
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.024781

REVIEW

Heterogeneous Network Embedding: A Survey

Sufen Zhao1,2, Rong Peng1,*, Po Hu2 and Liansheng Tan2

1School of Computer Science, Wuhan University, Wuhan, 430072, China
2School of Computer Science, Central China Normal University, Wuhan, 430079, China

*Corresponding Author: Rong Peng. Email: rongpeng@whu.edu.cn

Received: 08 June 2022 Accepted: 06 December 2022

ABSTRACT

Real-world complex networks are inherently heterogeneous; they have different types of nodes, attributes, and
relationships. In recent years, various methods have been proposed to automatically learn how to encode the struc-
tural and semantic information contained in heterogeneous information networks (HINs) into low-dimensional
embeddings; this task is called heterogeneous network embedding (HNE). Efficient HNE techniques can benefit
various HIN-based machine learning tasks such as node classification, recommender systems, and information
retrieval. Here, we provide a comprehensive survey of key advancements in the area of HNE. First, we define
an encoder-decoder-based HNE model taxonomy. Then, we systematically overview, compare, and summarize
various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories
to identify more potentially competitive HNE frameworks. We also summarize the application fields, benchmark
datasets, open source tools, and performance evaluation in the HNE area. Finally, we discuss open issues and suggest
promising future directions. We anticipate that this survey will provide deep insights into research in the field
of HNE.
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1 Introduction

Real-world complex networks, such as social, biological protein, and computer networks, are
inherently heterogeneous. These networks, called heterogeneous information networks (HINs), con-
tain various types of nodes, attributes, and relationships [1]. In recent years, with the rapid development
of artificial intelligence, HIN analysis has attracted significant research attention. Efficient analysis
techniques can benefit machine learning (ML) tasks based on HINs, such as node classification,
community detection, and recommender systems.

In many HIN-based ML models, the core task is to find a way to convert the structural and
semantic information of an HIN into low-dimensional vectors and then input these vectors into
various downstream machine learning tasks. Feature engineering, which is the traditional approach
used for feature extraction, is inefficient and highly dependent on the experience of engineers. With
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the successful application of the Word2vec model [2,3] in the field of natural language processing,
many recent studies have used ML methods to automatically learn the low-dimensional features of
nodes, edges, and subgraphs from networks such that the obtained feature vectors can capture as
much structural, semantic, and attribute information in the HINs as possible. This process is called
heterogeneous network embedding (HNE). In contrast to the traditional approach, HNE has the
advantages of high efficiency and compression. More importantly, most HNE models can learn
features from data in a completely unsupervised manner. They do not require labeled data; instead,
they generate high-quality feature representations by creating labels from the data themselves using
context-based, time series-based, and contrast-based methods, among others. To make the learned
feature representation more effective for specific applications, the features generated by unsupervised
learning can be input as pretraining parameters to subsequent specific ML tasks, and then fine-tuned
using labeled data. Alternatively, the unsupervised and supervised parts can be fused into a model for
end-to-end training. When a large amount of manually labeled information is difficult to obtain, HNE
can reduce the model’s dependence on labeled information. Therefore, research on HNE is of great
significance for artificial intelligence-related applications.

The primary goal of an HNE model is to enable the generated network embeddings to reconstruct
various types of information contained in the HINs such that they can be easily used in downstream
ML tasks. However, because of the complexity of HINs, existing HNE research often faces the
following challenges: 1) Heterogeneity. In an HIN, different types of nodes usually have different types
of attributes (multi-modality), and different types of nodes usually establish different types of semantic
relationships (multiplex). Numerous existing network embedding models operate on homogeneous
networks and are difficult to be extended to HINs. 2) Large-scale. In the real world, HINs are
usually large and hyperscale, containing thousands of nodes and complex relationships. Many existing
network embedding models are only able to run on small networks and cannot scale to large-scale
networks. 3) Dynamism. In the real world, complex heterogeneous networks tend to constantly change.
New nodes join and old nodes exit, and new links may be generated anytime and anywhere. Most
traditional network embedding models are designed for static snapshot networks and cannot capture
the dynamic characteristics of real-time networks. 4) Incomplete data and noise. Real-world network
data are often incomplete and noisy. Many existing models do not consider robustness issues, resulting
in brittle models and compromised performance. 5) Multi-objectiveness. A good HNE model usually
needs to consider multiple modeling goals; such as capturing the local and global structural features
of the network, capturing diverse semantic information, attribute information and label information.
All the factors outlined above pose serious challenges to research in the field of HNE.

To tackle the issues cited above, numerous HNE models have been proposed over the past several
years, such as the meta-path based random walk model metapath2vec [4], the multi-stage non-negative
matrix factorization model MNMF [5], and the heterogeneous graph attention network model HGAT
[6]. However, there have been few surveys on HNE. Some studies have reviewed the fields of network
and graph embedding, but these studies are not specific to HINs [7–14]. To the best of our knowledge,
there are several HNE surveys so far [15–19]. Yang et al. [15] reviewed HNE and categorized HNE
models into three categories, including proximity-preserving, message-passing, and relation-learning
methods. Xie et al. [16] divided current HNE models into path-based, semantic unit-based, and
other methods, and each type was further divided into traditional and deep learning-based methods.
In addition, from the perspective of modeling goals, Wang et al. [18] categorized existing HNE
models into four categories: structure-preserved, attribute-assisted, application-oriented, and dynamic
heterogeneous graph embedding models. Dong et al. [17] and Ji et al. [19] also briefly reviewed HNE.
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However, these existing surveys on HNE either lack clear classification patterns, or summarize
model types in a manner that is not comprehensive and lack in-depth comparison and analysis.
To bridge the gap, we provide a comprehensive survey of the state-of-the-art HNE research in this
paper. Specifically, we first define a classification mode for HNE study based on an encoder-decoder
framework, and explore the major components of an HNE model under the framework. Then, we
present a systematic and comprehensive survey of the six categories in the taxonomy. We analyze the
basic characteristics, modeling capabilities, advantages and disadvantages of each type of HNE model.
Further, we summarize the application areas, publicly available benchmark datasets, open source
codes/tools, and give performance comparisons of some typical HNE models on the DBLP dataset
for link prediction tasks. Finally, we discuss the open issues and suggest future research directions. The
unique contributions of this paper can be summarized as follows:

• From a technical perspective, we use a more primitive, fundamental, and systematic classification
mode for HNE approaches. Unlike most surveys that classify models from the perspective
of modeling goals, we use the encoder-decoder framework to classify the existing HNE
models from a technical perspective. This classification mode is more primitive, fundamental,
and systematic. It can explicitly capture the methodological diversity and place the various
approaches on an equal symbolic and conceptual basis. We elaborate on major components
that an HNE model usually contains under the encoder-decoder framework, including encoder,
decoder, empirical proximity matrix, and loss function.

• We provide a comprehensive survey of HNE research. Based on the proposed classification
mode, existing HNE methods can be mainly divided into six categories: matrix factorization
(MF), random walk (RW), AutoEncoder (AE), graph neural network (GNN), knowledge graph
embedding (KGE), and hybrid (HB) methods. We provide a systematic and comprehensive
survey of each type of HNE model. For each model type, we first overview its overall common
characteristics and modeling ideas. Then, taking the modeling goals and capabilities of the
representative HNE models as the main clues, we conduct a systematic and comprehensive
overview of each model type. We use extensive tables to analyze and demonstrate the uniqueness
of each representative HNE model in the definition of encoder, decoder, loss function, and
empirical proximity matrix. We also analyze the modeling capabilities of them and highlight
their novel contributions. Finally, we summarize the overall strengths and weaknesses (or
challenges) of each type of HNE model to uncover more potentially competitive HNE model
frameworks. We believe that these in-depth and extensive analyses and summaries can be helpful
in guiding the development of future novel HNE models and aid researchers and practitioners
in choosing appropriate HNE frameworks for specific ML tasks.

