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ABSTRACT

An appropriate optimal number of market segments (ONS) estimation is essential for an enterprise to achieve
successful market segmentation, but at present, there is a serious lack of attention to this issue in market segmen-
tation. In our study, an independent adaptive ONS estimation method BWCON-NSDK-means++ is proposed by
integrating a new internal validity index (IVI) Between-Within-Connectivity (BWCON) and a new stable clustering
algorithm Natural-SDK-means++ (NSDK-means++) in a novel way. First, to complete the evaluation dimensions
of the existing IVIs, we designed a connectivity formula based on the neighbor relationship and proposed the
BWCON by integrating the connectivity with other two commonly considered measures of compactness and
separation. Then, considering the stability, number of parameters and clustering performance, we proposed the
NSDK-means++ to participate in the integration where the natural neighbor was used to optimize the initial cluster
centers (ICCs) determination strategy in the SDK-means++. At last, to ensure the objectivity of the estimated ONS,
we designed a BWCON-based ONS estimation framework that does not require the user to set any parameters
in advance and integrated the NSDK-means++ into this framework forming a practical ONS estimation tool
BWCON-NSDK-means++. The final experimental results show that the proposed BWCON and NSDK-means++
are significantly more suitable than their respective existing models to participate in the integration for determining
the ONS, and the proposed BWCON-NSDK-means++ is demonstrably superior to the BWCON-KMA, BWCON-
MBK, BWCON-KM++, BWCON-RKM++, BWCON-SDKM++, BWCON-Single linkage, BWCON-Complete
linkage, BWCON-Average linkage and BWCON-Ward linkage in terms of the ONS estimation. Moreover, as an
independent market segmentation tool, the BWCON-NSDK-means++ also outperforms the existing models with
respect to the inter-market differentiation and sub-market size.
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1 Introduction

Market segmentation is an important marketing tool that aims to divide a large heterogeneous
market into several small homogeneous markets so that consumers located in the same sub-market
have similar demands and consumers located in different sub-markets have different demands, and
enterprises can focus their resources on the most appropriate target market to maximize their interests
[1]. So far, there have been many studies on the market segmentation bases and methods, but few
studies on how to determine the optimal number of market segments (ONS) [2–4]; however, in practice,
a reasonable ONS is a premise for carrying out a valuable market segmentation, because (1) different
ONSs will directly change the composition of the market segmentation results, and the unrealistic
sub-markets will mislead the enterprises to make relevant decisions, and (2) most current market
segmentation methods need to be provided with the ONS in advance. Obviously, it is practical to
strengthen the studies on how to determine an appropriate ONS.

In the state-of-the-art studies, there are two main ways to determine the ONS: (1) the researchers
directly specify an ONS or a range based on their prior knowledge [5], and (2) the combination
of a validity index and a clustering algorithm is used to determine the ONS due to a fact that
the clustering analysis is the current dominant market segmentation technique and most clustering
algorithms also require a pre-specified number of clusters (NC), which makes the process of finding
the optimal NC (ONC) coincide with the purpose of determining the ONS [6]. Compared with the
former, this combination strategy is more objective and user-friendly; and its basic idea is to perform
a clustering algorithm many times with different NCs, choose an appropriate validity index to evaluate
the clustering results, and determine the ONC (ONS) according to the evaluation values [7,8], in which
the selections of the validity index and the clustering algorithm play the very important roles in whether
a reasonable ONC can be obtained. And in our study, we also try to propose an effective method for
determining the ONC based on such combinatorial idea.

For the validity indices, there are two main types: the external validity index (EVI) and internal
validity index (IVI) [9]. Since the former is used with known data labels, while the latter is independent
of the data labels, the IVIs can often be combined with the clustering algorithms to determine the ONC,
where the Dunn index, Davies–Bouldin (DB) index, Silhouette (Sil) index and Calinski-Harabasz (CH)
index are the most commonly used IVIs in the current literature [10]; and all of them evaluate the
clustering results from two aspects, compactness and separation. Based on the Sil, Zhou et al. [11]
proposed a new IVI CIP that can obtain more accurate ONC than the DB, Sil, Krzanowski-Lai
(KL) index, Weighted inter-intra (Wint) index and In-group proportion (IGP) index with different
clustering algorithms; particularly, they pointed out that although the CIP still mainly considers the
compactness and separability, a valid IVI should consider compactness, separation and connectivity
simultaneously and they provided the concept of the cluster connectivity qualitatively. In a recent study,
Zhou et al. [7] also proposed a valid IVI BWC and it has been proved to be significantly better than
the CH, DB, Sil, KL, Wint, Hartigan (Hart) index, IGP, Dunn and PBM index in terms of the ONC
estimation, however, its definition still does not reflect the cluster connectivity. Unlike the compactness
and the separation, the cluster connectivity refers to the fact that a sample should be classified into
the same cluster with its neighboring samples, and they evaluate the reasonableness of the clustering
results from three different perspectives. Thus, it is possible to quantitatively design a definition of the
cluster connectivity and integrate it into the IVI to further improve the accuracy of the estimated ONC
(EONC).

In terms of the clustering algorithms, the K-means algorithm (KMA) and its variants are
commonly used clustering algorithms in combination with the IVIs for choosing the ONC since they
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are simple to implement and have linear time complexity [7]. For example, He et al. [12] combined the
Sil with the KMA to estimate the ONC; Sheikhhosseini et al. [13] also chose the KMA as the basic
algorithm from numerous clustering algorithms, and further combined it with the Davies–Bouldin’s
measure and Chou–Su–Lai’s measure together to determine the ONC. Nevertheless, since the KMA
is sensitive to the initial cluster centers (ICCs), and different ICCs tend to lead to different clustering
results, as well as different clustering results will cause unstable ONCs, the traditional KMA is not the
best choice for determining the ONC in combination with the IVIs [14]. In a recent study, Du et al. [15]
successfully integrated the DB with a new clustering algorithm SDK-means++ to detect the ONC.
Compared with the existing models, the SDK-means++ is stable and does not require setting any
parameters, but it still suffers from two major shortcomings: (1) when calculating the first ICC,
the setting of the parameter cut-off distance lacks theoretical support; and (2) when determining the
remaining ICCs, the noises and edge points are more easily identified as ICCs, thus affecting the
number of iterations (NI) of the algorithm and the final clustering performance. Therefore, it is
necessary to further optimize the SDK-means++ to make it more suitable for determining the ONC
in combination with the IVIs.

In our study, we proposed an adaptive parameter-free BWCON-NSDK-means++ algorithm for
determining the ONC by integrating a new IVI and a new stable clustering algorithm. First, since
the existing IVIs ignore the cluster connectivity, to complete the evaluation dimensions of the existing
IVIs and evaluate a clustering result more comprehensively, we designed a cluster connectivity formula
for the first time based on the neighbor relationship, and thus defined a new IVI, Between-Within-
Connectivity (BWCON), to evaluate the clustering results from three dimensions of compactness,
separation and connectivity. Then, to address the aforementioned problems in the SDK-means++,
we chose the sample with the most natural neighbors as the first ICC to solve the parameter problem,
and introduced a modification mechanism in the original SDK-means++ to address the noise and the
edge point problems, and finally proposed the Natural-SDK-means++ (NSDK-means++) algorithm
for combination with the IVI. At last, considering that the existing combination strategies usually
take the NC corresponding to the maximum or minimum evaluation value as the ONC, ignoring the
fact that such values are easily disturbed by the special points or clusters in the clustering results,
we developed a novel ONC estimation framework based on the proposed BWCON, and proposed
an independent and objective ONC estimation algorithm BWCON-NSDK-means++ by effectively
integrating the NSDK-means++ into this framework. The experimental results obtained show that
the BWCON index is able to better estimate the ONC than those previous IVIs such as Dunn, DB,
Sil, CH, BWP, CIP and BWC with different clustering algorithms on the seven UCI datasets and
five synthetic datasets; on these relatively complex UCI datasets, the proposed NSDK-means++ can
achieve the better clustering performance than other five existing clustering algorithms in terms of nine
validity indices; moreover, the BWCON-NSDK-means++ is proved to be able to obtain more accurate
ONC than the BWCON-KMA, BWCON-MBK, BWCON-KM++, BWCON-RKM++, BWCON-
SDKM++, BWCON-Single linkage, BWCON-Complete linkage, BWCON-Average linkage and
BWCON-Ward linkage algorithms on all twelve datasets, and can be used as a stand-alone market
segmentation tool.

The rest of this paper is organized as follows. The overview of different IVIs and clustering
algorithms is presented in Section 2. Section 3 introduces the proposed BWCON-NSDK-means++
algorithm in detail. Experimental results are provided in Sections 4 and 5. Finally, Section 6 summa-
rizes the paper.
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2 Related Work

In the following subsections, different IVIs and clustering algorithms are delineated.

2.1 Internal Validity Indices
Many IVIs have been proposed to evaluate the clustering performance and combined with the

clustering algorithms to determine the ONC. Dunn [16] proposed the Dunn by combining the within-
cluster and between-cluster distances, in which the within-cluster distance is estimated by calculating
the maximum distance in any cluster, and the between-cluster distance is measured by calculating the
shortest distance between samples in any two clusters; the larger the Dunn, the better the clustering
results. In 1979, Davies et al. [17] proposed the DB, which is obtained from the ratio of within-cluster
compactness and between-cluster separation; the minimization of the index shows better clustering
partitions. In [18], Rousseeuw proposed the well-known Sil. Similar to the previous two indices, the Sil
also evaluates the clustering results from two dimensions of compactness and separation; it measures
the compactness of a sample by calculating the average distance from this sample to the other samples
in this cluster and the separation of a sample by calculating the minimum value of average distance
between this sample and samples in every other cluster. The Sil obtains its maximum value when the
ONC is achieved. In 1974, Calinski et al. [19] proposed the CH that introduced the within-groups sum
of squared and the between-groups sum of squared error to measure the compactness and separation;
and similarly, the ONC corresponds to the maximum CH. In 2011, Zhou et al. [20] proposed the BWP
index, in which the compactness and separation measures are exactly the same as those of the Sil, and
the only difference between them is that their normalization methods are different: the BWP used the
clustering distance to normalize itself; theoretical studies and experimental results have shown that
the BWP significantly outperforms the DB, KL, Homogeneity-Separation (HS) and IGP in terms of
the ONC estimation. To improve the time performance of the Sil and BWP, Zhou et al. [11] proposed
a new IVI, CIP, based on the concept of the sample geometry, which measures the compactness of a
sample by calculating the distance from this sample to the centroid of this cluster, and the separation
of a sample by calculating the minimum distance between this sample and every centroid of other
clusters; the obtained results show that the CIP can obtain the accurate NC more quickly than the
existing indices. In a recent study, Zhou et al. [7] further improved the Sil and proposed the BWC that
still evaluates the clustering results from two aspects of compactness and separation, where it measures
the compactness of a cluster by calculating the average distance between every sample of this cluster
and its centroid, and the separation of a cluster by calculating the minimum distance between the
centroid and every centroid of other clusters; and the ONC is obtained at the maximum BWC under
different NCs.

