospheric signals are shown as stripes in the plot, which can lead to
false positives and cause problems for the recognition task. To address this issue, Brengman et al. [151]
developed a CNN-based derivative model, SarNet, to detect, localize, and classify the presence
of isoseismic surface displacements in interferograms, and used a class activation map (CAM) to
show where SarNet returned surface deformations in the interferogram with an overall accuracy of
85.22% in the actual interferogram, and SarNet returns the location of the surface deformation in the
interferogram.

To improve the ability of CNN-based models to cope with this challenge, Anantrasirichai
et al. [152] extended the sample by adding various atmospheric data to the real interferogram. The
results showed that the performance of the model trained using synthetic interferograms was improved
compared to the model trained using real interferograms alone. Thus, the application of data extension
in detecting volcanic deformation proved to be promising.
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3.2.3 Predictions of Volcanic Eruption

Thermal image of volcano observation are commonly used by monitoring stations to analyze the
evolution of eruptive activity. However, the obtained thermal images are usually obscured by clouds
and only intermittent image sequences can be obtained. To address this problem, Diaz et al. [153] used
the architecture of convolutional LSTM (ConvLSTM) + Time-LSTM + U-Net to explicitly model
intermittent image sequences, and the results had the lowest RMSE compared to common methods
in experiments to predict the changes of volcanic temperature data.

An alternative approach to thermal image is Muography [154]. Muography is an imaging tech-
nique that visualizes the internal structure of active volcanoes by using high-energy near-horizontal-
access cosmic muons, making it possible to trace magmatic activity before eruptions. The first direct
evidence of the experiment was obtained by studying the summit of Mount Asama, Japan [155],
which shows that muography resolves volcanic structure more precisely than traditional geographic
techniques. Nomura et al. [156] used muography data collected from 2014–2016 at Sakurajima volcano
in Japan and CNN for data analysis and prediction due to the image data and compared it with models
such as SVM to demonstrate the advantage of the CNN in terms of accuracy. In addition, continuous
image data can be considered as time series data, and the combination of CNN and RNN or LSTM can
improve the prediction performance. Rodrígue et al. [157] used time-frequency representations (TFR)
from Bezymianny and Etna volcano data to obtain physical information, and through a Bayesian
network strategy and a well-designed deep ConvLSTM architecture, they learn temporal dynamics
from scattering coefficients or features. The effectiveness of migration learning switching between
volcanoes is also verified in the article, setting a new specification for semi-supervised seismic volcano
monitoring.

3.3 Landslide Prevention
Landslides are the most common geological hazard, they are responsible for at least 17% of natural

disaster deaths worldwide [158,159], and have a significant economic and social impact [120], as shown
in Fig. 10. Landslides are largely unavoidable and are typically caused by a combination of local
geological conditions and triggering causes (e.g., weather or earthquakes) [3], which makes predicting
when and where landslides will occur a difficult task. However, combining deep learning with publicly
available Earth observation data holds promise for predicting the occurrence of landslides [35].

Figure 10: Landslide

3.3.1 Landslide Susceptibility Assessment

The goal of landslide susceptibility assessment aims to determine whether an area is susceptible to
landslides based on available data [143], which typically include a wide range of local environmental
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factors and a history of previous hazards. Due to the powerful image feature extraction performance
of CNNs, they can theoretically be directly applied to landslide susceptibility assessment. For example,
Liu et al. [160] compared CNNs and traditional machine learning methods for landslide susceptibility
mapping and demonstrated that both CNNs and traditional machine learning-based models have
satisfactory performance, and CNNs achieved the highest performance. Youssef et al. [161] compared
SVM, one-dimensional and two-dimensional CNNs and demonstrated that two-dimensional CNNs
have the best performance compared to one-dimensional CNNs and SVMs. However, there are many
differences between landslide susceptibility evaluation and image processing in practical engineering.
Therefore, to effectively utilize the feature capture capability of CNNs, it is necessary to process
landslide data into appropriate data types. Chen et al. [162] proposed a channel extension of pre-
trained CNN and a traditional machine learning model (CPCNN-ML) based on The model that
modifies a structurally mature pre-trained CNN to tap advanced features in the multichannel suscep-
tibility layer, and the combination with random forest can improve reliability prediction. For example,
Fang et al. [163] considered a stacked landslide map as a “multichannel image”, where each channel
represents an environmental trigger, and then feed this “multichannel image” into CNN to obtain
local features of the landslide, and then use the traditional machine learning methods as classifiers.
The results show that the performance is improved compared to a single CNN model.