• We provide a wealth of valuable relevant resources. We summarize the HNE-related application
fields, publicly available benchmark datasets, open source codes, and tools, which are rich
resources for researchers and practitioners in this field. More over, we provide performance
comparisons of some typical HNE models on the DBLP dataset for the link prediction task.

• We suggest nine promising research directions in the field of HNE. We discuss open and
challenging issues and propose nine promising research directions in the field of HNE in terms
of aspects such as interpretability, scalability, heterogeneity, multi-objectiveness, and robustness.
For each direction, we provide an in-depth analysis of the inadequacies in the current research
and explore future research directions.

The remainder of this survey paper is organized as follows. Section 2 defines the research
problem and elaborates our classification mode. Section 3 provides a comprehensive survey of the
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state-of-the-art HNE research. Section 4 summarizes the application fields, benchmark datasets, open
source codes/tools, and performance evaluations. Section 5 discusses open issues and outlines potential
future research directions. Section 6 presents concluding remarks.

2 Research Problem

We use uppercase boldface letters for matrices and lowercase boldface letters for vectors. Table 1
lists the key symbols used in this paper.

Table 1: Symbol description

Symbol Description Symbol Description

G An HIN R Set of relation types
E Set of edges T Set of node types
τ Node type mapping function ϕ Edge type mapping function
A Adjacency matrix of G X Set of node attributes
eij One edge (vi, vj) ∈ E wij Edge weight of eij

ENC(·) Encoding function DEC(·) Decoding function
L Loss function defined on G Ŝ Empirical proximity matrix
G (k) kth subnetwork of G V (k) Node set of G (k)

E (k) Edge set of G (k) Ŝ
(k)

Empirical matrix of G (k)

deg(vi) Degree of node vi L (k) Loss function defined on G (k)

Vl ∈ T A node type in G Vl Set of nodes of type Vl

φ A meta-path � Set of meta-paths
D Degree matrix of G (where

Dii = ∑
j Aij)

K Numbers of subnetworks in G

Z Node embedding matrix of G zv Embedding of node v ∈ V

z(k)

v Node embedding vector for v ∈ G (k) AGGS(·) Semantic aggregation function
AGGN(·) Neighbor aggregation function σ Activation function
N (v) Set of neighbors of node v Nl(v) Set of neighbors of node v of type Vl

< h, r, t > A triple in knowledge graph fr(h, t) Scoring function for < h, r, t >

Vs Set of nodes with attributes LY Loss for a specific ML task Y
LReg Regularization term loss LRec Loss for a recommender system
�+ Set of positive data samples �− Set of negative data samples
Y Set of labeled data a � b Element-wise product
a ⊗ b Outer product a · b Inner product
a ⊕ b Concatenate two vectors [a; b] Concatenate two vectors

2.1 Heterogeneous Information Network
Definition 1. Heterogeneous Information Network (HIN) [4]: An HIN can be defined as G =

(V , E , X , τ , ϕ, T , R), where V is the set of nodes and E is the set of edges of the network G .
T = {V1, V2, ..., V|T |} is the set of node types of G , and R = {r1, r2, ..., r|R|} is the set of relation
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types of G . Each node v ∈ V has a node type, represented by a mapping function τ(v): V → T . Each
edge e ∈ E has an edge type, represented by a mapping function ϕ(e) : E → R. X is the set of node
attributes in G .

Fig. 1 presents two example HINs. The bibliographic network in Fig. 1a is a typical HIN that
contains five types of nodes: author (A), paper (P), journal (V), organization (O), and topic (T). A P-
type node has different types of links: P-A (a paper is written by an author), P-P (a paper cites another
paper), P-V (a paper is published at a venue), among others. The Douban Movie network in Fig. 1b is
also an HIN, and it contains four types of entities: user (U), movie (M), director (D), and actor (A).

(a) A bibliography network (b) Douban movie network

Figure 1: Example Heterogeneous Information Networks (HINs)

According to the different types of semantic relations, a heterogeneous network G can usually be
divided into multiple different subnets: G = G (1) ∪ G (2) ∪ ... ∪ G (K), K = |R|. Among them, G (k) ={
V (k), E (k), X (k), τ , ϕ

}
is the kth subnetwork of G , which can be a homogeneous or bipartite, directed

or undirected network. A(k) is the adjacency matrix of G (k).

2.2 Heterogenous Network Embedding
Definition 2. Heterogeneous Network Embedding (HNE): Given an HIN G = (V , E , X , τ , ϕ,

T , R), the task of HNE is to learn a mapping function f : V → R
d that embeds each node v ∈ V

into a low-dimensional vector zv ∈ R
d with d � |V |. The learned node embeddings need to be able

to capture the original network information. Generally, the network information includes structural,
semantic, attribute, and label information.

Next, we explain the three main modeling goals of general HNE models:

• To preserve structural information (Preserve ST): the generated embeddings are able to preserve
the topological proximity (low-order proximity such as 1st, 2nd [20,21] or higher-order proximity,
where nth, n > 2) or the community structure of the HINs.

• To preserve attribute information (Preserve AT): the generated embeddings incorporate the
affiliated attribute information of nodes or edges in the HINs.

• To preserve semantic information (Preserve SM): the model differentiates between different
types of semantic relations when generating network embeddings.

Notably, in addition to generating embeddings for nodes in HINs, some studies generate embed-
dings for edges, subnetworks, or entire networks. These studies are also studies of HNE. However,
because edge and subnet embeddings are also based on node embeddings and generating node
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embeddings is the main task of most ML models, this survey focuses on the node embedding models
and introduces some extended models.

2.3 Overview of Approaches: An Encoder-Decoder Framework
From a technical perspective, we use an encoder-decoder framework depicted in Fig. 2 to

classify and review existing state-of-the-art HNE approaches. In this section, we first discuss the
methodological components of an HNE model under this framework.

Figure 2: Overview of the encoder-decoder framework

The encoder aims to map each node v in the heterogeneous network G to a low-dimensional vector
space, and the decoders aim to reconstruct the information of the original heterogeneous network
based on the learned low-dimensional feature representations. The internal logic is that, if the model
can reconstruct the graph structure and semantic relations of the original network from the encoded
embeddings, then the learned embeddings should contain all information necessary for downstream
ML tasks [8]. Formally, the encoder of an HNE model is a function,

ENC : V → R
d, d � |V |, (1)

maps nodes to low dimensional vecotor embeddings zv ∈ R
d. As mentioned earlier, a heterogeneous

network G often contains several different subnetworks G (1), G (2),..., G (K). If an HNE model initially
maps each node v in each subnetwork G (k) into different vector spaces, then it usually uses a semantic
aggregation function AGGS(·)1 to aggregate the node embeddings of multiple subnets to generate a
unified node embedding, i.e., zv = AGGS

k
(z(k)

v ), k = 1, 2, ..., K.