It can be seen that in terms of the ONC estimation, although the validity of all of the above indices
has been proved on various datasets with different clustering algorithms, none of them consider the
cluster connectivity. The cluster connectivity measures the reasonableness of the clustering results from
a neighborhood perspective, and it is of great practical significance to give a quantitative formula for
calculating the connectivity and incorporate it into the IVIs to evaluate the clustering results together
with the compactness and the separation. In addition, when searching for the ONC, the existing IVIs
often determine the ONC by finding their maximum or minimum values under different NCs, however,
such values are easily dominated by the locations of the special points or clusters in the clustering
results, which will in turn directly affect the final estimates.
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2.2 Clustering Algorithms
In the literature, there are two main types of clustering algorithms that are often combined

with IVIs to determine the ONC: hierarchical and partitional clustering [8]. For the hierarchical
clustering, according to the direction of clustering, there are two types of methods: agglomerative
hierarchical clustering (AHC) and divisive hierarchical clustering (DHC) [21], where the former
follows the bottom-top strategy, which treats each sample as a complete cluster at the beginning, and
then gradually merges them into some larger cluster based on a certain criterion, and on the contrary,
the DHC adopts the top-down strategy, which initially regards the entire dataset as a complete cluster
and then splits the dataset into some smaller clusters based on a certain criterion [22]. Compared with
the DHC, the AHC is more accurate and widely used [23], and in recent years, the classic AHC with
single linkage, complete linkage, average linkage and ward linkage are still the most widely used AHC
methods [24,25]. In general, the AHC is simple in idea and has the stable clustering performance, but
it is not suitable for clustering large datasets due to its high time complexity [24].

While among the partitional clustering algorithms, the KMA is currently the most popular one,
and its implementation consists of five main steps: (1) specify the NC m; (2) select m samples randomly
as the ICCs; (3) classify each sample into the cluster where its nearest center is located; (4) update
the clustering centers by treating the mean of each cluster as a new center; and (5) repeat Steps
(3) and (4) until the clustering centers no longer change [26]. In a subsequent study, Sculley [27]
improved the KMA and proposed the Mini-batch K-means (MBK) to accelerate the clustering speed
by randomly selecting a subset instead of the whole dataset to train the ICCs, but like KMA, its
clustering performance is unstable and very sensitive to the ICCs [28]. A representative partition-based
clustering algorithm K-means++ proposed by Arthur and Vassilvitskii provided such an effective
solution to determine the ICCs, as shown in Algorithm 1, in which the ICCs are determined based
on a D2 weighting method following the principle that the larger the distances among the ICCs, the
more reasonable the selection of the ICCs, and it can effectively reduce the possibility of multiple ICCs
appearing in the same cluster [29]. However, due to the existence of the line 1 in the Algorithm 1, the
K-means++ still has a certain degree of randomness.

Algorithm 1: K-means++
Input: given dataset X , NC m
Output: Clustering results C = {C1, · · · , Cm}
1: Choose a point from X randomly as the first ICC
2: Repeat:
3: Sum = 0
4: for x ∈S do: // S denotes the samples in the X other than the ICCs that have been determined
5: Calculate the distance D2(x) between x and the nearest cluster center
6: Sum = Sum + D2

(x)

7: Choose the next center with largest probability
D2

(x)

Sum
8: Until the m centers are chosen
9: Assign each sample in the S to the cluster where its nearest center is located to obtain the clustering

result
C = {C1, · · · , Cm} //C1, · · · , Cm are m mutually disjoint sets, and

⋃m

i Ci = X , i = 1, . . . , m
10: Update the clustering centers by treating the mean of each cluster in the C as a new center
11: Repeat lines 9 and 10 until the centers unchanged
12: Return Clustering results C = {C1, · · · , Cm}
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In [30], an alternative way to determine the ICCs is introduced in the K-means++, called RK-
means++ in our study that determines the ICCs by randomly selecting a random value, and then
weighting to calculate the ICCs; it is still unstable since (1) the first ICC is generated randomly, and (2)
the determination of the remaining ICCs requires first choosing a small random number at random.
To completely solve the randomness problem, the SDK-means++ was proposed in 2021 based on
the DB, maximum density and the largest sum of distance, as shown in Algorithm 2, in which the
IVI DB is used to adaptively determine the ONC to avoid artificially setting the parameter NC, the
maximum density is utilized to determine the first ICC to avoid the randomness, and the largest sum
of distance is designed to ensure that all ICCs are generated in different clusters, but as mentioned in
the introduction, its parameter, noise and edge point issues can be further optimized [15].

Algorithm 2: SDK-means++
Input: given dataset X
Output: Clustering results R[m]
1: Initial an empty list R // R is used to store the clustering results corresponding to different NCs
2: Initial an empty list D // D is used to store the DB values corresponding to different NCs
3: for k = 2 to N do: // N is the number of samples in the X
4: Choose the first ICC c1 from X based on the maximum density
5: Initial an empty list Cen // Cen is used to store the ICCs
6: Store c1 into the Cen [1]
7: for i = 2 to k do:
8: Choose the next center ci based on the largest sum of the distance
9: Store the ci into the Cen[i]
10: end for
11: Assign each sample to the cluster where its nearest center is located to obtain the clustering

result
C = {C1, · · · , Ck} //C1, · · · , Ck are k mutually disjoint sets, and

⋃k

i Ci = X , i = 1, . . . , k
12: Update the clustering centers by treating the mean of each cluster in the C as a new center
13: Repeat lines 11 and 12 until the centers unchanged
14: Output the clustering results C = {C1, · · · , Ck}
15: Store the clustering results into the R[k]
16: Evaluate the clustering results based on the DB
17: Store the DB value into the D[k]
18: k = k +1
19: end for
20: Determine the ONC m based on the D
21: Return Clustering results R[m]

3 Proposed Work

In all the following works, the Euclidean distance is used to evaluate the dissimilarity.

3.1 The IVI: The BWCON Index
Definition 1 Let dataset X = {x1, x2, . . . , xN}, and xi is the ith sample. Assuming that N samples

are clustered into m clusters, the centroid μk of the cluster k is defined as the mean value of all samples
in the cluster k, i.e.,
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μk = 1
nk

∑nk

p=1
x(k)

p (1)

where k represents the cluster label, x(k)

p represents the pth sample in the cluster k, and nk represents
the number of samples in the cluster k.

Definition 2 Let dataset X = {x1, x2, . . . , xN}, and xi is the ith sample. Assuming that N samples are
clustered into m clusters, the within-cluster distance wc(j) of cluster j is defined as the average distance
between every point in the cluster j and the centroid of cluster j, i.e.,

wc(j) = 1
nj

∑nj

i=1

∥∥X(j)
i − μj

∥∥ (2)

where j represents the cluster label, x(j)
i represents the ith sample in the cluster j, ‖.‖ represents the

Euclidean distance, and nj represents the number of samples in the cluster j.

Definition 3 Let dataset X = {x1, x2, . . . , xN}, and xi is the ith sample. Assuming that N samples
are clustered into m clusters, the between-cluster distance bc(j) of cluster j is defined as the average
distance between the centroid of cluster j and every centroid of other clusters, i.e.,

bc(j) = 1
m − 1

∑
1≤k≤m,k�=j

∥∥μj − μk

∥∥ (3)

where j and k represent the cluster label.

Definition 4 Let dataset X = {x1, x2, . . . , xN}, and xi is the ith sample. Assuming that N samples
are clustered into m clusters, the connectivity con(j, i) of x(j)

i is defined as the ratio of the length of the
intersection of the KNNT(x

(j)
i ) and KNNT(x

(j)
i )

′
to T , i.e.,

con(j, i) = length(KNNT(x
(j)
i ) ∩ KNNT(x

(j)
i )′)

T
(4)

where the connectivity con(j, i) of sample x(j)
i is the ratio of the number of samples that are classified

into the j among all T nearest neighbors of x(j)
i to T . Specifically, T is the number of neighboring

samples determined using the Algorithm 1 in [31] that is an adaptive method for determining the
number of nearest neighbors for a dataset to be clustered, KNNT(x

(j)
i ) represents the T nearest samples

to x(j)
i in the whole dataset and KNNT(x

(j)
i )′ denotes the T nearest samples to x(j)

i in the cluster j.
Moreover, when nj ≤ T, KNNT(x

(j)
i )′ are all samples in the cluster j.

Definition 5 Let dataset X = {x1, x2, . . . , xN}, and xi is the ith sample. Assuming that N samples are
clustered into m clusters, the connectivity con(j) of cluster j is defined as the mean of the connectivity
values of all samples in the cluster j, i.e.,

con(j) = 1
nj

∑nj

i=1
con(j, i) (5)

where nj represents the number of samples in the cluster j.

Definition 6 Let dataset X = {x1, x2, . . . , xN}, and xi is the ith sample. Assuming that N samples
are clustered into m clusters, the BWCON of cluster j BWCON(j) is as follows:

BWCON(j) = [wc(j), bc(j), con(j)] (6)

In Definition (6), the BWCON consists of three evaluation dimensions. For the compactness, we
use wc(j) defined in (2) to reflect the overall compactness of cluster j, and the smaller value of wc(j)
represents the high cluster compactness. For the separation, the bc(j) defined in (3) is used to reflect the
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between-cluster separation of cluster j; and the large value of bc(j) shows the high cluster separation.
Compared with the separation in the BWC, we replace the minimum distance between the centroid of
cluster j and the centroids of other clusters in the clustering results with the average distance, which
can better reflect the structural relationship between this cluster and other clusters on the whole. As
for the cluster connectivity, we use con(j, i) defined in (4) to reflect the connectivity of sample x(j)

i , and
use con(j) defined in (5) to reflect the connectivity of cluster j. Extremely, if the T nearest neighbors of
a sample in its cluster are exactly the same as its T nearest neighbors in the entire dataset, we consider
that this sample is correctly classified in the dimension of connectivity; obviously, the larger the con(j)
is, the more reasonable the clustering results are.

To understand the BWCON intuitively, we illustrate the BWCON by providing a distribution
diagram of Fig. 1.

Figure 1: Distribution diagram of clustering structure for the BWCON index

In Fig. 1, the dataset consists of four clusters: j, u, v and w, the centroid of j is marked by l,
the centroids of the other three clusters are represented by the hollow circles, and since the dataset
is small, the T is directly specified as 1. According to Definitions 2 and 3, we can obtain that

wc(j) = e1 + e2 + e3 + e4 + e5

5
and bc(j) = a + b + c

3
; according to Definitions 4 and 5, we can get that

con(j,s1) = |KNN1(s1) ∩ KNN1(s1)′|
1

= |{s6} ∩ {s5}| = 0, con(j, s2) = |KNN1(s2) ∩ KNN1(s2)′|
1

=
|{s7} ∩ {s3}| = 0, con(j, s3) = |KNN1(s3) ∩ KNN1(s3)′|

1
= |{s4} ∩ {s4}| = 1, con(j, s4) =

|KNN1(s4) ∩ KNN1(s4)′|
1

= |{s5} ∩ {s5}| = 1, con(j, s5) = |KNN1(s5) ∩ KNN1(s5)′|
1

= |{s4} ∩ {s4}| =
1, and con(j) = 0 + 0 + 1 + 1 + 1

5
= 0.6; and ultimately, according to Eq. (6), the BWCON of j is[

e1 + e2 + e3 + e4 + e5

5
,

a + b + c
3

, 0.6
]

.