To more accurately assess landslide susceptibility, multi-scale spatial information on landslides
needs to be considered. Yi et al. [164] proposed a multiscale sampling strategy that fuses multi-
scale information around space to generate a dataset that is used as input to CNN. Compared
with other neural networks, CNN has better fitting and prediction capabilities, and spatial data
close to landslide locations are more suitable for predicting the probability of landslide occurrence.
Hajimoradlou et al. [165] introduced U-Net for feature extraction in landslide susceptibility assess-
ment, which has a more accurate susceptibility assessment compared to common CNNs. In addition,
the proper setting of deep learning hyperparameters is also crucial for performance improvement.
Sameen et al. [166] used Bayesian optimization to determine hyperparameters, and the prediction
accuracy of CNN was improved by 3%. In addition, due to some background factors, some other
things around, such as buildings, bare land, etc., bring challenges to the accuracy of detection.
yang et al. [167] proposed Mask R-CNN with a background-enhancement method, and the model
learns the difference between landslide and background objects more effectively by background-
enhanced samples, thus reducing the false extraction of background objects.

Ngo et al. [168] used a basic CNN model and an RNN model to map landslide susceptibility,
respectively, and the results proved that RNNs also have good performance. Therefore, RNNs were
also introduced as time series models for landslide susceptibility assessment, and similar to CNNs,
landslide data need to be processed into suitable time series data. For example, Mutlu et al. [169]
formed a sequence by combining available landslide information with local location information and
feeding it into RNN for further prediction. Wang et al. [170] made a comparison between conventional
RNN and derived models, and several models have more ready prediction results with optimized
parameters, proving the application prospect of RNNs.

Landslide susceptibility maps (LSM) have provided useful tools for decision-makers in recent
years to mitigate disasters. Abbaszadeh Shahri et al. [171] developed a novel block-based hybrid neural
network model (HBNN) to produce high-resolution LSM. This hybrid approach consists of an expert
module structure and is combined with genetic algorithm (GA). By comparing multilayer perceptions
(MLPs) and GFFN’s two developed models are compared and the relatively more reliable results
demonstrate the ability of the developed HBNN to produce higher resolution and more reliable LSMs
for urban and land use planners.



1398 CMES, 2023, vol.137, no.2

3.3.2 Landslide Displacement Prediction

Displacement prediction is a major application scenario of deep learning in landslide control.
Displacement prediction focuses on the short-term behavior of landslides and provides an important
basis for landslide warning systems. Typically, early warning systems mitigate potentially significant
damage by providing actionable warning information about landslides before a disaster occurs [172].

Landslide deformation is a nonlinear dynamic process controlled by a complex environment,
where the influencing factors and deformation behavior in the previous moment affect the defor-
mation behavior in the next moment [173]. As predicting landslide deformation requires a logical
relationship between moments, RNNs is the preferred model for displacement prediction. Typically,
this model predicts dynamic landslide displacements by using data decomposed into static and
dynamic components [173–177]. Jiang et al. [178] proposed a new graph convolution combined with
a gated recurrent unit neural network (GRU) (GC-GRU-N), which applied the output of multi-
weighted graph convolution to GRU to learn the time dependence, and the results showed that the
model can effectively provide robust landslide displacement prediction. Zheng et al. [179] proposed
an improved particle swarm IPSO-RNN landslide displacement prediction model based on RNN,
which avoids artificial input hyperparameters, fits better, and has high prediction accuracy compared
with the traditional landslide BP prediction model. Lin et al. [180] proposed the Double-BiLSTM
model to calculate the correlation between the influencing factors and the periodic displacement using
the maximum information coefficient (MIC) method, thus using the model for periodic displacement
prediction. In addition, some other deep learning models can also achieve similar results. For example,
Li et al. [181] used DBN to extract landslide displacement-related features from three denoised
time series datasets without a priori knowledge and achieved satisfactory prediction performance.
Theoretically, although DBN can extract correlation features from highly nonlinear and multivariate
displacement data, it is difficult to capture temporal variations.