A decoder is also a function that tries to reconstruct the information of the original HIN from
the learned node embeddings. To preserve the structural information of the HIN, many HNE models
define a pairwise decoder as

DEC : Rd × R
d → R (2)

to map the pair of node embeddings zi, zj to a real-valued structural proximity number which measures
the proximity of the two nodes vi and vj. If the empirical proximity of vi and vj is represented by ŝij,
the objection function of the HNE model is usually defined as the sum of the distances between the
decoded and empirical proximity of each node pair in the dataset:

1In GNN models, a neighbor aggregation function AGGN (·) is usually used to aggregate the feature of neighbors around each node. Note that in this section of the survey,
the aggregation function AGGS(·) specifically refers to an aggregation of the features for different semantics of the same node. This is semantic-level aggregation, which
must be distinguished from node-level feature aggregation in GNN models.
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L =
∑

(vi ,vj )∈�

D(sij, ŝij), (3)

where D(·) is the distance function. For an HIN, the loss is often the sum of the losses of each
subnetwork, i.e., L = ∑K

k=1 L k. After the HNE model has been trained, the node embeddings can
be obtained. They can be used for various downstream ML tasks, such as node classification and
recommender systems.

In summary, in the encoder-decoder framework, an HNE model typically comprises four compo-
nents:

• An empirical proximity matrix Ŝ : V × V → R. The matrix Ŝ defines the empirical similarity
between each node pair in the HIN. Many models define the empirical proximity matrix as
the adjacency matrix A, the nth power of the adjacency matrix An, or the positive pointwise
mutual information (PPMI) matrix [22], etc. The definition of Ŝ largely reflects whether an
HNE model considers low-order or high-order structural information when modeling network
topology information.

• An encoding function ENC(·). This function maps the model inputs into node embeddings.
Depending on the heterogeneous network, the model input may vary. Common model inputs
include one-hot identification vectors of nodes, node attribute vectors, or adjacency vectors.
The encoder function usually contains many trainable model parameters, which can be very
simple, such as a simple linear transformation, or very complex, such as a deep neural network
structure. If an HNE model initially maps nodes in each different subnet to a different vector
space, then it usually uses a semantic aggregation function AGGS(·) to aggregate the node
embeddings in different subnets to generate the final unified node representations.

• A decoding function DEC(·). A decoder of an HNE model usually contains one or more
decoding functions that attempt to reconstruct the information of the original HIN. Most HNE
models use pairwise decoding functions when modeling the structural information, and the
most common form is the inner product, i.e., DEC(zi, zj) = σ(zi · zj). Models based on KGE
always use a ternary scoring function.

• A loss function L . The loss function is the optimization objective of an HNE model. For
many unsupervised HNE models, the optimization goal is to minimize the distance between
the reconstructed and empirical proximities. To reduce model complexity, most deep learning-
based models add a regularization term LReg to L . Some HNE models incorporate the loss LY

of subsequent ML tasks into L as information for supervised learning. As such models tipically
use part of the label information when generating node embeddings, they are semi-supervised
approaches.

3 Heterogenous Network Embedding: State-of-the-Art Approaches

Based on the encoder-decoder framework, existing HNE models can be divided into six categories:
MF, RW, AE, GNN, KGE, and Hybrid. As explained later, there are distinct differences in the major
components of each model type. In Fig. 3, we present the proposed taxonomy for summarizing HNE
techniques.
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Figure 3: The proposed taxonomy for summarizing Heterogenous Network Embedding (HNE)
techniques

3.1 Matrix Factorization-Based Models
Matrix factorization (MF) is an early feature representation learning method. Many MF-based

homogeneous network embedding models have been proposed, such as Graph Factorization [23],
Laplacian Eigenmaps [24], and HOPE [25]. The encoder of an MF-based model is usually a direct
encoding, i.e., the product of a node embedding matrix Z ∈ R

d×|V | and a one-hot vector vi that identifies
each node vi:

ENC(vi) = Z · vi. (4)

In this case, the encoding function is a simple “embedding lookup”, and the embedding matrix Z
is directly optimized. The decoder of an MF model is usually defined as the inner product of the two
node embeddings as follows:

DEC(zi, zj) = zi · zj. (5)

Thus, if the loss function is defined as L = ∑
(i,j)∈E

∥∥ŝij − zi · zj

∥∥2

2
, then the optimization goal of the

HNE model is approximately equivalent to factorizing the empirical similarity matrix, i.e., Ŝ ≈ ZTZ.
In addition, although some models do not use an inner-product decoder (e.g., Laplacian Eigenmaps
[24] uses

∥∥zi − zj

∥∥2
) or add nonlinear transformations to the inner-product operation (e.g., LINE [20]

uses σ(zi · zj)), after the objective function is deformed, these models are essentially equivalent to
decomposing first- or n-th order proximity matrices [8]. Hence, they can still be classified as MF
models.

Different from homogeneous network embedding, HNE models need to deal with network
heterogeneity. In general, the most common idea of extending a homogeneous MF model to an HIN
is to 1) use a specific MF model to model the relationships in different subnetworks separately, and 2)
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sum the losses defined on multiple subnetworks and train them together in an HNE model to get the
feature representation of each node in the HIN.

PTE [26] is a semi-supervised model for representation learning of heterogeneous text data.
Specifically, to improve the efficiency of text embedding and use the label information in the dataset,
PTE represents the text co-occurrence and partial label information in the corpus as an HIN that
contains the following subnetworks: the word–word network G <ww>, word–document network G <wd>,
and word–label network G <wl>. Then, it uses the LINE model [20] to model the relationships in each
subnetwork. For each subnetwork G (k), PTE defines the conditional probability of generating an
immediate neighbor node vj from node vi as follows:

p(vj|vi) = exp(zi · zj)∑
vj′ ∈V (k)

exp(zi · zj′)
. (6)

To preserve the second-order proximity, the loss function for G (k) is defined as

L k = −
∑

vi∈V k

λiKL(p̂(·|vi)||p(·|vi)), (7)

where λi = deg(vi), and p̂(vj|vi) = wij

deg(vi)
is the empirical proximity. Finally, PTE provides two

optional training solutions: 1) jointly training three subnetworks, where the loss is

L = −
∑

k

∑
(vi ,vj )∈E k

wij log p(vj|vi), (8)

2) first using the unlabeled networks (G <ww> and G <wd>) to pre-train, and then using the labeled
network (G <wl>) for fine-tuning.

In addition to PTE, HRec [27], ISE [28], and LHNE [29] all use an inner-product decoder
as PTE. These models are all able to capture the low-order structural features of the HINs, but
they share common defects: 1) These models map the node embeddings in different subnetworks to
the same vector space, without considering the diverse semantic information contained in different
subnetworks; 2) When the losses of multiple subnetworks are fused together in a single model,
these HNE models assign equal weights to different subnetworks. However, the densities of different
subnetworks in an HIN are usually quite different. Giving equal weights can easily lead to skew
problems, i.e., the HNE model converges in some denser subnetworks but does not in less dense
subnetworks.

Inspired by the attention mechanism in neural machine translation in recent years, Qu et al. pro-
posed an MVE model [30] for multi-view heterogeneous networks, which solves the problem of
automatically learning the different weights of different views (subnetworks). MVE first maps each
node in each subnetwork to a different vector space, and then it also uses the LINE model to obtain
the node embedding z(k)

i for each node vi ∈ G (k) (see Eq. (7) for the loss definition). To learn robust
node representations across different views, MVE uses an attention mechanism to aggregate the view-
specific node embeddings for each node as follows:

zi =
K∑

k=1

λk
i z

k
i , (9)
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where λk
i is the weight of the kth subnetwork, defined as λk

i = exp(qk · zC
i )∑K

k′=1 exp(qk′ · zC
i )

. Next, the model

defines a regularization term to learn different weights for different views:

LReg =
|V |∑
i=1

K∑
k=1

λk
i

∥∥zk
i − zi

∥∥2

2
. (10)

The final loss of the MVE model is the sum of the model loss for multiple subnets, the
regularization term, and the loss for a downstream ML task.