Furthermore, to evaluate the clustering validity of a whole dataset, the avgBWCON(m) function
is defined.
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Definition 7 Let dataset X = {x1, x2, . . . , xN}, and xi is the ith sample. Assuming that N samples are
clustered into m clusters, the avgBWCON(m) is defined as the average BWCON values of all clusters
in the clustering results, i.e.,

avgBWCON(m) =
[

1
m

∑m

j=1
wc(j),

1
m

∑m

j=1
bc(j),

1
m

∑m

j=1
con(j)

]
(7)

3.2 The BWCON-Based ONC Estimation Framework
The main steps for estimating the ONC based on the BWCON are presented as follows:

Step 1: Cluster the input dataset under different NCs.

Let N be the number of samples, k is the NC, and the range of k is
[

2,
⌊√

N
⌋ ]

as in [7,8,11]. The

object of this step is to get different clustering results corresponding to different NCs under a certain
clustering algorithm.

Step 2: Evaluate the above clustering results according to the BWCON.

In this Step, a BWCON matrix is generated, written as

⎛
⎜⎜⎜⎝

avgBWCON(2)

avgBWCON(3)
...

avgBWCON(	√N
)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
1
2

∑2

j=1 wc(j),
1
2

∑2

j=1 bc(j),
1
2

∑2

j=1 con(j)
]

[
1
3

∑3

j=1 wc(j),
1
3

∑3

j=1 bc(j),
1
3

∑3

j=1 con(j)
]

...[
1

	√N

∑	√

N

j=1 wc(j),

1

	√N

∑	√N


j=1 bc(j),
1

	√N

∑	√

N

j=1 con(j)

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

Further, Eq. (8) is simplified as follows:⎛
⎜⎜⎜⎜⎝

avgBWCON(2)

avgBWCON(3)
...

avgBWCON
(⌊√

N
⌋)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

wc2, bc2, con2

wc3, bc3, con3

...
wc	√

N
, bc	√
N
, con	√

N


⎞
⎟⎟⎟⎠

(	√
N
−1)×3

(9)

Step 3: Standardize the BWCON matrix.

Since the change trends of the compactness, separation and connectivity are different, they are
standardized differently so that the larger the values of the standardized compactness, separation and
connectivity, the better the clustering performance. Related calculations are shown in the Eqs. (10)–
(12), and (13) is the standardized BWCON matrix.

Stdwcl
= maxiwci − wcl

maxiwci − miniwci

, l = 2, 3, . . . ,
⌊√

N
⌋

, i = 2, 3, . . . ,
⌊√

N
⌋

(10)

Stdbcl
= bcl − minibci

maxibci − minibci

, l = 2, 3, . . . ,
⌊√

N
⌋

, i = 2, 3, . . . ,
⌊√

N
⌋

(11)

Stdconl
= conl − miniconi

maxiconi − miniconi

, l = 2, 3, . . . ,
⌊√

N
⌋

, i = 2, 3, . . . ,
⌊√

N
⌋

(12)
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Std

⎛
⎜⎜⎜⎜⎝

avgBWCON(2)

avgBWCON(3)
...

avgBWCON
(⌊√

N
⌋)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Stdwc2
, Stdbc2

, Stdcon2

Stdwc3
, Stdbc3

, Stdcon3
...

Stdwc	√
N
 , Stdbc	√

N
 , Stdcon	√
N


⎞
⎟⎟⎟⎠

(	√
N
−1)×3

(13)

Step 4: Estimate the ONCs under different dimensions in turn.

In this step, the compactness, separation and connectivity matrices, diffcom, diffsep and diffcon, are
generated as follows:

diffcom =

⎛
⎜⎜⎜⎝

Stdwc3
− Stdwc2

Stdwc4
− Stdwc3
...

Stdwc	√
N
 − Stdwc	√

N
−1

⎞
⎟⎟⎟⎠

(	√
N
−2)×1

(14)

diffsep =

⎛
⎜⎜⎜⎝

Stdbc3
− Stdbc2

Stdbc4
− Stdbc3
...

Stdbc	√
N
 − Stdbc	√

N
−1

⎞
⎟⎟⎟⎠

(	√
N
−2)×1

(15)

diffcon =

⎛
⎜⎜⎜⎝

Stdcon3
− Stdcon2

Stdcon4
− Stdcon3
...

Stdcon	√
N
 − Stdcon	√

N
−1

⎞
⎟⎟⎟⎠

(	√
N
−2)×1

(16)

Further, the ONCs, ncom, nsep and ncon, corresponding to the compactness, separability and
connectivity, are calculated separately according to Eqs. (17)–(19).

ncom =
{

v + 1,
∣∣Stdwcv+1

− Stdwcv

∣∣ = max(|diffcom|), Stdwcv+1
− Stdwcv > 0

v,
∣∣Stdwcv+1

− Stdwcv

∣∣ = max(|diffcom|), Stdwcv+1
− Stdwcv ≤ 0

(17)

nsep =
{

v + 1,
∣∣Stdbcv+1

− Stdbcv

∣∣ = max(
∣∣diffsep

∣∣), Stdbcv+1
− Stdbcv > 0

v,
∣∣Stdbcv+1

− Stdbcv

∣∣ = max(
∣∣diffsep

∣∣), Stdbcv+1
− Stdbcv ≤ 0

(18)

ncon =
{

v + 1,
∣∣Stdconv+1

− Stdconv

∣∣ = max(|diffcon|), Stdconv+1
− Stdconv > 0

v,
∣∣Stdconv+1

− Stdconv

∣∣ = max(|diffcon|), Stdconv+1
− Stdconv ≤ 0

(19)

where 2 ≤ v <
⌊√

N
⌋

, and |·| means taking the absolute value.

Step 5: Determine the ONC.

The ONC, noptimal, is defined as

noptimal = round
(

ncom + nsep + ncon

3

)
(20)

In Step 5, considering that the NC should be an integer, we perform a round operation;
and compared with rounding up or rounding down, round can better fetch the NC that occurs
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more frequently in the [ncom, nsep, ncon]. For example, when [ncom, nsep, ncon] = [3, 2, 3], we obtain that
round (3 + 2 + 3/3) = 3, 	3 + 2 + 3/3
 = 2, �3 + 2 + 3/3� = 3, and 3 with the highest number of
occurrences is obtained using the round and the rounding up; and when [ncom, nsep, ncon] = [2, 2, 3], we
can obtain that round (2 + 2 + 3/3) = 2, 	2 + 2 + 3/3
 = 2,�2 + 2 + 3/3� = 3, and 2 is obtained
using the round and the rounding down.

Here, to facilitate understanding, we use the commonly used Seeds from the UCI repository as an
example and choose the stable AHC with the average linkage as our clustering algorithm to illustrate
the above steps in more detail.

Step 1: Cluster the Seeds under different k, where, N is 210, the range of k is [2, 14].

Step 2: According to Eq. (8), the BWCON matrix is shown below:⎛
⎜⎜⎝

avgBWCON(2)

avgBWCON(3)
...

avgBWCON(14)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

[1.94, 6.07, 0.98]
[1.51, 5.41, 0.96]

...
[0.73, 5.27, 0.65]

⎞
⎟⎟⎠

Step 3: According to Eqs. (10)–(12), the standardized BWCON matrix is as follows:

Std

⎛
⎜⎜⎝

avgBWCON(2)

avgBWCON(3)
...

avgBWCON(14)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0, 1, 1
0.35, 0.39, 0.93

...
1, 0.26, 0

⎞
⎟⎟⎠

Step 4: The ncom, nsep and ncon are estimated according to Eqs. (14)–(19).

To facilitate the analysis, we visualize the diffcom, diffsep and diffcon in Fig. 2.

Figure 2: Schematic diagrams for the final ONC estimation

Fig. 2a shows the change trend of the compactness, separation and connectivity under different
NCs, Fig. 2b presents the values of |diffcom|, ∣∣diffsep

∣∣ and |diffcon|, and Fig. 2c represents the values of
diffcom, diffsep and diffcon. In Fig. 2a, as the NC increases, the overall trend is upward for the red line and
downward for the blue line, this is because the compactness and the connectivity of a cluster are only
related to the distribution of the cluster itself, and with the increase of the NC, the sample size of each
cluster in the clustering result becomes smaller and smaller, which means that the average distance
from each point in the cluster to its centroid tends to become smaller and each sample is less and less
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likely to be grouped into the same cluster with its T nearest neighbors; obviously, it is unreliable to
simply take the NCs corresponding to the maximum compactness or the maximum connectivity as
the final determined ONCs. As for the separation, there is no such general rule because the separation
of a cluster is related not only to the distribution of the cluster itself, but also to the distributions of
other clusters in the clustering result. Thus, in our work, we only focus on the points with the largest
fluctuations under different NCs as in Eqs. (17)–(19) to determine the corresponding ONCs since
small fluctuations of these three measures are likely to be caused by some special points or clusters in
the clustering results, and it is also unreliable to judge the reasonableness of the clustering result on this
basis. Specifically, for the compactness, the point with the largest fluctuation is searched in Fig. 2a,
and we can find that the fluctuation is maximum when the NC changes from 2 to 3 (as the first point
on the red line in Fig. 2b), as well as the fluctuation is positive (as the first point on the red line in
Fig. 2c), i.e., the clustering result has a higher compactness as the NC increases by 1; thus, according
to Eq. (17), ncom = 3. Similarly, nsep = 2 and ncon = 3.

Step 5: According to Eq. (20), noptimal = 3, which is consistent with the true NC (TNC).

3.3 The Adaptive Parameter-Free ONC Estimation Algorithm: BWCON-NSDK-Means++
From the illustration in Section 3.2, an IVI and a clustering algorithm are indispensable for

determining the ONC. Here, we optimize the SDK-means++ algorithm and propose the NSDK-
means++ to integrate with the above BWCON-based ONC estimation framework. And the process
of the NSDK-means++ is described as follows:

Step 1: Input a dataset X = {x1, x2, . . . , xN}, and the NC is m.

Step 2: Choose the first ICC c1 from X based on the fact: the ICCs should be distributed in the
center of each cluster and surrounded by many samples.