The performance of deep learning models in displacement prediction can be further enhanced by
the proper application of diverse data. For example, Meng et al. [182] compared the performance of
the model when using single- and multi-factor predictions and demonstrated that the latter reduced
overfitting and improved accuracy. In addition, other effects besides rainfall and reservoir levels need
to be considered, as well as interdependencies between different regions. Kuang et al. [183] proposed
a novel GNN-based landslide prediction model that uses graph convolution to aggregate spatial
correlations between different monitoring locations. The fusion of these features into a deep learning
model can also be used to improve the accuracy of predicting landslide displacements.

3.4 Flood Prediction
As shown in Fig. 11, flooding [184,185] is one of the most frequent-occurring natural disasters,

which is caused by heavy rainfall, rapid ice and snow melting, storm surge, etc. Moishin et al. [186]
constructed a hybrid deep learning (ConvLSTM) algorithm based on various statistical score metrics,
infographics, and visual analysis of forecast and real datasets. The evaluation results of the model
are compared with the benchmark model, which demonstrates the applicability of this algorithm for
short- and long-term flood scenario forecasting. Chen et al. [187] performed a similar study using
ConvLSTM, but the importance of spatial features was emphasized in the paper by changing the
input features to a two-dimensional time series spatial information, which experimentally proved to
outperform most of the proposed models in terms of flood arrival times and peak flows. Hu et al. [188]
integrated the LSTM and reduced-order model (ROM) framework to represent the spatiotemporal
distribution of floods. To reduce the dimensionality of large spatial data sets in the LSTM, the
paper introduces proper orthogonal decomposition (POD) to reduce the CPU cost by three orders
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of magnitude. By obtaining the time series of induced waves at the specified detectors, the use of
LSTM-ROM can provide flood predictions within seconds, which has great practical significance.
Sensitivity mapping is a key research area in flood prediction. Pham et al. [189] proposed a DBN deep
learning algorithm based on an extreme learning machine (ELM) to obtain flood sensitivity mapping
for the Vu Gia-Thu Bon watershed in central Vietnam. The proposed deep learning has the highest
goodness-of-fit (AUC = 0.970) and prediction accuracy (AUC = 0.967) among all tested algorithm.
Shahabi et al. [190] proposed a novel modeling approach (DBPGA) based on DBN) and Genetic
Algorithm (GA) optimized Back Propagation (BP) algorithm for accurate flood sensitivity mapping
for the Iranian Haraz Basin. Hosseiny et al. [191] used the U-Net model to analyze synthetic images,
in which the input is from two bands of ground elevation and flood flow, and the output is the water
depth. Based on the validation of field test data, the prediction of maximum flood depth for rivers
was improved by 29%.

Figure 11: Flood

3.5 Debris Flow Detection
Debris flows are landslides that occur due to heavy rains, storms, or other natural disasters,

transporting large amounts of boulders and silt [192], they frequently occur in canyon areas and areas
prone to earthquakes and volcanoes, exploding rapidly without warning [193], as shown in Fig. 12.

Figure 12: Debris flow

Inspired by deep learning models in landslide sensitivity assessment, Zhang et al. [194] used
an MLP and CNN-based model to convert external factors associated with mudflows into one-
dimensional vectors as inputs to the model. The results showed that the model can effectively assess
the probability of mudslides in a given region. Li et al. [195] combined CNN with two evolutionary
optimization algorithms, Grey Wolf Optimizer (GWO) and Coyote Optimization Algorithm (COA)
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[196], and applied geoinformatics to the mudflow factor. The results showed that this approach has
better fitting and prediction capabilities compared to CNN alone.

Ideally, information related to mudslides can be obtained using satellite image data. However,
multispectral images are vulnerable to climate and high-resolution SAR images are too costly to be
used on a large scale. To overcome these limitations, Yokoya et al. [197] cleverly solved this problem
by combining numerical simulation methods with CNN-based Attention U-Net and LinkNet [198].
The numerical simulation method generates a large amount of data by simulating mudslide disaster
scenarios, which satisfies the training requirements of CNN-based models and breaks the limitations
of remote sensing.