However, the MF-based HNE models mentioned above can only capture low-order structural
information of the HINs; they cannot do much for the higher-order structural information. Since the
higher-order structural information of the network is equally important in many ML applications,
some matrix factorization-based models capture the higher-order structural features by changing
the definition of the empirical proximity matrix. A2CMHNE [31], CMF [22], MIFHNE [32] and
MNMF [5] models are typical representatives of this approach. The main differences between them
are: the A2CMHNE and MIFHNE models use the metapath-based similarity matrix (MPSM) as
the empirical proximity matrix; the CMF model uses the PPMI matrix [3]; and the MNMF model
uses a non-negative DeepWalk matrix [33]. Note that, different from the traditional one-round non-
negative matrix factorization, the MNMF model iteratively decomposes the residual matrices to
gradually reduce the approximation error based on the idea of gradient boosting. The multi-stage
matrix factorization framework of MNMF model is shown in Fig. 4. The objective function of the lth
stage is defined as

min
K∑

k=1

(αl
k)

γ ‖Rl
k − U lV l

k‖2

F

s.t.U l ≥ 0, V l
k ≥ 0,

K∑
k=1

αl
k = 1, αl

k ≥ 0,

(11)

where the residual matrix Rl
k to be decomposed in l-th stage is defined as

Rl
k =

{
Mk, l = 1
max(Rl−1

k − U l−1V l−1
k , 0), 2 ≤ l ≤ q.

(12)

where M = log
(

max
(

vol(G )

bT

(∑T

t=1 Pt
)

D−1, 1
))

is the DeepWalk matrix. Since the matrix V l
k is

different in different subnetworks, the node embeddings generated by MNMF contain both common
embeddings across different subnetworks and relation-specific node embeddings.

Figure 4: Multi-stage matrix factorization
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Table 2: Matrix factorization based models

Model Ŝ AGGs(·) DEC(·) Loss function Preserve
ST

Preserve
AT

PTE [26] A / softmax(zi · cj) Eq. (8) 2nd no

Hrec [27] A / softmax(zi · cj) Eq. (8) 2nd no

ISE [28] A / softmax(zi · cj) Eq. (8) 2nd no

LHNE [29] A / softmax(zi · cj) Eq. (8) 2nd no

HHE [34] D−1A /
∥∥zi − zj

∥∥2 ∑K
k=1 λk

∑
(i,j)∈E k ŝijDEC(zi, zj) 1st no

MVE [30] A Attention softmax(zk
i · cj)

∑K
k=1 L (k) + ηLReg + ∑

vi∈Y LY 2nd no

A2CM-HNE
[31]

MPSM Attention softmax(zi · cj) − ∑
φ∈�

∑
vi∈V

∑
vj∈N φ(vi)

ŝij log DEC(zi, zj) + LY nth yes

MEGA [35] GraphSim
Matrix

/ zi · zj α

∥∥∥Ŝ − ZZT
∥∥∥2

F
+ ‖S − [Z, Z, W ]‖2

F nth no

CMF [22] PPMI
Matrix

/ zi · zj
∑K

k=1
∑

(i,j)∈E k (DEC(zi, zj) − ŝij)
2 + LReg 1st ∼ nth no

MNMF [5] DeepWalk
Matrix

CONCAT zi · cj
∑K

k=1 (αl
k)

γ ‖Rl
k − U lV l

k‖2
F 1st ∼ nth no

SAHE [36] Aggregated
MPSM

/ σ(zi, zj)
∑

(vi ,vj)∈� KL(ŝij||DEC(zi, zj)) nth no

MIFHNE [32] MPSM / zi · cj ‖Ŝ − UZT‖2
F + α‖Y − VZT‖2

F +
β‖X − WZT‖2

F

1st ∼ nth yes

Table 2 provides an overview of some typical existing MF-based HNE models. In summary, MF-
based HNE models are mainly convenient for modeling the structural information of the HINs. They
usually have relatively simple encoding and decoding functions and run efficiently. However, this type
of model usually has the following disadvantages:

• Such models have poor ability to capture the attribute information and diverse semantic
information of heterogeneous networks. Although some MF models take attribute information
into account when generating node embeddings (such as MIFHNE and A2CMHNE), they
usually require separate encoding of attribute information.

• In some MF models that consider higher-order proximity (such as MEGA [35], CMF [22], and
MNMF [5]), the proximity matrices to be decomposed are usually dense matrices. For a large-
scale network, storing and decomposing a large dense proximity matrix consumes significant
memory resources, which makes it difficult to implement on ordinary computing platforms.

• Most encoders of such models are direct encoding, and the model input depends on the number
of nodes; therefore, they are generally transductive models, which are difficult to extend to
dynamic networks.

3.2 Random Walk-Based Models
Random walk (RW) based models are also very common network embedding models. Typical

homogeneous random walk models are DeepWalk [33] and node2vec [37]. In contrast to MF-based
models, the neighbor nodes in RW-based models are defined as nodes that co-occur in a short sequence
of random walks. The optimization goal of most RW models is to make nodes that frequently co-occur
in short sequences of random walks on heterogeneous networks have similar embeddings.
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That is, this kind of approach is to learn embeddings so that

DEC(zi, zj) = exp(zi · zj)∑
v∈V exp(zi · zv)

≈ pG (vj|vi),

(13)

where pG (vj|vi) denotes the conditional probability of randomly walking from node vi to node vj in
the HIN.

Compared with MF models, random walk-based models have better flexibility and can easily
model higher-order neighbor relationships. Furthermore, if the random walk path-sampling process
is given some strategic control, such as restricting it to follow a specific relation path (meta-path),
it is convenient for a random walk model to capture the specific semantic information contained in
the HINs.

Random walk-based HNE models are generally implemented in two stages: 1) sampling a large
number of random walk sequences in the HIN from each node according to a specific strategy, 2)
learning the optimized node embeddings using the skip-gram (or CBOW) model.

3.2.1 General Heterogeneous Random Walk Embedding Model

In the context of heterogeneous graphs containing nodes from different domains, classical random
walks are biased to highly visible domains where nodes are associated with a dominant number of paths
[4]. To overcome the skewness problem that random walk may cause, Hussein et al. proposed a JUST
model [38] that uses a special Jump & stay random walk strategy. JUST can effectively control when
the walker performs a random walk, the next step is to choose to walk to a homogeneous node (Stay)
or a heterogeneous node (Jump). If the next step is to choose Stay, then the model uses a queue Qhist

of length m to store the sequence of node types sampled in the past m steps. In this way, the model
avoids frequent resampling of the sampled node types by artificially controlling the type of sampled
nodes at each step, overcoming the skewness problem to a certain extent. Similar to JUST, the MARU
model [39] is also a RW-based HNE model aimed at the skewness problem. However, unlike JUST,
MARU defines a bidirectional extended random walk strategy, and allows each node to have different
representations in different contexts, thus enhancing the semantic modeling capability of the model.