Definition 8 Natural neighbor of a sample xi is defined as follows:

xj ∈ NN(xi) ⇔ xi ∈ KNNλ(xj) ∧ xj ∈ KNNλ(xi) (21)

In this step, the c1 is determined based on the concept of natural neighbor that is derived from [31];
where NN(xi) denotes a set of natural neighbors of point xi, the point xj is a natural neighbor of xi,
λ is the number of neighboring samples, KNNλ(xj) is a set of λ nearest neighbors of xj, and KNNλ(xi)

is a set of λ nearest neighbors of xi. It can be seen that when and only when xi belongs to one of λ

nearest samples from xj and xj also belongs to one of λ nearest samples from xi, xj is called a natural
neighbor of xi, that is to say, when xj is a natural neighbor of xi, these two samples are close to each
other. Obviously, the more natural neighbors a point has, the more points it is surrounded by, and the
more likely it is to be an ICC, thus in our study, we consider the point with the most natural neighbors
as the c1. Meanwhile, to avoid parameter setting, we also determine the λ using the Algorithm 1 in
[31] that is an adaptive method for determining the number of nearest neighbors for a dataset to be
clustered.

Step 3: Choose the next center ci based on the largest sum of the distance.

To ensure that the distances among the ICCs are as large as possible and the obtained ICCs can
be located in different clusters, we adopt the largest sum of the distance as in [15] to determine the next
center ci, i.e.,

ci = {sh|max{w(s1), · · · , w(sn)}} (22)

w
(
sj

) =
∑h

t=1
d

(
sj, ct

)
, sj ∈ S, ct ∈ C (23)
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where C denotes a set of ICCs that have been identified, S is a set of samples in the X other than the
samples in the C, ct is an ICC in the C, sj is a sample in the S, d(·, ·) represents the Euclidean distance,
h is the number of samples in the C, n is the number of samples in the S, and the sample with the largest
w(sj), j ∈ [1, n], is identified as the next ICC. It can be seen that the ICC selection method based on
the largest sum of the distance links each new ICC with all existing ICCs, which ensures not only that
there are the large differences among the ICCs, but also that the different ICCs are located in different
clusters.

Step 4: Repeat Step 3 until the m centers c = {c1, c2, · · · , cm} are chosen.

Step 5: Modify m centers in the c based on their respective λ neighboring samples.

In this step, to ensure that the final ICCs are located in the center of each cluster as much
as possible and reduce the number of iterations of the ICCs, the obtained m centers are further
modified, i.e.,

KNNλ(ci) =
⋃λ

r=1
{findKNN(ci, r)}ci ∈ c (24)

c′
i = Sum(KNNλ(ci))

λ
(25)

where ci is an ICC in the c, λ is the number of neighboring samples that is equal to λ in the Step 2
to avoid parameter setting, findKNN(ci, r) returns the rth nearest neighbor of ci, KNNλ(ci) is a set of
λ nearest neighbors of ci, the mean value c′

i of the λ nearest neighbors of the ci is the finalized ICC
corresponding to the ci, and in our work, the modified m ICCs are denoted as c′ = {c′

1, c′
2, · · · , c′

m}.
The rationality of using the neighboring samples to modify the c is that a sample should be grouped
in the same cluster as its neighboring samples, and by interacting with the neighboring samples as in
Eq. (25), an ICC located at the edge can be moved closer to the inner part of the corresponding cluster.

Step 6: For each sample xi, calculate the distance to the m centers in the c′ and assign it to the
cluster with the smallest Euclidean distance; and the obtained clustering results are denoted as C =
{C1, · · · , Cm}, where

⋃m

i Ci = X , i = 1, . . . , m, and Ci ∩ Cj = φ, ∀i, j, i �= j, j = 1, . . . , m.

Step 7: Update the c′ by using the mean value of each cluster as the new center of the corresponding
cluster.

Step 8: Repeat Steps 6 and 7 until the centers are unchanged.

Step 9: Output the clustering results C = {C1, · · · , Cm}.
To visually illustrate the superiority of the NSDK-means++, Fig. 3 compares the ICCs obtained

by the SDK-means++ with those obtained by the NSDK-means++.

In Fig. 3, the SDK-means++ estimates the density of each sample by counting the number of
samples falling within the cut-off distance dc around each sample, with more samples indicating a
higher density at that point, and in turn using the point with the highest density as the first ICC. In
the figure on the left, we set the dc to be the radius of the gray circle, thus the point m is determined as
the first ICC, and based on the Eqs. (22) and (23), the remaining two ICCs are, in order, b and g that
are located at the edges of the clusters because the largest sum of the distance always determines the
next ICC based on the furthest distance from the identified ICCs. For the NSDK-means++, because
the dataset is small, we directly take λ as 1; for the point a in the Cluster 1, KNN1(a) = {d} and
KNN1(d) = {a}, thus the number of natural neighbors of a is 1; similarly, the numbers of the natural
neighbors of b to r are: 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 3, 1, 1, 1 and 1, thus point n is the first ICC
determined, and the remaining ICCs are further determined as b and g based on the largest sum of
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the distance; moreover, the initial positions of these three ICCs are modified using their respective one
neighboring sample (i.e., p, a and h) according to Eqs. (24) and (25), and ultimately, their positions
moved from the edges of the clusters to the green dots along the orange arrows, which are closer to the
inner parts of the clusters, and still distributed in the different clusters. Note that the orange arrows
in the above diagram only qualitatively indicate the movement trend of the ICCs; and for the example
above, the advantage of the Step 5 would be even more apparent if λ were to be increased slightly.

Figure 3: Schematic diagrams of the processes of determining the ICCs

As a result, the BWCON-NSDK-means++ that can independently determine the ONC is
proposed in Algorithm 3.

Algorithm 3: BWCON-NSDK-means++
Input: given dataset X
Output: ONC m, clustering results R[m]

1: Determine the NC k in the search range of
[
2,

⌊√
N

⌋]
; // N is the number of samples in the X

2: Initial an empty list R // R is used to store the clustering results corresponding to different NCs
3: Repeat:
4: Use the NSDK-means++ to cluster X into k clusters {C1, · · · , Ck};

//C1, · · · , Ck are k mutually disjoint sets, and
⋃k

i Ci = X , i = 1, . . . , k
5: Store the k clusters into the R[k]
6: Use Eq. (7) to calculate the BWCON of the R[k];
7: k = k + 1
8: Until an empty cluster exists in the k clusters or k >

⌊√
N

⌋
9: Use Eqs. (8) to construct a BWCON matrix;
10: Use Eqs. (10)–(12) to standardize the BWCON matrix;
11: Use Eqs. (17)–(19) to determine the [ncom, nsep, ncon];
12: Use Eq. (20) to calculate the noptimal m;
13: Return ONC m, clustering results R[m]

4 Experimental Studies

In this section, to demonstrate the effectiveness of the combination “BWCON+NSDK-
means++”, we conduct three experiments: (1) to show that the BWCON is a more suitable IVI
for determining the ONC than those already existing IVIs, we combine the BWCON and seven other
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IVIs with different clustering algorithms and compare their abilities to estimate the ONC; (2) to
illustrate that the NSDK-means++ is a more appropriate algorithm than the KMA and its variants for
determining the ONC in combination with IVIs, the clustering performance of the NSDK-means++
and other five partition-based clustering algorithms is compared on seven UCI datasets; and finally
(3) to prove the superiority of the BWCON-NSDK-means++, we integrate several representative
clustering algorithms into our proposed BWCON-based ONC estimation framework and compare
their ONC accuracies. All works of this research are implemented using python 3.8, running on an
11th Gen Intel(R) Core (TM) i7-1165G7@2.80 GHz CPU with 16.0 GB RAM and windows 10-64-bit
operating system; and the SPSS is used for the Kruskal–Wallis test and Friedman test.

4.1 Data Acquisition
For validation purpose, the TNCs are known for all datasets used in this section, and the details

of the selected datasets are shown in Table 1. Among them, Seeds, Vehicle, Cleveland, Balance,
Haberman, Thyroid and Wine are the most commonly used public real-world datasets from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/); S1, S2 and S3 are three 2-D synthetic
datasets generated by using the “multivariate_normal” function from the numpy, and each cluster in
these datasets is Gaussian-distributed; and S4 and S5 are generated using the “make_blobs” function
of the sklearn. From Table 1, it can be seen that these datasets have different sample sizes (100–1800),
features (2–18), NCs (2–5), and cluster sizes.

Table 1: The description of the datasets for testing

Dataset Number of observations Cluster size Number of features TNC

Seeds 210 70/70/70 7 3
Vehicle 846 212/218/199/217 18 4
Cleveland 297 160/54/35/35/13 13 5
Balance 625 49/288/288 4 3
Haberman 306 225/81 3 2
Thyroid 215 150/35/30 5 3
Wine 178 59/71/48 13 3
S1 1500 250/1000/250 2 3
S2 1800 600/600/600 2 3
S3 800 200/200/200/200 2 4
S4 1000 —— 2 3
S5 100 —— 2 3

4.2 Superiority Evaluation of the BWCON-Based ONC Estimation Framework
To show the performance of the BWCON-based ONC estimation framework, like the existing

studies [7,11], we choose the AHC with single linkage algorithm in combination with different IVIs to
determine the ONC. In addition, the other four stable clustering algorithms are also adopted. In our

study, all the above combinations are run within a search range
[
2,

⌊√
N

⌋]
. The experimental results

are shown in Tables 2–6, where the bold numbers indicate the correct NCs.

http://archive.ics.uci.edu/ml/


212 CMES, 2023, vol.137, no.1

Table 2: Experimental results of ONCs using the AHC with the single linkage

Datasets TNC EONC

Dunn DB Sil CH BWP CIP BWC BWCON

Seeds 3 2 3 2 2 2 2 13 3
Vehicle 4 2 11 2 2 2 2 18 4
Cleveland 5 2 5 2 2 2 2 2 3
Balance 3 2 2 2 2 2 2 25 2
Haberman 2 2 2 2 2 2 2 6 2
Thyroid 3 2 3 2 4 2 2 4 3
Wine 3 2 2 2 4 2 2 2 3

S1 3 36 3 2 36 2 2 10 3
S2 3 4 4 4 4 4 4 41 3
S3 4 4 4 4 4 4 4 4 4
S4 3 2 3 2 2 2 2 31 4
S5 3 2 3 3 3 3 3 9 3

Table 3: Experimental results of ONCs using the AHC with the complete linkage

Datasets TNC EONC

Dunn DB Sil CH BWP CIP BWC BWCON

Seeds 3 13 2 2 3 2 2 2 3
Vehicle 4 29 3 3 5 3 3 3 4
Cleveland 5 2 2 2 3 2 2 2 4
Balance 3 22 16 2 2 15 15 16 3
Haberman 2 2 5 2 3 2 2 12 3
Thyroid 3 10 5 3 3 3 3 5 3
Wine 3 12 8 3 3 3 3 8 4

S1 3 35 3 3 3 3 3 3 3
S2 3 3 3 3 3 3 3 3 3
S3 4 4 4 4 4 4 4 4 7
S4 3 2 2 2 3 2 2 2 4
S5 3 2 3 3 3 3 3 3 3
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Table 4: Experimental results of ONCs using the AHC with the average linkage