The amount of sediment transported is an important but highly nonlinear dynamic process
in water resources management, and Reza et al. developed two best prediction models subject to
artificial neural networks (ANN) with different sensitivity analysis (SA) methods to prioritize the
inputs used, resulting in a new, more efficient ANN structure, which, due to covering more uncertainty,
uses SA’s parameter ranking would be more reliable. By processing 263 datasets from three rivers
in Idaho, USA, it was found that the accuracy performance of the analysis using different criteria
showed better predictability in the updated model, which could lead to a further understanding of the
parameters used.

In addition, slope instability caused by water infiltration into soil is one of the important causes
of debris flow and landslides, and the numerical study of water infiltration provides the conditions
for the study. Yang et al. [199] combined partial differential equations of water infiltration and neural
networks based on PINN to obtain a detailed numerical analysis of the water infiltration process, and
the model error proposed in the paper is smaller compared with the traditional numerical methods, and
the experimental results obtained in More accurate numerical results were obtained in the experiments.

3.6 Rockfall Prediction
Rockfall [200,201] occurs with high frequency in mountainous areas, generally due to slip or

fracture phenomena of geotechnical bodies on steep slopes, as shown in Fig. 13. Because of the
rapid occurrence of rockfalls, the difficulty of identifying them, and the complexity of the causal
mechanisms, relevant studies are currently scarce. Since the Moon and Mars are similar to the Earth in
terms of landslide principles, several current studies act on the prediction of rockfall on the Moon and
Mars, which have some references for rockfall studies on Earth. For example, Bickel et al. [202] trained
a CNN with residual blocks (RetinaNet) that can acquire salient features in images and generate a large
number of rockfall maps, which are fundamental for the fast identification of rockfalls.

Figure 13: Rockfall
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3.7 Avalanche Detection
When the internal cohesion of the snow on a mountain slope cannot resist the gravitational force,

it slides downward, causing a massive snow collapse, i.e., so-call an avalanche, as shown in Fig. 14.
They can occur in snow-covered areas all over the world. In the past decades, about 100 people have
been killed in avalanches in the European Alps every year [203]. In addition, the damage to roads and
infrastructure caused by avalanche is a major problem for people living in snow-covered mountain
areas [204].

Figure 14: Avalanche

Traditional field methods are difficult to apply in practice, with time costs, high expenses, and
hazards leading to the use of such methods only in small-scale disasters, and due to the large amount of
data required for deep learning, which needs to be monitored continuously in time and space. The rapid
development of satellite remote sensing has given a new opportunity for this research, and synthetic
aperture radar is one of the more desirable sources of data acquisition. This is because avalanche
detection requires the ability to capture pixel-level background information and multi-level features
of avalanche debris, but traditional methods receive a large number of false positives due to climate
and light effects, and synthetic aperture radar largely solves this problem by avoiding false detections
of expected false positives.

Since the focus is on the background information around the pixel and extracting features,
CNNs have now been applied to related research. Hafner et al. [205] proposed a fully convolutional
neural network called AvaNet. AvaNet is based on the Deeplabv3+ (a commonly used semantic
segmentation network) architecture and relies on manually mapped 24’737 avalanches for training,
validation, and testing to achieve a more desirable level of prediction. Chen et al. [206] investigated
stand-alone convolutional neural network models as well as two meta-heuristics including Grey Wolf
Optimization (CNN-GWO) and imperialism applicability of the Competing Algorithm (CNN-ICA)
in avalanches, analysis based on 13 potential drivers of avalanche occurrence and inventory plots of
previously recorded avalanche occurrences, while the efficiency of model performance by the area
under the receiver operating characteristic curve (AUC) And the root mean square error (RMSE)
is evaluated, and the experimental results demonstrate the wide applicability of CNN in avalanche
detection. Waldeland et al. [207] used a ResNet model trained on a natural image dataset to successfully
identify candidate regions in The presence or absence of avalanche phenomenon. Also, since this work
opportunities migration learning, itself an application in RGB images, this work converts the five
channels of the input image into three channels through various combinations, with the red channel
corresponding to the image of the avalanche event and the red and blue channels corresponding to the
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reference image. To improve the accuracy of CNN model detection, Sinha et al. [208] input SAR images
and independent avalanche lists to a CNN-based CNN-based VGG-16 model, where the inventory
contains the occurrence of avalanches, transformed from field data, and demonstrated the effectiveness
of CNN-derived models for automatic avalanche debris detection by combining multiple information.
Bianchi et al. [209] input two feature maps of SAR images and DEM The two feature maps of the DEM
include slope angle features and angle of arrival. The SAR is fed into the model through an additional
layer of the input image, while the DEM generates an attention mask from the attention module of
the convolutional layer, allowing the model to focus more on the avalanche region.