Heterogeneous networks contain rich semantic relationships. If the HNE models do not distin-
guish between different relationships when modeling, the generated node representations are bound
to lose rich semantic information, such as HINE [40] and JUST. To deal with the various semantic
relations contained in HINs, the MNE model [41] divides the embedding of each node in the
subnetwork G r into two parts: common embedding ci ∈ R

d, which is shared across all the relation
types, and an embedding u(r)

i ∈ R
s oriented toward a specific view r, which is used to capture the

distinct property of each sub-network. In this way, the feature representation z(r)
i of a node vi in a

specific subnetwork G r can be expressed as

z(r)
i = ci + α(r)W (r)u(r)

i , (14)

where α(r) is the weight of relation r and W (r) ∈ R
d×s is the r-view-specific transformation matrix. Next,

the model samples several fixed-length random walk sequences in each subnetwork G r and then uses
the skip-gram algorithm to obtain the view-specific node embeddings.

Other general RW-based HNE models are summarized in Table 3. In particular, the hyper-
gram [42] model uses a novel indicator to describe the indecomposability of the hyperedge in a
heterogeneous hypergraph, followed by a random walk sampling algorithm based on a hyper-path
and the corresponding hyper-gram optimization algorithm. The GERM [43] model uses a genetic
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algorithm to select the most informative relation type (subgraph pattern) in a heterogeneous network
pattern for a specific ML task, and then uses the generated edge type activation vector (ETAV) to
guide the random walk process to reduce noise and model complexity. These two models provide new
perspectives for designing random walk sampling procedures. Moreover, because GERM mines the
most informative relational patterns for specific ML tasks in the HIN schema, it is also intrinsically
related to the automatic mining of meta-paths to be discussed later.

3.2.2 Metapath-Based Random Walk Embedding Models

Since the concept of meta-path was proposed by Sun et al. [44] in 2011, numerous studies have
used metapath-based random walk techniques to generate node embeddings. Compared with general
RW-based models, metapath-based RW models better capture various types of semantic information
contained in the HINs. The characteristic of this type of model is that when a walker performs a
random walk in an HIN, it should follow a predefined specific meta-path.

Definition 3. meta-path [4]: A meta-path φ is a sequence of node types of length L: φ : V1

r1−→ V2

r2−→
...Vl

rl−→ Vl+1...
rL−1−−→ VL, where V1, V2, ..., VL ∈ T are node types of the HIN, and r1, r2, ..., rL−1 ∈ R are

the meta relationship between two node types. A meta-path R = r1 ◦ r2 ◦ ... ◦ rL−1 defines a composite
relationship between two node types V1 and VL.

Taking Fig. 1a as an example, the three meta-paths shown in Fig. 5a can be defined as φ1 : A →
P → A, φ2 : A → P → V → P → A, and φ3 : A → P → T → P → A. These meta-paths
describe three distinct relationships between two author-type entities: those co-publishing papers,
those publishing papers in the same venues, and those publishing on the same topics.

Figure 5: Examples of meta-paths and a meta-graph based on Fig. 1

To address the network heterogeneity challenge, Dong et al. proposed a classic metapath-based
random walk model called metapath2vec [4]. The model defines a random walk sampling method
based on a meta-path φ : V1

r1−→ V2

r2−→ ...Vl

rl−→ Vl+1...
rL−1−−→ VL to generate sequences of sampled nodes.

At each step of the random walk, the probability of walking from the current node vi (assuming its
node type is Vl) to the next node vi+1 is defined as

p(vi+1|vl
i; φ) =

⎧⎨
⎩

1
|Nl+1(vl

i)|
, if (vi+1, vl

i) ∈ E andτ(vi+1) = Vl+1

0, otherwise
(15)

Then, based on the sampled random walk sequences, the heterogeneous skip-gram algorithm is
used to learn the model parameters. The loss function is defined as

L = −
∑
vi∈V

∑
Vl∈T

∑
vj∈Nl+1(vi)

[
log (zi · zj) +

M∑
m=1

Evj′ ∼Pl+1
n (u)

log σ(−zi · zj′)

]
. (16)
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Metapath2vec can effectively deal with the heterogeneity issue, and capture the structural and
specific semantic information of the HINs. However, it only uses a single meta-path in random walk
sequence sampling, which makes the generated node representations capture only limited semantic
information; meanwhile, sequence sampling based on a single meta-path can easily lead to the
sampling of numerous short random walk sequences, causing the sparsity problem [45].

To capture more diverse semantic relations in HINs, Zhang et al. proposed a MetaGraph2vec
model [45] that defines a meta-graph-based random walk strategy. A meta-graph is essentially a
combination of multiple meta-paths, e.g., the meta-graph M defined in Fig. 5b is the combination
of the three meta-paths φ1, φ2, and φ3 in Fig. 5a. When sampling a random walk sequence based on
the meta-graph M , if the current random walker passes through a node of type A to a node of type P,
then at the next step, it can choose any type of node in {A, V , T} to walk. As the meta-graph contains
more diverse semantic relations than a single meta-path, the metagraph2vec model can capture richer
semantic information than metapath2vec. However, the metagraph2vec model essentially assigns the
same weights to different meta-paths, rather than distinguishing them. This makes the resulting node
embeddings unable to capture more important relational paths. The HERec [46] and HueRec [47]
models handle the weighting of multiple meta-paths well. Both of these two models are random
walk-based HNE models designed for recommendation systems. Specifically, HERec first uses the
metapath2vec model to learn the node embedding z(φ)

v ∈ R
d of each user node v ∈ U and item node

v ∈ I based on a specific meta-path φ, then it uses three different ways to aggregate node feature
representations based on multiple meta-paths. Finally, it feeds the aggregated embeddings into the
recommendation model to generate rating predictions. Compared with HERec, the HueRec model
has some differences: first, HueRec uses the PathSim metric [44] to define the empirical proximity
between a user node and an item node; secondly, when decoding the similarity between user node u
and item node i, HueRec uses a ternary decoder as follows: su,i,φ = ∑d

q=1 zu � zi � z�

φ
. Since the decoder

of HueRec distinguishes different semantics of different meta-paths, it has a better ability to capture
semantic relations.

In addition to the above models, there are many models that also belong to the metapath-based
random walk models [31,48–53]. Noted that the HIN2VEC [49] model decomposes all the sampled
random walk sequences based on the HIN schema into short meta-path sequences of length no more
than n-hops, and defines a relation type-sensitive ternary function to decode the proximity of the
triples. The HeteSpaceyWalk [48] model formalizes the metapath-based random walk process as a
higher-order Markov chain. In contrast to all other HNE models that map heterogeneous networks
to low-dimensional Euclidean spaces, the HHNE model [52] maps nodes in the HIN into a hyperbolic
space. As the random walk-based model is essentially modeling the structural information of the HINs,
for the attribute information, the SHNE [50] and A2CMHNE model [31] design attribute encoders
specially and integrate the content embeddings into the HNE models.

Table 3 presents an overview of the characteristics of some typical RW-based HNE models. In
essence, the RW-based models also perform matrix factorization [54]. However, unlike MF models,
because the neighbor nodes in RW models are neighbors that co-occur in a sequence of random walks,
RW-based HNE models always factorize higher-order proximity matrices. Moreover, most RW models
use edge sampling to generate data samples. Therefore, the RW-based model avoids the drawback of
directly decomposing large and dense matrices, providing better flexibility than MF models. However,
this type of model still has some shortcomings:



CMES, 2023, vol.137, no.1 97

T
ab

le
3:

R
an

do
m

w
al

k
ba

se
d

m
od

el
s

M
od

el
A

G
G

S
(·)

D
E

C
(·)

L
os

s
fu

nc
ti

on
P

re
se

rv
e

ST
P

re
se

rv
e

A
T

JU
ST

[3
8]

/
σ
(z

i
·z

j)
−

∑ (v
i,

v j
)∈

�
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• The random walk-based edge sampling can easily lead to skewness issues, which can make
the HNE model unbalanced during training; the model is likely to be well-trained in dense
subnetworks but far from convergent in sparse subnetworks. Hence, the random walk strategy
must be carefully designed to mitigate the skewness problem.