Datasets TNC EONC

Dunn DB Sil CH BWP CIP BWC BWCON

Seeds 3 8 2 2 3 2 2 2 3
Vehicle 4 2 2 3 3 3 3 2 4
Cleveland 5 2 3 2 4 2 2 3 3
Balance 3 19 16 15 2 15 15 16 3
Haberman 2 2 3 2 7 2 2 4 2
Thyroid 3 2 3 2 6 2 3 3 3
Wine 3 2 2 2 8 2 2 3 4

S1 3 3 3 3 3 3 3 5 4
S2 3 3 3 3 3 3 3 3 3
S3 4 4 4 4 4 4 4 4 4
S4 3 2 2 2 3 2 2 2 3
S5 3 2 3 3 3 3 3 3 3

Table 5: Experimental results of ONCs using the AHC with the ward linkage

Datasets TNC EONC

Dunn DB Sil CH BWP CIP BWC BWCON

Seeds 3 10 2 2 3 2 2 2 3
Vehicle 4 27 2 2 2 2 2 2 5
Cleveland 5 17 2 2 2 2 2 2 5
Balance 3 23 16 15 3 15 15 16 3
Haberman 2 6 6 2 2 2 2 6 5
Thyroid 3 3 2 2 3 2 2 2 4
Wine 3 11 2 2 3 3 2 2 3

S1 3 3 3 3 3 3 3 3 3
S2 3 3 3 3 3 3 3 3 3
S3 4 4 4 4 4 4 4 4 4
S4 3 2 2 2 3 2 2 2 3
S5 3 2 3 3 3 3 3 3 3
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Table 6: Experimental results of ONCs using the NSDK-means++ algorithm

Datasets TNC EONC

Dunn DB Sil CH BWP CIP BWC BWCON

Seeds 3 4 2 2 3 2 2 2 3
Vehicle 4 4 2 2 2 2 2 2 3
Cleveland 5 5 2 2 2 2 2 2 4
Balance 3 8 13 8 8 3 3 3 3
Haberman 2 2 4 2 2 2 2 8 2
Thyroid 3 3 4 3 3 3 3 4 3
Wine 3 2 3 3 2 3 3 3 3

S1 3 3 3 3 3 3 3 3 3
S2 3 3 3 3 3 3 3 3 4
S3 4 4 4 4 4 4 4 4 4
S4 3 2 2 2 3 2 2 2 3
S5 3 2 3 3 3 3 3 3 3

From Table 2, we can find that the Dunn is valid for the Haberman and S3, the DB is valid for
all the datasets except Vehicle, Balance, Wine and S2, the Sil, CH, BWP and CIP are valid for the
Haberman, S3 and S5, the BWC is valid for the S3, and our proposed BWCON is invalid only for
Cleveland, Balance and S4. Meanwhile, it can be also seen that all the above indices are unable to get
the correct NC for the Balance, and only BWCON can detect the correct NC for Vehicle, Wine and
S2 datasets. Obviously, the combination “BWCON+AHC with the single linkage” has the best NC
estimation ability.

In Table 3, the ONCs estimated by the “BWCON+AHC with the complete linkage”, the “Sil
+AHC with the complete linkage” and the “CH+AHC with the complete linkage” are more accurate
among all combinations and their estimated biased ONCs are closer to the TNCs. Specifically, for
the above 12 datasets, the maximum deviations of the TNCs and the EONCs obtained based on the
Dunn, DB, Sil, CH, BWP, CIP, BWC and BWCON are: 32, 13, 3, 2, 12, 12, 13, and 3, respectively.
Furthermore, all the above indices are invalid for Cleveland, but the EONC obtained by our index is
the closest to the TNC; and only BWCON can obtain the correct NC for Vehicle and Balance datasets.

Based on the AHC with the average linkage, the Dunn cannot get the correct NC for six UCI
datasets and two synthetic datasets; the DB, Sil and BWP cannot get the correct NC for six UCI
datasets and a synthetic dataset; the CH cannot get the correct NC for six UCI datasets; the CIP
cannot get the correct NC for five UCI datasets and a synthetic dataset; the BWC cannot get the
correct NC for five UCI datasets and two synthetic datasets; and the BWCON cannot get the correct
NC only for two UCI datasets and a synthetic dataset. And in Table 4, only BWCON is valid for the
Vehicle and Balance, and all the indices are invalid for Cleveland.

Table 5 shows that the Dunn cannot choose the correct NC for all the twelve datasets except
Thyroid, S1, S2 and S3; the DB and BWC are invalid for all the seven UCI datasets and a synthetic
dataset; the Sil and CIP are invalid for six UCI datasets and a synthetic dataset; the CH is invalid
for Vehicle and Cleveland; the BWP is invalid for six datasets; and the BWCON is invalid for Vehicle,
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Haberman and Thyroid. It can be seen that combining the BWCON and the CH with the AHC with the
ward linkage yield significantly better NC estimation ability than all other combinations. In addition,
all the indices cannot obtain the correct NC for Vehicle, and only BWCON can detect the correct NC
for Cleveland.

As can be seen from Table 6, the Dunn is invalid for three UCI datasets and two synthetic datasets;
the DB cannot get the TNCs for six UCI datasets and one synthetic dataset; the Sil cannot get the
TNCs on four UCI datasets and one synthetic dataset; the CH is invalid on four UCI datasets; the
BWP and CIP are invalid for three UCI datasets and one synthetic dataset; the BWC is invalid for
five UCI datasets and one synthetic dataset; and our proposed BWCON is invalid only on Vehicle,
Cleveland and S2. Not only that, further observing the maximum deviations of the TNCs and the
EONCs under different indices, it can be seen that for the above 12 datasets, the BWCON has a
minimum deviation of only 1, and the other indices, Dunn, DB, Sil, CH, BWP, CIP and BWC,
correspond to deviations of 5, 10, 5, 5, 3, 3 and 6, respectively. It is evident that the “BWCON+NSDK-
means++” has better NC estimation ability, and the BWCON is more suitable for estimating the NC
in combination with our proposed NSDK-means++.

Furthermore, the average running times of eight IVIs on the CPU are presented in Table 7, where
to ensure the objectivity of the runtime, we take the average runtime within the search range of
each index as the final evaluation value under the NSDK-means++. As shown in Table 7, the time
performance of the BWCON is acceptable and it is much faster than the BWP and Dunn indices.

Table 7: Average running times of eight IVIs (s)

Datasets Dunn DB Sil CH BWP CIP BWC BWCON

Seeds 0.335 0.001 0.002 0.0003 0.232 0.008 0.002 0.079
Vehicle 3.459 0.002 0.011 0.0005 5.005 0.018 0.007 0.921
Cleveland 0.425 0.001 0.003 0.0004 0.580 0.011 0.002 0.398
Balance 9.703 0.003 0.006 0.001 2.142 0.045 0.006 1.233
Haberman 0.441 0.001 0.003 0.0004 0.531 0.009 0.002 0.263
Thyroid 0.207 0.001 0.002 0.0003 0.267 0.007 0.002 0.225
Wine 0.103 0.001 0.002 0.0002 0.208 0.004 0.002 0.079
S1 135.154 0.005 0.032 0.001 14.902 0.134 0.012 0.931
S2 34.638 0.001 0.043 0.001 26.800 0.057 0.010 1.968
S3 8.428 0.001 0.009 0.0004 5.588 0.030 0.005 0.553
S4 40.366 0.003 0.015 0.001 8.252 0.084 0.010 0.860
S5 0.054 0.001 0.001 0.0003 0.053 0.004 0.001 0.063

To further support the effectiveness of the BWCON from a statistical point of view, the Friedman
test and the Nemenyi test are used [32]. First, to show whether the observed differences of the ability
for detecting the TNC among the Dunn, DB, Sil, CH, BWP, CIP, BWC and BWCON are statistically
significant, the study conducts the Friedman test for the proposed BWCON and other seven indices
on all the experimental datasets in terms of the AHC with the single linkage, complete linkage, average
linkage, and ward linkage, and the NSDK-means++ algorithms. For every experimental dataset,
the absolute value of the difference between the EONC and the TNC under an index is taken as
the final evaluation value; the smaller the evaluation value is, the closer the EONC is to the TNC.
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Finally, the resulting p-values are 0.000, 0.000, 0.081, 0.000 and 0.162, respectively, revealing that
the NC estimation performance of the above eight indices is significantly different under the AHC
with the single linkage, complete linkage and ward linkage and there are no significant differences
in the NC estimation ability under all indices based on the NSDK-means++ and the AHC with the
average linkage, which is likely related to the excellent clustering performance of these two algorithms
themselves because the clustering algorithm and the IVI together determine the NC estimation ability,
and a good clustering result tends to be more favorable for various IVIs to find the correct NC (the
level of test significance is set to 0.05). Then, to further distinguish the performance of each index,
the Nemenyi test is performed (the significance level is 0.1) and the obtained critical distance (CD) is
2.78. Where, if the difference between the average order values of the two indices exceeds the CD, the
hypothesis that these two indices have the same estimation performance will be rejected; in addition,
the smaller the average order value, the better the overall NC estimation ability of the corresponding
index on all datasets. Fig. 4 is the Nemenyi test diagram.

Figure 4: Nemenyi test diagrams under the AHC with the single linkage, complete linkage and ward
linkage

In Fig. 4, “·” is the mean ranking score, and the line segment size is CD. For the AHC with the
single linkage, the difference between the mean ranking scores of the BWCON and the BWC exceeds
the CD, indicating that our proposed BWCON is significantly superior to the BWC in terms of the NC
estimation; in addition, compared with all the comparative works, the distribution of “·”corresponding
to the BWCON is on the left, which shows that the overall NC estimation ability of the BWCON is
better. Similarly, for the AHC with the complete linkage, the NC estimation ability of the BWCON
significantly outperforms that of the Dunn, and from the overall NC estimation performance on all
datasets, the BWCON beats all indices except the CH but is very close to the CH; and for the AHC
with the ward linkage, the BWCON also significantly outperforms the Dunn, and is better than all
the comparative indices on the whole as respect to their NC estimation abilities. In general, compared
with the other seven popular IVIs, the BWCON has more stable NC estimation ability, and it is easier
to be integrated with different clustering algorithms to obtain an accurate NC.

4.3 Performance Evaluation of the BWCON-NSDK-Means++ Algorithm
In this section, we conduct experiments to demonstrate the effectiveness of the BWCON-NSDK-

means++ in detail from two aspects: (1) to show that the NSDK-means++ itself is a valid clustering
algorithm, we focus on comparing the NSDK-means++ and the SDK-means++ since Du et al. [15]
have proved that the SDK-means++ is significantly better than the KMA and K-means++ as respect
to their clustering performance and speed; and (2) we compare the average ONC accuracies of the
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“BWCON+NSDK-means++” and nine other combinations to justify that the BWCON-NSDK-
means++ is indeed an excellent ONC estimation method. For the first experiment, the results are
shown in Tables 8–10; and the second experimental results are shown in Table 11. In addition, since
the UCI datasets are usually more complex than those 2-D synthetic datasets, we conduct the first
experiment on only UCI datasets; and in terms of the evaluation metrics, to ensure the reliability of
the conclusions, we finally adopt three IVIs (i.e., Sil, CH and DB) and six EVIs (i.e., Adjusted Rand
Index (ARI), Adjusted Mutual Information (AMI), Homogeneity Score (HOM), Compactness Score
(COM), V_measure (V) and Fowlkes and Mallows Index (FMI)) to evaluate the clustering results,
which are described in [10,33,34]; except for the DB, all the other indices are found to have the better
clustering performance with larger measure values.