Moreover, AE-based models have also shown good performance by identifying anomalies by
comparing the compressed reconstructed data with the original data through the characteristics of AE.
Again based on the idea of treating avalanches as rare events or anomalies and passing the variational
autoencoder to isolate the anomalies, through this idea, Sinha et al. [210] demonstrated the usability
of AE and its derivative models even beyond CNN models for avalanche detection by comparing AE-
based models (VAE) with CNN models.

3.8 Drought Prediction
Drought [211] is a climatic phenomenon in which the total amount of fresh water is low and

insufficient for human survival and economic development, generally over a long period, as shown in
Fig. 15. Machine learning has proven to be useful in drought forecasting [212] and has been widely
applied. Mishra et al. [213] and AghaKouchak et al. [214] in their article detail the various drought
modeling methods used in the literature, and both emphasize that future research is directed toward
developing more advanced models and assimilating data at higher time scales. Drought prediction
has been greatly improved in some recent studies using lagged climate variables as predictors [215].
Despite the success of traditional machine learning, deep learning can improve the performance
of drought prediction. Since droughts are long and slow, this means that they require models to
process data in time series. In the current study, the RNN-derived model LSTM for recurrent neural
networks to predict drought indices can handle real-time nonlinear data well and can help government
departments to mitigate the influence of natural disasters. For example, Xu et al. [216] proposed a
hybrid model based on a deep learning approach that integrates an autoregressive integrated moving
average (ARIMA) model and long short-term memory (LSTM) model to improve the accuracy of
short-term drought prediction. The prediction accuracy of ARIMA, support vector regression (SVR),
LSTM, ARIMA-SVR, least squares SVR (LS-SVR), and ARIMA-6 drought prediction models were
analyzed by comparing and contrasting, and the results showed that the model is more suitable for
long-term drought prediction.

Figure 15: Drought
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3.9 Others
There are many other geological hazards, such as ground subsidence [217], rock bursts [218], land

desertification [219], geothermal damage [220], asteroid impacts [221], tornadoes [222], etc. Although
most of these studies are still in their infancy, some fruitful research can already be seen. For example,
Zhang et al. [223] proposed a ground subsidence prediction method, called the extended deep learning
method. The method dynamically uses extended tunnel data to predict ground settlement in real
time and proposes a kinetic correlation analysis method to evaluate the variable significance of input
data on ground settlement based on static Pearson correlation coefficients by comparing four deep
learning methods, including ANN, LSTM, GRU and one-dimensional convolutional neural network
(Conv1d), and finally confirmed that the extended Conv1d model was able to accurately predict
ground settlement due to tunnel boring with this approach, demonstrating the usability of this method.
li et al. [224] applied Bayesian optimization and synthetic minority oversampling technique + Tomek
Link (SMOTETomek) to efficiently develop a rockburst prediction feedforward neural network
(FNN), where the model implements Bayesian optimization to find the best hyperparameters in the
FNN and a balanced training set by employing SMOTETomek to eliminate the effect of unbalanced
categories. To explain the FNN model, this work introduces the substitution importance algorithm to
analyze the relative importance of the input variables, which has been shown to have good performance
in real engineering experiments.

4 Challenges and Future Work

Despite enormous success of deep learning in geological hazards forecasting, many challenges
remain to be resolved. In the following, we mention some possible directions worth of investigating in
the future:

Uncertainty quantification. Uncertainty can be described as a situation involving incomplete or
unknown information [225]. In general, three sources should be considered to quantify uncertainty
[226], including the physical variability of the equipment, data and model errors. Traditional methods
normally used statistical methods, polynomial chaos expansion method, Perturbation method and
Monte Carlo simulation are common methods for uncertainty quantification. In deep learning,
the Bayesian neural network is commonly used for uncertainty quantification. Feng et al. [227]
used convolutional neural networks in a Bayesian framework to predict uncertainty in phase and
quantification classification based on seismic data, using a variational approach to approximate
the posterior distribution of mathematically intractable weights, and good experimental results
demonstrated the effectiveness of the model. In addition, other methods in Bayesian theory-Markov
Monte Carlo (MCMC), MC dropout (MCD), etc., also play an important role in assessing parameter
uncertainty and model fitting. For example, Feng et al. [228] considered the importance of soil-water
character curves (SWCC) for analyzing landslide seepage under different hydrodynamic conditions
and developed a Bayesian updating framework developed from experimental data-used to investigate
the uncertainty of SWCC parameters. In this proposed framework, the parameters of the model of
SWCC are considered random variables, and MCMC is used to evaluate the parameter uncertainty,
and the results prove that this framework is feasible for the observed data of large-scale landslide
experiments. In the subsequent experiments, they build an ANN agent model, which greatly improves
the efficiency of this Bayesian model update.

Bayesian theory is not the only approach used to quantify uncertainty; many other approaches
have been proposed with good performance results. For example, Abbaszadeh Shahri et al. [226]
proposed an Automatic Randomized De-Activation Connection Weight method (ARDCW), which is
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achieved by combining several derived sets from a fixed optimal topology. The framework uses nested
loops to monitor all topologies with different hyperparameters to overcome the problem of overfitting
and getting stuck in minima. After comparing with two UQ methods, MCD and quantile regression
(QR), it has the most advanced performance.

Data sources. The basic problem in practical engineering challenges is the lack of data, and
the inevitable missing and noisy data. Data quality issues are mitigated by data interpolation and
denoising and deep learning model improvements, but the reliance on high-standard labeled data
remains a challenge in the work. In addition, high equipment prices limit the areas where valid data are
available, leaving many hazards to occur without relevant data available for study, creating a barrier to
geohazard research in less developed regions. Open-source datasets have to some extent solved many
of the team’s fundamental research problems [229–231], and although the number is relatively small
at the moment, there are already several open-source projects driving this matter. Examples include
the Climate Dataset (ERA5) [232] and the emergence of multi-hazard databases. Another approach is
to perform data augmentation through models such as GAN or to train on small-scale data through
migration learning [233]. In addition to the two approaches mentioned above, physical models and
numerical simulations can be used to generate the required data, which can reduce the impact of
missing data to a large extent.

In addition, in common studies today, good results are obtained on only one data source, but the
actual data obtained is often a mixture of various data sources, which places higher demands on the
performance of deep learning for classification and feature extraction, and hybrid models are a more
powerful way to address such problems in the future. The future of geohazards is likely to be part of the
geoscience data problem, requiring higher performance and more powerful models than are currently
available.

Human activities. Except for earthquakes, most geohazards currently involve human activities
[234,235], but the impact factors of human activities are complex and variable and require better
models to measure them. There is also a lack of research on cascading effects between geohazards
Studies of cascading effects between geological hazards is also lacking. Zuccaro et al. [236] described
a theoretical model for cascading effects scenario analysis and a basic framework for identifying risk
factors, including the interaction of geohazards leading to successive hazard events and the impact on
the landscape and society.

The study of geological hazards is complex and requires more research breakthroughs based on
the combination of basic deep learning methods because geological hazards are rapidly changing and
their causes are complex, as mentioned in the previous article, how to label and classify the data
obtained from geological hazards is a very important topic, and we believe that deep learning and
more advanced data processing methods are important research directions in the future. However, the
field of geohazards always needs human thinking to make key decisions, because methods including
deep learning are based on past data to make the next inferences, but there are always more or fewer
differences and new contents between geohazards and disasters.

We hope that more relevant practitioners will join the research in this area and grasp a major
revolution brought by deep learning to the field of geohazards.

5 Conclusion

In this paper, we briefly summarize recent developments in geohazards and deep learning, starting
with a summary of commonly used data sources, since deep learning is a data-driven computer tool
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and it is important to be able to access as many data sources as possible and to provide as many high-
quality data as possible, and then briefly introduce traditional neural networks that are commonly
seen in current research and provide a brief introduction to the relevant underlying content. Finally,
we briefly introduce the causes and threats of multiple geological hazards and briefly summarize the
current research progress or status.

The combination of geohazards and deep learning has given a new research direction to this
centuries-old research field. Although the relevant research is still in its infancy, it has shown the great
potential that lies in it, and the future development of this field will take a more diversified path and
become a critical step toward a digital Earth in the future.
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