• In random walk models using meta-paths, the definition of the meta-paths generally depends on
the engineer’s prior knowledge and experience. If the meta-path is not well defined, it may add
noise to the HNE model and useful network information may be lost. It would be appreciable
to study the automatic extraction of efficient meta-paths from HINs.

• Similar to MF models, most RW models use direct encoding. Because there are no shared
parameters between node embeddings, this may affect the training efficiency of the model.

• The random walk models can capture the low- and high-order structural information of the
network, but similar to the MF model, they cannot handle the attribute information well: the
attribute information usually needs to be encoded separately. For example, in the SHNE model
[50], the text attribute information in the HIN is encoded using a specialized gated recurrent
unit-based recurrent neural network.

3.3 Autoencoder-Based Models
The AE-based HNE models are different from other types. The model input of this model type

is no longer a one-hot identification vector but an adjacency vector ŝi ∈ R
|V | of each node vi, i.e., the

ith row of the empirical proximity matrix Ŝ. The adjacency vectors contain the neighbor structural
information of each node in the HIN. The AE-based model uses a nueral network-structured encoder
to project the node adjacency vectors into the low-dimensional embedding vectors; and the decoder
attempts to recover the input vectors from the learned node embeddings (Fig. 6).

Figure 6: The framework of autoencoder-based models. The encoder of this model type is usually a
multi-layer neural network framework (called hidden layers), which maps the input vector ŝi for node
vi to the embedding vector zi (code). The decoder is also a multi-layer neural network framework,
which attempts to reconstruct the input vectors from the learned code. The optimization goal of the
AE-based models is usually to minimize the distance between the input and output vectors, namely:
L = ∑

vi∈V ‖(si − ŝi) � bi‖2

F , where bi is an indicator vector, which gives more penalty to those non-zero
elements

Most AEs are implemented through various types of neural networks, such as feed-forward neural
networks (FNNs), sparse AEs, denoising AEs, contractive AEs, and variational AEs. Common AE-
based homogeneous network embedding models include SDNE [55], DNGR [56], and VGAE [57].
For HINs, an AE-based HNE model should also fully consider the networks’ heterogeneity.
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The SHINE model proposed by Wang et al. [58] is a basic heterogeneous extension of homoge-
neous network embedding. It first uses three AE neural networks to compress user node adjacency
vectors in three different subnetworks; then, it aggregates the node representations in different
subnetworks to obtain the unified node embeddings. However, because the input to this model is the
node’s first-order adjacency vector, it can only capture the second-order structural features. DHNE
[21] and Event2Vec [59] can capture both first- and second-order structural features. Specifically,
to capture the first-order structural information, DHNE uses a deep neural network framework to
define a nonlinear multivariate function S(v1, v2, ..., vn) = MLP(z1, z2, ..., zn), and the first-order loss is
defined as

L1 = −
∑

ijk

ŝijk log sijk − (1 − ŝijk) log (1 − sijk). (17)

To capture the second-order structural information, DHNE defines an adjacency matrix A (=
H · HT − D) based on the event matrix H. Then, the model compresses the matrix A by using the
AE framework to obtain the feature representation of the network nodes, and the second-order loss is
defined as

L2 =
∑
t∈T

‖sign(st
i) � (st

i − ŝt

i)‖2

F . (18)

Finally, DHNE merges the two loss functions into one model for unified training.

Besides low-order structural information, the ability of the HNE model to capture high-order
structural information is also important. DIME [60] and AMPE [61] extend the definition of neighbor
nodes with metapath-based neighbor nodes, thus capturing higher-order structural information of
the network. Specifically, DIME first defines multiple meta-paths φ1, φ2, ..., φL in two HINs G (1) and
G (2). Then, it calculates the empirical proximity between node pairs (vi, vj) ∈ G (k) based on each meta-

path φl as follows: ŝ(k)

ij,φl
= 2|P (k)

φl
(v(k)

i , v(k)

j )|
|P (k)

φl
(v(k)

i , ·)| + |P (k)

φl
(·, v(k)

j )| . Next, with all empirical approximation matrices

Ŝ
(k)

φl
, l = 1, 2, ..., L as input, DIME uses a multi-level hybrid AE framework, as shown in Fig. 7, to

compress the input into low-dimensional node embeddings. The reconstruction loss for each network
G (k) is defined as

L (k) =
∑
φl∈�

∑
vi∈V

‖(s(k)

i,φl
− ˆs(k)

i,φl
) � b(k)

i,φl
‖

2

2
. (19)

and the final loss is defined as

L = L (1) + L (2) + α ∗ L (1,2) + β ∗ Lreg, (20)

As mentioned above, in addition to capturing network structure information, HNE models often
need to deal with diverse network attribute information. AMVAE [62] and AEHE [63] are two AE-
based HNE models that incorporate content attribute embeddings. For the text information Wv =
{w1, w2, ..., wm} and image region information Iv = {i1, i2, ..., in} contained in each image node v ∈
V in the heterogeneous image network, AMVAE first defines an attention model that captures the
association between each word and image region. Then, it inputs the text representation sequence
corresponding to each image into a long short-term memory model and obtains the content embedding
of each image node. Next, it concatenates the content embedding and structure embedding, and inputs
the concatenated feature vector into a two-stage hybrid VAE framework to learn the final embeddings
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of the image nodes. Owing to the introduction of a multi-level hybrid VAE framework, the robustness
of the AMVAE model is enhanced.

Figure 7: DIME model framework

Table 4 gives an overview of the features of some representative AE-based HNE models. In
summary, the overall advantage of an AE-based HNE model is that it can easily compress the neighbor
vectors through various types of AE frameworks to capture network structural features directly.
However, such models often have the following disadvantages:

• For large- and ultra-large-scale heterogeneous information networks, the input adjacency
vectors to AE-based models are usually high-dimensional (tens of thousands to hundreds of
millions). Building a general multi-layer AE neural network structure usually involves numerous
training parameters in the model. Therefore, the training complexity of such HNE models is
very high and difficult to implement on general computing platforms.

• As the input of such models depends on the number of nodes in the network, the models are
usually transductive and cannot handle dynamic networks.