Table 8: Results for the ICSDK-means++ and SDK-means++ algorithms on the UCI datasets

Datasets Algorithm Sil CH DB ARI AMI HOM COM V FMI NI
Seeds SDK-means++ 0.422 314.675 0.876 0.705 0.671 0.673 0.675 0.674 0.803 6

ICSDK-means++ 0.422 314.675 0.876 0.705 0.671 0.673 0.675 0.674 0.803 6

Vehicle SDK-means++ 0.306 402.315 1.150 0.076 0.111 0.105 0.128 0.115 0.342 11
ICSDK-means++ 0.311 402.719 1.152 0.078 0.112 0.106 0.128 0.116 0.342 26

Cleveland SDK-means++ 0.253 148.200 0.974 0.026 0.029 0.049 0.046 0.047 0.329 11
ICSDK-means++ 0.253 148.200 0.974 0.026 0.029 0.049 0.046 0.047 0.329 10

Balance SDK-means++ 0.165 128.208 1.737 0.074 0.056 0.064 0.054 0.059 0.427 6
ICSDK-means++ 0.159 119.866 1.824 0.000 0.001 0.004 0.003 0.004 0.380 6

Haberman SDK-means++ 0.387 238.553 1.016 −0.004 −0.002 0.001 0.001 0.001 0.551 10
ICSDK-means++ 0.381 236.424 1.029 −0.001 −0.002 0.001 0.001 0.001 0.551 8

Thyroid SDK-means++ 0.562 141.895 0.847 0.628 0.591 0.523 0.695 0.597 0.855 6
ICSDK-means++ 0.562 141.895 0.847 0.628 0.591 0.523 0.695 0.597 0.855 5

Wine SDK-means++ 0.299 83.160 1.315 0.802 0.793 0.799 0.792 0.795 0.869 7
ICSDK-means++ 0.299 83.160 1.315 0.802 0.793 0.799 0.792 0.795 0.869 8

Table 9: Results for the MCSDK-means++ and SDK-means++ algorithms on the UCI datasets

Datasets Algorithm Sil CH DB ARI AMI HOM COM V FMI NI
Seeds SDK-means++ 0.422 314.675 0.876 0.705 0.671 0.673 0.675 0.674 0.803 6

MCSDK-means++ 0.422 314.675 0.876 0.705 0.671 0.673 0.675 0.674 0.803 7

Vehicle SDK-means++ 0.306 402.315 1.150 0.076 0.111 0.105 0.128 0.115 0.342 11
MCSDK-means++ 0.255 445.524 1.460 0.075 0.096 0.100 0.100 0.100 0.307 34

Cleveland SDK-means++ 0.253 148.200 0.974 0.026 0.029 0.049 0.046 0.047 0.329 11
MCSDK-means++ 0.263 158.068 1.095 0.035 0.038 0.061 0.056 0.059 0.330 12

Balance SDK-means++ 0.165 128.208 1.737 0.074 0.056 0.064 0.054 0.059 0.427 6
MCSDK-means++ 0.175 136.738 1.723 0.140 0.106 0.120 0.100 0.109 0.468 22

Haberman SDK-means++ 0.387 238.553 1.016 −0.004 −0.002 0.001 0.001 0.001 0.551 10
MCSDK-means++ 0.387 238.553 1.016 −0.004 −0.002 0.001 0.001 0.001 0.551 5

Thyroid SDK-means++ 0.562 141.895 0.847 0.628 0.591 0.523 0.695 0.597 0.855 6
MCSDK-means++ 0.562 141.895 0.847 0.628 0.591 0.523 0.695 0.597 0.855 2

Wine SDK-means++ 0.299 83.160 1.315 0.802 0.793 0.799 0.792 0.795 0.869 7
MCSDK-means++ 0.299 83.317 1.310 0.837 0.814 0.820 0.811 0.815 0.891 5



218 CMES, 2023, vol.137, no.1

Table 10: Results for the different algorithms on the UCI datasets

Datasets Algorithm Sil CH DB ARI AMI HOM COM V FMI NI

Seeds KMA 0.422 314.661 0.876 0.701 0.668 0.670 0.672 0.671 0.800 8
MBK 0.418 309.472 0.879 0.722 0.689 0.690 0.692 0.691 0.814 5
K-means++ 0.422 314.651 0.877 0.698 0.666 0.668 0.700 0.669 0.798 7
RK-means++ 0.422 314.655 0.876 0.699 0.667 0.669 0.671 0.700 0.799 8
SDK-means++ 0.422 314.675 0.876 0.705 0.671 0.673 0.675 0.674 0.803 6
NSDK-means++ 0.422 314.675 0.876 0.705 0.671 0.673 0.675 0.674 0.803 5

Vehicle KMA 0.260 439.549 1.423 0.083 0.112 0.114 0.117 0.116 0.317 23
MBK 0.254 440.620 1.464 0.074 0.095 0.098 0.099 0.099 0.307 9
K-means++ 0.309 402.569 1.151 0.078 0.112 0.105 0.128 0.116 0.342 15
RK-means++ 0.261 438.235 1.421 0.082 0.111 0.113 0.117 0.115 0.317 24
SDK-means++ 0.306 402.315 1.150 0.076 0.111 0.105 0.128 0.115 0.342 11
NSDK-means++ 0.257 414.833 1.254 0.096 0.150 0.143 0.165 0.153 0.350 9

Cleveland KMA 0.255 153.383 1.161 0.050 0.029 0.053 0.046 0.049 0.324 17
MBK 0.234 140.786 1.188 0.050 0.024 0.047 0.042 0.045 0.336 12
K-means++ 0.259 153.062 0.990 0.042 0.016 0.036 0.034 0.035 0.338 14
RK-means++ 0.253 153.139 1.151 0.050 0.029 0.053 0.046 0.049 0.326 15
SDK-means++ 0.253 148.200 0.974 0.026 0.029 0.049 0.046 0.047 0.329 11
NSDK-means++ 0.263 158.068 1.095 0.035 0.038 0.061 0.056 0.059 0.330 12

Balance KMA 0.171 133.929 1.718 0.130 0.108 0.122 0.102 0.111 0.462 14
MBK 0.163 126.873 1.758 0.132 0.110 0.123 0.104 0.113 0.464 20
K-means++ 0.163 124.027 1.789 0.139 0.130 0.145 0.121 0.132 0.467 10
RK-means++ 0.171 134.282 1.714 0.132 0.111 0.125 0.104 0.114 0.463 15
SDK-means++ 0.165 128.208 1.737 0.074 0.056 0.064 0.054 0.059 0.427 6
NSDK-means++ 0.174 136.827 1.691 0.114 0.098 0.110 0.092 0.100 0.453 20

Haberman KMA 0.384 237.636 1.022 −0.003 −0.002 0.001 0.001 0.001 0.551 6
MBK 0.383 236.226 1.025 −0.002 −0.001 0.002 0.001 0.001 0.551 6
K-means++ 0.385 238.000 1.019 −0.003 −0.002 0.001 0.001 0.001 0.551 9
RK-means++ 0.383 237.419 1.023 −0.002 −0.002 0.001 0.001 0.001 0.551 7
SDK-means++ 0.387 238.553 1.016 −0.004 −0.002 0.001 0.001 0.001 0.551 10
NSDK-means++ 0.387 238.553 1.016 −0.004 −0.002 0.001 0.001 0.001 0.551 6

Thyroid KMA 0.562 141.008 0.847 0.626 0.589 0.521 0.695 0.595 0.854 10
MBK 0.225 68.450 1.330 0.288 0.370 0.392 0.365 0.378 0.638 3
K-means++ 0.559 135.625 0.850 0.611 0.579 0.509 0.692 0.585 0.850 6
RK-means++ 0.559 138.331 0.849 0.619 0.585 0.516 0.694 0.591 0.852 9
SDK-means++ 0.562 141.895 0.847 0.628 0.591 0.523 0.695 0.597 0.855 6
NSDK-means++ 0.562 141.895 0.847 0.628 0.591 0.523 0.695 0.597 0.855 3

Wine KMA 0.300 83.292 1.314 0.845 0.828 0.834 0.826 0.830 0.897 7
MBK 0.292 81.243 1.339 0.802 0.793 0.797 0.792 0.795 0.869 5
K-means++ 0.300 83.274 1.316 0.850 0.833 0.838 0.832 0.835 0.900 8
RK-means++ 0.297 81.516 1.329 0.828 0.815 0.817 0.817 0.817 0.887 7
SDK-means++ 0.299 83.160 1.315 0.802 0.793 0.799 0.792 0.795 0.869 7
NSDK-means++ 0.299 83.317 1.310 0.837 0.814 0.820 0.811 0.815 0.891 5
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Table 11: Average ONC accuracy using various clustering algorithms based on the BWCON index

Datasets TNC Average ONC accuracy

BWCON-
KMA

BWCON-
MBK

BWCON-
KM++

BWCON-
RKM++

BWCON-
SDKM++

BWCON-
Single
linkage

BWCON-
Complete
linkage

BWCON-
Average
linkage

BWCON-
Ward
linkage

BWCON-
NSDK-
means++

Seeds 3 0.28 0.58 0.59 0.41 0.00 1.00 1.00 1.00 1.00 1.00
Vehicle 4 0.24 0.94 0.25 0.29 1.00 1.00 1.00 1.00 0.00 0.00
Cleveland 5 0.38 0.26 0.27 0.23 0.00 0.00 0.00 0.00 1.00 0.00
Balance 3 1.00 0.97 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
Haberman 2 0.07 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00
Thyroid 3 0.66 0.20 0.89 0.56 1.00 1.00 1.00 1.00 0.00 1.00
Wine 3 0.14 0.20 0.05 0.20 0.00 1.00 0.00 0.00 1.00 1.00

S1 3 0.12 0.01 0.23 0.06 0.00 1.00 1.00 0.00 1.00 1.00
S2 3 0.01 0.07 0.27 0.08 0.00 1.00 1.00 1.00 1.00 0.00
S3 4 0.22 0.00 0.33 0.05 0.00 1.00 0.00 1.00 1.00 1.00
S4 3 0.09 0.27 0.04 0.16 1.00 0.00 0.00 1.00 1.00 1.00
S5 3 0.60 0.98 0.66 0.70 0.00 1.00 1.00 1.00 1.00 1.00

As shown in Table 8, to illustrate that it is feasible to determine the first ICC based on the natural
neighbor, we replace the corresponding step in the SDK-means++ and the new algorithm is called
ICSDK-means++. From Table 8, we can find that the ICSDK-means++ achieves the comparable or
even better clustering performance than the SDK-means++ for all the UCI datasets except Balance,
that is to say, the strategy proposed in this study to determine the first ICC without any parameters
to be specified is effective. Specifically, on the Seeds, Cleveland, Thyroid and Wine, the ICSDK-
means++ has the same clustering performance as the SDK-means++ on nine indices, and the similar
NIs; on the Vehicle, although the NI of the ICSDK-means++ is fifteen times more than that of the
SDK-means++, the ICSDK-means++ outperforms the SDK-means++ on six indices, achieves the
same clustering performance as the SDK-means++ on two indices, and only slightly underperforms
the SDK-means++ on one index; on the Haberman, the ICSDK-means++ outperforms the SDK-
means++ on one index, achieves the same clustering performance as the SDK-means++ on five
indices, and is inferior to the SDK-means++ on three indices, but has two fewer iterations than the
SDK-means++.

Furthermore, to validate the necessity of modifying the positions of the ICCs in the SDK-
means++, we add the modification step to the original SDK-means++, and the new algorithm is
denoted as MCSDK-means++. As can be seen from Table 9, except for the Vehicle, the MCSDK-
means++ can obtain better clustering results on the remaining six datasets. That is, it is necessary to
add the modification step to the SDK-means++. Specifically, on the Seeds, Haberman and Thyroid,
the MCSDK-means++ algorithm achieves the same clustering performance as the SDK-means++
on all the indices; for their NIs, except for the Seeds, where the MCSDK-means++ iterates once more
than the SDK-means++, in the remaining two datasets, the MCSDK-means++ has fewer iterations
than the SDK-means++. On the Clever, the MCSDK-means++ outperforms the SDK-means++ on
eight indices; on the Balance, the MCSDK-means++ outperforms the SDK-means++ on all nine
indices; and on the Wine, the MCSDK-means++ outperforms the SDK-means++ on eight indices,
has the same clustering performance on one index, and has two fewer iterations than the MCSDK-
means++.
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In addition, Table 10 records the experimental results of the NSDK-means++ and other clus-
tering algorithms; and any evaluation value with better performance than the NSDK-means++ is
presented in bold. Besides, for the unstable clustering algorithms (KMA, MBK, K-means++ and
RK-means++), we run them 100 times repeatedly and take their average clustering performance as
their final evaluation values; particularly, for the MBK, the parameter iteration is equal to the NI of
the SDK-means++ on the corresponding dataset, and the mini-batch size is obtained by dividing the
dataset size by the NI.

As indicated in Table 10, the proposed NSDK-means++ outperforms the other clustering
algorithms on most of the datasets. To better justify our improvements, we focus on the perfor-
mance differences between the NSDK-means++ and SDK-means++: (1) on the Seeds, the NSDK-
means++ has the same clustering performance as the SDK-means++ on nine indices, but in terms of
the NI, the NSDK-means++ has one less iteration than the SDK-means++; (2) on the Haberman,
the NSDK-means++ has the same clustering performance as the SDK-means++ on nine indices,
but the NSDK-means++ has four fewer iterations than the SDK-means++; (3) on the Thyroid, the
NSDK-means++ has the same clustering performance as the SDK-means++ on nine indices, but the
NSDK-means++ has three fewer iterations than the SDK-means++; (4) on the Vehicle, the NSDK-
means++ is superior to the SDK-means++ on seven indices, and iterates two times less than the
SDK-Means++; (5) on the Cleveland, although the NSDK-means++ has one more iteration than
the SDK-Means++, the NSDK-means++ is superior to the SDK-means++ on eight indices; (6)
on the Balance, although the NSDK-means++ iterates fourteen times more than the SDK-means++,
the NSDK-means++ is superior to the SDK-means++ on all nine indices; and (7) on the Wine, the
NSDK-means++ is superior to the SDK-means++ on eight indices, is comparable to its clustering
performance on one index, and has two fewer iterations than the SDK-means++. In particular,
our proposed NSDK-means++ achieves good results on the Balance compared with the ICSDK-
means++, and also achieves the better results on the Vehicle compared with the MCSDK-means++,
which indicate that it is necessary to combine the step of determining the first ICC based on the natural
neighbor, the step of determining the remaining ICCs based on the largest sum of distance and the step
of modifying the positions of all the ICCs, which can make the obtained ICCs more reasonable and
thus improve the overall clustering performance of the SDK-means++. Moreover, shows the average
running time of running them 100 times, and the running time of the NSDK-means++ is acceptable.

Table 12: The average running times of the concurrent algorithms (s)

Algorithm Seeds Vehicle Cleveland Balance Haberman Thyroid Wine

K-means 0.033 0.471 0.143 0.158 0.025 0.039 0.022
Mini-batch
K-means

0.003 0.009 0.004 0.009 0.003 0.002 0.002

K-means++ 0.130 1.210 0.532 0.413 0.185 0.128 0.144
RK-means++ 0.137 1.718 0.557 0.572 0.140 0.174 0.122
SDK-means++ 0.322 11.525 1.464 2.048 0.448 0.274 0.389
ICSDK-means++ 0.111 1.697 0.480 1.228 0.325 0.143 0.185
MCSDK-means++ 0.418 14.199 1.325 4.195 0.702 0.385 0.520
NSDK-means++ 0.109 1.166 0.453 1.427 0.309 0.141 0.170
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Not only that, we also further verify the performance differences of the above algorithms from a
statistical point of view. Here the resulting p-values using the Friedman test are 0.005, 0.001, 0.003,
0.818, 0.900, 0.713, 0.677, 0.555 and 0.576 respectively as respect to the SC, CH, DB, ARI, AMI,
HOM, COM, V and FMI, which show that the performance of the above algorithms is significantly
different on the SC, CH and DB (the level of test significance is set to 0.05). Further from Fig. 5, we
can find that the NSDK-means++ are significantly superior to the MBK on three indices; moreover,
observing the positions of “·”, except that the MCSDK-means++ outperforms the NSDK-means++
on the CH, the NSDK-means++ is not worse than all other algorithms on the whole. Particularly,
the performance of the above algorithms does not differ significantly on the six EVIs, which indicates
that the NSDK-means++ can achieve a clustering performance comparable to that of those existing
algorithms in one run. Here the significance level in the Nemenyi test is 0.1 and CD is 3.640.

Figure 5: Nemenyi test diagrams for the clustering algorithms

At last, to demonstrate the advantage of the “BWCON+NSDK-means++”, we integrate the
KMA, MBK, K-means++, RK-means++, SDK-means++, AHC with the single linkage, AHC
with the complete linkage, AHC with the average linkage, AHC with the ward linkage and NSDK-
means++ into the proposed BWCON-based ONC estimation framework, respectively, to form
the BWCON-KMA, BWCON-MBK, BWCON-KM++, BWCON-RKM++, BWCON-SDKM++,
BWCON-Single linkage, BWCON-Complete linkage, BWCON-Average linkage, BWCON-Ward link-
age and BWCON-NSDK-means++ to compare their average ONC accuracies (see Eq. (26)), where
those unstable clustering algorithms are run 100 times as in [8]. Table 11 lists the results and bold
indicates the best performance.

Average ONC accuracy = Number of correct determination of ONC based on acombination
Number of runs

(26)

From Table 11, the BWCON-KMA, BWCON-KM++ and BWCON-RKM++ can achieve an
accuracy of 1 only on the Balance; the BWCON-MBK cannot achieve 1 on all datasets, and can only
achieve 0.98 on the S5; the BWCON-SDKM++ can obtain an accuracy of 1 on four datasets; the
BWCON-Complete linkage can achieve 1 on seven datasets; the BWCON-Single linkage, BWCON-
Average linkage, BWCON-Ward linkage and BWCON-NSDK-means++ can achieve an accuracy of
1 on nine datasets. Compared with those existing partition-based clustering algorithms, the NSDK-
means++ performs better since it can obtain appropriate ICCs. In addition, although the BWCON-
Single linkage, BWCON-Average linkage, BWCON-Ward linkage and BWCON-NSDK-means++
have similar ONC estimation performance in Table 11, the NCs estimated by the algorithm in this
paper are closer to the TNCs as shown in Tables 2 and 4–6.
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5 Application of the BWCON-NSDK-Means++ in the Market Segmentation

The exact estimation of the ONS serves to achieve an effective market segmentation; and if the
obtained sub-markets are not differentiated under a so-called ONS, such market segmentation is not
meaningful for an enterprise. From this perspective, we verify the usefulness of the BWCON-NSDK-
means++ by analyzing the reasonableness of the corresponding market segmentation results under
our ONS. Here, it should be noted that the experiments in this section can be conducted in relation to
the fact that the BWCON-NSDK-means++ can also be used as a stand-alone market segmentation
tool, which is validated later on the Chinese wine market dataset in 2020.

5.1 Data Collection and Preprocessing
The Chinese wine market dataset in this work is provided by the Chinese Grape Industry

Technology System, with a total of 2747 effective samples, including two parts: the factors that
affect consumers’ decision-making and the social demographic characteristics as in [5]. The basic
information is listed in Table 13 and the first part is presented through the design of Likert five-
category attitude scale. Since the wine consumers tend to be younger and more feminine at present, the
dataset focuses more on young and well-educated consumers; specifically, the wine consumers under
the age of 46 account for 85.7%, and those with a bachelor’s degree or above account for 86.8%.

Table 13: The basic information of the Chinese wine market data

Feature name Feature description Feature type

a. Brand Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5

Numerical

b. Vintage Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5

Numerical

c. Producing area Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5

Numerical

d. Package Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5

Numerical

e. Price Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5

Numerical

Purchasing decision factors f. Sale promotion Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5;

Numerical

(Continued)
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Table 13 (continued)

Feature name Feature description Feature type

g. Recommendations
from relatives and
friends

Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5

Numerical

h. Advertisements Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5

Numerical

i. Public praise
(positive reviews)

Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5

Numerical

j. Function Unimportant-1;
Slightly important-2; Generally
important-3; Very important-4;
Especially important-5

Numerical

Gender Male-1; Female-2 Categorical
Age 18-25-1; 26-45-2; >45-3 Categorical
Marital status Unmarried-1; Married-2 Categorical
Occupation Student-1; Farmer-2;

Freelancer-3; Unemployment
and retirement-4; State-owned
enterprise-5; Foreign or
private-owned enterprise-6; Party
and government organ and
institution-7; Education and
research institution-8; Other-9

Categorical

Social demographic characteristics
Per capita disposable
monthly income

<2000 RMB-1; 2001-7000
RMB-2; >7000 RMB-3

Categorical

Education Junior high school or below-1;
Senior high school-2; Bachelor
degree-3; Master’s degree or
above-4

Categorical

In our study, to facilitate the analysis of the practical implications of the market segmentation
results, we choose the first part as the market segmentation bases (SB). Moreover, to remove the
relevance among the SB, we adopt the Exploratory Factor Analysis (EFA) [35] to deal with them, and
after statistical analysis, the KMO value is 0.840, the approximate Chi-Square value in the Bartlett’s
sphere test is 6479.893, and it is significant at the level of 0.000, which verifies that the dataset is suitable
for the EFA. Thus ultimately, we identify four SB to participate in this segmentation task based on
the following principles: the cumulative variance contribution rate is greater than 60%, the extraction
degrees of the factors are all greater than 0.5, the factor loading values are all greater than 0.6 and
each common factor represents at least two factors, as shown in Fig. 6.
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Figure 6: Factor loading diagram of four SB

5.2 Determination of the ONS
In this section, based on the above four SB, the BWCON-NSDK-means++ is used to detect the

ONS, as shown in Fig. 7. We can find that for the compactness, when the NC changes from 3 to 4, the
fluctuation is maximum and positive, thus according to Eq. (17), ncom = 4; for the separation, when the
NC changes from 2 to 3, a positive maximum fluctuation can be obtained, so according to Eq. (18),
nsep = 3; and finally, for the connectivity, a negative maximum fluctuation can be found when the NC
changes from 2 to 3, thus according to Eq. (19), ncon = 2. Eventually, we can obtain that the ONS is 3
based on the Eq. (20), which is following the finding of [36].