Table 4: Autoencoder based models
Model Ŝ Encoder AGGS(·) Loss Function Preserve

ST
Preserve
AT

SHINE [58] A MLP SUM,
maxpooling,
CONCAT

∑K
k=1

∑
vi∈V (k) αk

∥∥∥(â(k)
i − a(k)

i ) � b(k)
i

∥∥∥2

2
+ LY + Lreg 2nd yes

AMPE [61] MPSM MLP Attention
∑|�|

k=1
∑

i∈V αφk

∥∥∥(â
(φk)

i − a
(φk)

i ) � b
(φk)

i

∥∥∥2

F
+ LY 1st ∼ nth no

(Continued)
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Table 4 (continued)
Model Ŝ Encoder AGGS(·) Loss Function Preserve

ST
Preserve
AT

AMVAE [62] A,X VAE CONCAT [ξ − f (g(Iv, Wv)) + f (g(Iv, W̄v))]+ +∑2
k=1 [KL(q(z(k)

v )|a(1)
v , a(2)

v )||p(z(k)
v )) + H(a(k)

v , â(k)
v )]

2nd yes

DIME [60] MPSM MLP CONCAT
∑K

k=1
∑

φ∈�

∑
vi∈V (k)

∥∥∥(â(k)
i,φ − a(k)

i,φ ) � b(k)
i,φ

∥∥∥2

2
+∥∥∥T(1,2)Z(1)W(1,2) − Z(2)

∥∥∥2

F

1st ∼ nth yes

Event-2vec [59] Event matrix MLP AVG
∑|�|

i=1
∑|Tv|

t=1

∥∥∥(ŝt
i − st

i ) � bt
i

∥∥∥2

2
+ αLReg 1st ∼ 2nd no

DHNE [21] HHT − D MLP / − ∑
(i,j,k)∈δ ŝijk log sijk + (1 − ŝijk) log (1 − sijk) 1st ∼ 2nd no

AEHE [63] MPSM MLP /
∑

event
∑m

i=1

∥∥∥Bi � (Si − Ŝi)
∥∥∥ + αLy + βLReg 2nd ∼ nth yes

3.4 Graph Neural Network-Based Models
Inspired by the convolutional neural network (CNN), GNNs, which operate on the graph domain,

have been developed in recent years [64,65]. GNNs are able to capture dependencies contained in
graphs from graph structural information through information propagation (see Fig. 8). Different
from previous types of models, the input of a GNN-based HNE model is usually the nodes’ affiliate
attribute vectors, and its encoding function is a multilayer GNN, which continuously aggregates the
features of the neighbor nodes around each central node as an update of the feature representation of
the current central node. When L rounds of iterations are complete, the final node representation is the
output of the encoder. Such models can easily and effectively capture the local structure and affiliated
attribute information of HINs. Currently, GNN-based models achieve state-of-the-art performance
on many graph-based tasks, including natural language processing, knowledge graphs, and protein
networks. According to the way information is propagated in a graph, GNNs are mainly divided
into spectral-based graph convolution, spatial-based graph convolution, graph attention networks,
and graph spatiotemporal networks, etc. The corresponding representative models for homogeneous
networks are GCN [66], GraphSage [67], GAT [68], and GGNN [69], respectively.

Figure 8: Overview of the GNN models. The figures are adapted from [67]

For HINs, because it is usually necessary to process different types of semantic information,
feature aggregation usually follows a hierarchical aggregation strategy. In general, HNE models
first use the first-level aggregation function AGGN(·) to aggregate the features of nodes within
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each subnetwork of the same semantic relationship, followed by a second-level aggregation function
AGGS(·) to aggregate the node features for different semantic relations. The modeling ability of
heterogeneous GNN networks differs depending on the underlying GNN methodology. In general, the
spectral-based GCN models have a strong theoretical basis for graph signal processing, but because
the features of all neighbor nodes are aggregated each time, the computational complexity of this type
of model is high, and they are usually transductive models. The spatial-based GCN models can control
the computational complexity of the model by sampling neighborhoods. Moreover, since their model
input can be independent of the number of nodes in the network, this GNN model type is more flexible.
The graph attention network models can easily solve the weight problem of neighbor nodes.

DMGI [70] is a spectral-based convolutional GNN model designed for multi-relational networks
with heterogeneous attributes. The model first uses the GCN model [66] to aggregate the neighbor
features of each node inside each subnetwork G (k):

H (k) = σ
(

D̂
−1/2

k Â
(k)

D̂
−1/2

k XW (k)

)
, (21)

where Â
(k) = A(k) + ωI n, D̂ii = ∑

j Âij. Then, it aggregates the embeddings of all nodes within each

subgraph to generate a subgraph-level summary representation as: s(k) = σ

(
1
n

n∑
i=1

h(k)

i

)
. Next, to

capture the global structural information of the networks, the DMGI model uses the Deep Graph
Infomax method [71] to define the loss function. the main idea of the DGI is to maximize the mutual
information between the local patches of a graph and the global embedding of the subgraph, i.e.,

L (k) =
n∑

i=1

[
log σ

(
h(k)

i

T
M (k)s(k)

)
+

n∑
j=1

log σ

(
−h̃

(k)T

j M (k)s(k)

)]
. (22)

The model then uses a consensus regularization framework to aggregate the relation-type specific
node embeddings to generate the final consensus node embeddings. Owing to the introduction of the
DGI method, the DMGI model can not only capture the attribute information and low-level structural
information, but also effectively capture the global structural information of the HINs.

However, in many GNN-based models (such as DMGI), the neighbor nodes in the HINs are
defined as immediate neighbors. Several studies have extended the definition of neighbor nodes in
heterogeneous networks using meta-path-based neighbors [6,72–79]. Such models are able to capture
more specific semantic information and overcome possible sparsity issues. The HAN model [6] shown
in Fig. 9 is a typical one. The core idea of HAN is to use a metapath-augmented adjacency matrix
to replace the original adjacency matrix. It first projects the initial node attribute matrix using the
following type-specific transformation: hi = M τ(vi)xi, where xi is the initial node attribute vector
of node vi, and M τ(vi) is the type-specific projection matrix of node vi. Then, based on the multiple
meta-paths defined in the heterogeneous network, the model uses a two-level attention mechanism to
aggregate the features of each node’s neighbors. The first layer aggregates the neighbor node features
of each node based on the meta-path φ:

zφ

i = σ

⎛
⎝ ∑

j∈N φ(i)

αφ

ij hj

⎞
⎠ , (23)

where α
φ

ij = exp(eφ

ij)∑
k∈N φ(i) exp(eφ

ik)
, and eφ

ij = aT
φ

· [
hi; hj

]
. The second-level attention mechanism aggregates

each node’s feature representation based on multiple meta-paths, namely:
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zi =
∑
φ∈�

βφzφ

i , (24)

where βφ = softmax( 1
N

∑
vi∈V qTσ(Wzφ

i + b)) is the significance of the meta-path φ ∈ �.

The HAN model can well capture low-order and high-order structural information, as well as
specific semantic information, and can distinguish different weights for different neighbor nodes and
different semantic relations (different meta-paths). The GraphInception [72], MAGNN [76], RoHe
[79], HAHE [73], Player2Vec [74], HDGI [77], and MEIRec [75] models share a similar idea with the
HAN model. They all use adjacency matrices based on a specific meta-path to replace the adjacency
matrix A in the traditional model and then use a multi-level GCN or GAT network to perform
hierarchical aggregation of the neighbor features of nodes. The main differences between them are as
follows: ROHE [79] uses a metapath-based probability transition matrix to calculate the confidence of
node neighbors, thereby filtering unimportant neighbor nodes to improve the robustness of the model;
GraphInception [72] uses the eigenvectors of the probability transition matrix P as the Fourier basis
of the heterogeneous graph convolution to perform graph convolution operations; MAGNN [76] also
considers intermediate nodes on meta-path instances when aggregating the features of metapath-based
neighbors. Similar to DMGI, the HDGI model [77] also uses DGI to define the loss function, so it also
has the ability to capture global structural information. MEIRec [75] uses CNN and LSTM networks
as the aggregation function of node neighbors according to the different types of node neighbors.