Figure 7: The determination of the ONS based on the BWCON-NSDK-means++
Furthermore, to verify the reliability of the ONS obtained above, we further detect the corre-

sponding ONSs using the BWCON-Single linkage, BWCON-Average linkage and BWCON-Ward
linkage mentioned in Section 4.3, as shown in Fig. 8. It can be found that all these algorithms consider
segmenting the Chinese wine market into three sub-markets as the best, which indicates that the ONS
determined based on the BWCON-NSDK-means++ is indeed reliable.
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Figure 8: The determination of the ONS based on the BWCON-Single linkage, BWCON-Average
linkage and BWCON-Ward linkage algorithms

5.3 The Practicality Analysis of the BWCON-NSDK-Means++ Algorithm
To check the rationality of the market segmentation results under our obtained ONS and the

effectiveness of the BWCON-NSDK-means++ as an independent market segmentation tool, we
compare the market segmentation results of the BWCON-Single linkage, BWCON-Average linkage,
BWCON-Ward linkage and BWCON-NSDK-means++ as respect to the inter-market differentiation,
sub-market size and consumer group characteristics, as shown in Tables 14 and 15, and Figs. 9 and 10.
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Table 14: The difference test of the SB

Algorithm SB Kruskal–Wallis test

Chi-Square Significance (p < 0.05)

BWCON-Single linkage Quality factors 5.667 0.059
External factors 4.818 0.090
Public praise factors 5.816 0.055
Marketing factors 5.812 0.055

BWCON-Average linkage Quality factors 54.673 0.000
External factors 55.344 0.000
Public praise factors 93.026 0.000
Marketing factors 34.785 0.000

BWCON-Ward linkage Quality factors 1271.314 0.000
External factors 475.627 0.000
Public praise factors 78.183 0.000
Marketing factors 920.170 0.000

BWCON-NSDK-means++ Quality factors 1274.006 0.000
External factors 295.092 0.000
Public praise factors 208.821 0.000
Marketing factors 1468.264 0.000

Table 15: The distribution of the sub-markets

Algorithm Distribution

Segment 1 Segment 2 Segment 3

BWCON-Average linkage 2711 8 28
BWCON-Ward linkage 827 782 1138
BWCON-NSDK-means++ 632 865 1250

Figure 9: Visualization of segments on the SB
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Figure 10: Visualization of segments on the demographic characteristics

Table 14 tabulates the results of the Kruskal-Wallis test. Except for the BWCON-Single linkage,
the p-values corresponding to the remaining three algorithms are all less than 0.05, which indicate that
there are significant differences on the SB among the three sub-markets obtained by the BWCON-
Average linkage, BWCON-Ward linkage and BWCON-NSDK-means++. Based on this, we further
summarize the sub-market sizes corresponding to these three algorithms in Table 15; and for the
distribution, we adopt the view of Kotler et al. [37], i.e., any given sub-market is worthy of further
analysis only if it contains at least 5% of all the consumers, and it is 138 here. Thus it can be seen that
for the BWCON-Average linkage, although there are differences among the different segments, the
sub-market sizes of both Segments 2 and 3 are significantly smaller than 138, which are of no research
value to the enterprises; on the contrary, the sub-market scales of the BWCON-Ward linkage and
BWCON-NSDK-means++ are both larger than 138, and their distributions are similar, which may
have something to do with the fact that the AHC with the ward linkage itself is an excellent market
segmentation tool [38].

Given the informative value of the market segmentation results derived from the BWCON-Ward
linkage, we compare the consumption preferences and consumer characteristics of all the sub-markets
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obtained using the BWCON-Ward linkage and BWCON-NSDK-means++ to illustrate the robustness
of the conclusions obtained by the BWCON-NSDK-means++ in Figs. 9 and 10, respectively, where
for the SB, the mean value of each feature is taken as the statistical value, and for the demographic
characteristics, the frequency share of each feature is taken as the final statistical value.

As shown in Fig. 9, the wine consumers in the “Segment 1” and “Potential consumer group” have
completely similar consumption psychologies: Public praise factors > External factors > Marketing
factors > Quality factors; similarly, both “Segment 2” and “Stable consumer group” are characterized
by the same consumption tendencies: Quality factors > Public praise factors > External factors >
Marketing factors; and as for the remaining two sub-markets, their consumer preferences are also only
slightly different, e.g., in the “Segment 3”, the relationship among different SB is Public praise factors
> External factors > Quality factors > Marketing factors, and in the “Valuable consumer group”, the
relationship is Public praise factors > Quality factors > External factors > Marketing factors. That
is to say, the purchasing psychologies derived using these two algorithms are basically identical. Not
only that, from Fig. 10, except for the Occupations 1, 3, 4 and 5, and Education 3, the distributions
of the demographic characteristics in our “Potential consumer group”, “Stable Consumer Group”,
and “Valuable consumer group” are fully consistent with those in the “Segment 1”, “Segment 2” and
“Segment 3”, respectively. Therefore, the conclusions provided by our method are robust and reliable,
and the BWCON-NSDK-means++ is also indeed a qualified market segmentation tool.

5.4 Results of the Chinese Wine Market Segmentation
In this section, to have a better understanding of the practical meanings of our obtained market

segmentation results based on the BWCON-NSDK-means++, we visualize each sub-market in
Fig. 11, in which the black dots represent the characteristics of the entire Chinese wine market, and for
each sub-market, the numerical variables have the mean as the statistical object, and the categorical
variable has the frequency share as the statistical object.

(a)

Figure 11: (Continued)



CMES, 2023, vol.137, no.1 229

(b)

Figure 11: Visualization of segments based on the BWCON-NSDK-means++: (a) Differences on the
SB; (b) Differences on the demographic characteristics

Segment 1: Potential consumer group (23%). This is the smallest of the segments. Compared with
the other two consumer groups, this group has the largest share of young unmarried consumers (47.3%
are 18–25 years old) and more students, farmers and other occupations. In particular, the students
account for 40.8% of the total consumer group, making this consumer group the one with the lowest
per capita disposable monthly income of the three consumer groups (i.e., the disposable income per
month of 36.7% consumers is less than 2000 RMB). In term of education, maybe since the percentage
of farmers is slightly higher than the other two groups, there are slightly more consumers with junior
high school education or below, but within the group, 54.6% consumers have a bachelor’s degree. For
this young group, the concern for wine quality, external factors, public praise factors and marketing
factors is lower than the average level of the whole market, but inside the sub-market, this group
cares more about the public praise and external factors of the wine. Therefore, if an enterprise plans
to choose this sub-market as its target market, it can improve its public praise or change the price,
package, etc. to increase consumers’ satisfaction.

Segment 2: Stable consumer group (31%). This is the second largest segment. Among the three
consumer groups, this group has the largest proportion of elderly male consumers (17.1% of consumers
are over 46 years old), and because of this, the proportion of the leavers and retirees in this group is
higher than the other two groups (i.e., 2.7% of consumers have left their jobs or retired). In addition,
for the occupation, the shares of employees come from Party and government organ (10.3%) and in
education and research institutions (11.3%) are also higher than them in the other two groups. At the
same time, this is a high-income and highly educated group; 31.1% of consumers have a per capita
disposable monthly income above 7000 RMB, and 33.6% of consumers are with master’s degree or
above. Within the market, the consumers care most about the quality of the wine when purchasing
wine; therefore, improving the quality of wine can increase the satisfaction of this consumer group.
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Segment 3: Valuable consumer group (46%). This is the largest segment. In this consumer group,
there are more married middle-aged female consumers than in the other two groups (i.e., 57.4% of
consumers are female, 44.1% are 26–45 years old); and freelancers, state, foreign and private employees
account for a higher proportion than the other two groups. This is a middle-income consumer group
(i.e., 48.1% of consumers have a per capita disposable monthly income of 2001–7000 RMB), and
consumers with senior high school or bachelor degrees are higher than the other two groups. This
group is more concerned with the quality, external factors (i.e., price, package, etc.), public praise and
marketing factors; in particular, if an enterprise chooses this sub-market as its target market, improving
the public praise of the wine can significantly increase consumers’ satisfaction.

6 Conclusions and Future Work

It is a premise to set a reasonable ONS to carry out a successful market segmentation, however, in
the current research, there is a serious lack of attention to this issue. In our study, we propose such a
method called BWCON-NSDK-means++ to adaptively determine the ONS by effectively integrating
a new IVI and a valid clustering algorithm into a novel ONS estimation framework. Specifically,
inspired by the neighboring samples, a connectivity formula is quantitatively defined for the first time,
and thus the BWCON is designed to comprehensively evaluate the market segmentation results from
three perspectives: compactness, separation and connectivity. Then, a BWCON-based ONS estimation
framework is innovatively constructed by elegantly trade-off the ONCs from the three evaluation
dimensions. Finally, the BWCON-NSDK-means++ is obtained by integrating our improved NSDK-
means++ into the aforementioned ONS estimation framework. The final experimental results show
that compared with those existing models, the BWCON and NSDK-means++ are more suitable to be
combined to determine the ONC. Moreover, the experiments on the Chinese wine market dataset
in particular prove that the BWCON-NSDK-means++ is not only an effective ONS estimation
method, but also a qualified market segmentation tool without extra parameters; and it can help
relevant practitioners understand a market more objectively and thus make more correct and valuable
decisions.

Experiments have demonstrated the power of the BWCON-NSDK-means++, but there are still
some shortcomings to be further optimized, such as the choice of the clustering algorithm used in
the combination. In the present study, we choose the partition-based NSDK-means++ to integrate
with the BWCON mainly due to its stability and the fact that only one parameter NC needs to be
set, but we ignore its limitation that the partitioning clustering itself is more suitable for spherical
datasets. Therefore, as a future direction, we will further optimize the NSDK-means++ to make the
combination “BWCON+NSDK-means++” more widely applicable.
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