Figure 9: HAN model framework

Owing to rapid development, the current research on GNNs has shown explosive growth, and
there have been many other GNN-related studies [78,80–90]. We list some typical GNN-based HNE
models in Table 5. To be specific, the FAME model [87] improves the efficiency of heterogeneous spec-
tral convolution models using sparse random projections; the HWNN model [78] uses wavelet basis
instead of Fourier basis for graph convolution operation, avoiding the time-consuming Laplace matrix
decomposition operation; when the HetGNN model [80] aggregates the information of neighbor
nodes, it selects the top-k most important neighbor nodes based on the restart random walk strategy,
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and then uses the two-level Bi-LSTM framework to aggregate the various types of content attribute
features of neighbor nodes; the HGT model uses the multi-head attention mechanism to aggregate the
information of neighbor nodes; the ActiveHNE [82] model is a semi-supervised spectral-based GCN
model that introduces active learning techniques, which can effectively utilize the most valuable label
information and reduce the workload of manual labeling by adding an active query module on the
basis of the HNE module; different from other GNN-based models, the MEGNN model [90] mine
meaningful meta-paths in heterogeneous networks through multilayer GNN information propagation
operations.

Table 5: Graph neural network based models

Type Model AGGS(·) Loss function Preserve
AT

DMGI [70] Attention
∑K

k=1 L (k) + αLcs + βLreg
∗ yes

HDMI [86] Attention λ1I(zi; s) + λ2I(zi; xi) + λ3I(zi; s; xi) yes

Spectral-
based
GCN
models

HDGI [77] Attention
1

N + M

[∑N
i=1 Ezi∼�+ log σ(zT

i WDs) +∑M
j=1 Ez̃j∼�− log σ(−z̃T

j WDs)
] yes

FAME [87] Weighted SUM LY yes
ActiveHNE [82] CONCAT LY yes
Player2Vec [74] Attention LY yes
HWNN [78] CONCAT LY + λLreg yes
Graph Incepetion [72] CONCAT LY yes

GCMC [91] CONCAT,
SUM

−∑
(ui,vj)∈�+

∑R
r=1 I(r = M ij) log

ezi
T Qrzj∑

s∈R ziT Qszj
yes

Spatial-
based
GCN
models

MEIRec [75] CONCAT LY yes

HetGNN [80] Attention
∑

v∈V
∑

t∈T
∑

vc∈N t(v) log σ(zv · zvc)

+ Evc′∼Pt
n(v)

log σ(−zv · zvc′ )
yes

HEP [81] CONCAT
∑

v∈V Eu∼Pn(u)

[
γ + ‖z̃v − zv‖2

2 + ‖z̃v − zu‖2
2

]
+ + LY yes

HGAT [83] / LY yes
HGT [84] Multi-head

GAT
LY yes

Graph
atten-
tion
network
models

DisenHAN [88] GAT LRec yes

HAN [6] Attention LY yes
MAGNN [76] Attention − ∑

(u,v)∈�+ log σ(zu · zv) −∑
(u′,v′)∈�− log σ(−zu′ · zv′) + LY

yes

RoHe [79] Attention LY yes
HAHE [73] Attention LY no

Note: ∗ Lcs = (Z − agg
r∈R

H(r))2 − (Z − agg
r∈R

H̃
(r)

)2 is a consensus regularization loss.

In summary, GNN-based HNE models have a good ability to capture attribute information as well
as low and high-order structural features. In addition, the input of spatial-based GCN models can be
independent of the number of nodes in the current network, so such models are inductive models that
can generate embeddings for nodes that are not currently observed. However, this type of model still
face the following challenges:
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• In a large-scale heterogeneous network, it is very resource intensive to aggregate the features of
all the neighbor nodes of one node. Many GNN models use neighbor sampling to reduce model
complexity. However, the distribution within different subnets in an HIN may vary substantially.
Neighbor sampling must be carefully designed so that the sampling nodes include relatively
important neighbor nodes, otherwise important network information may be lost.

• In the GNN model, the number of network layers is key to the performance of the model.
A model that is too shallow cannot capture the high-order features of the network; however,
blindly increasing the number of layers of a GNN network may degrade the performance
of the model while increasing the training complexity of the model [92]. Because the graph
convolution operation will make the feature representations of adjacent nodes increasingly more
similar, in theory, when there are enough layers, the feature representations of all the nodes
in a connected graph will converge to a single point [64], which is called the over-smoothing
problem. In addition, when there are too many layers, the model will also amplify some noise
due to the continuous iterative convolution operation, making the model more vulnerable to
attack. Therefore, how to deal with the problem that the model cannot be deeper remains a
challenge in GNN-based models.

3.5 Knowledge Graph Embedding-Based Models
In recent years, knowledge graph techniques have been rapidly developed. Numerous knowledge

graphs, such as WordNet [93], Freebase [94], and Yago [95], have been successfully applied to many
practical applications. A knowledge graph can be represented by the triple G = {< h, r, t >} ⊆
E × R × E , where h is the head entity, t is the tail entity, and < h, r, t > indicates that the entities
h and t are connected by a specific relationship r ∈ R. KGE models aim to learn a function to map the
entities and relations in the knowledge graph to a continuous vector space to capture the structural
and semantic information contained in the knowledge graph [96]. As a knowledge graph can be viewed
as an HIN, KGE models are types of HNE models. However, different from general HNE models, in
order to deal with diverse semantic relations contained in the knowledge graph, KGE models not only
encode the entity objects, but also encode specific relation types.

Most KGE models also use the direct encoding, and the decoder is always a ternary scoring
function fr(h, t) that measures the acceptability of each triplet < h, r, t >. According to the definition
of the scoring function, KGE models can be divided into two main categories: 1) translation distance-
based models, which model the relationship as the distance transformation from the head to tail
entity, and the transformed distance difference defines the scoring functions, and 2) semantic matching
models, which use similarity-based scoring functions to measure the credibility of facts by matching
the latent semantics of entities and relationships contained in the vector space representation.

3.5.1 Translation Distance-Based KGE Models

TransE [97] is a typical translation distance-based KGE model. Its basic idea is to regard the
relationships in the knowledge graph as a transformation from the head to tail entity. Specifically, it
assumes that if the triple < h, r, t > holds, then the embedding of the tail entity t should be close to
the embedding of the head entity h plus some vector that depends on the relationship r, i.e., h + r ≈ t.
The scoring function is therefore defined as

fr(h, t) = −‖h + r − t‖1/2. (25)
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The loss function of the TransE model is a margin-based ranking loss defined on the training set:

L =
∑

(h,r,t)∈�

∑
(h′ ,r,t′)∈�′

[γ + fr(h, t) − fr(h′, t′)]+. (26)

TransE is very simple and efficient but does not handle one-to-many and many-to-many relation-
ships well. To overcome the shortcomings of TransE, models such as TransH [98], TansR [99], TransD
[100] extend the TransE model by allowing entities to have different embeddings for different relations.
The simple illustrations of TransE, TransH and transR models are shown in Fig. 10. Furthermore,
KG2E [101], TransG [102], and SE [103] are also translation distance-based KGE models. Unlike other
models, KG2E and TransG assume that relations and semantics are inherently uncertain, and they use
Gaussian distributions to model the entities and relations in knowledge graphs.

Figure 10: Simple illustrations of TransE, TransH, and TransR models. The figures are adapted
from [96]

3.5.2 Semantic Matching KGE Models

The RESCAL model [104] is a typical semantic matching model. In this model, each entity is
represented as a vector and each relation r is represented as a relation matrix M r, which models the
pairwise interactions between latent vectors. The scoring function of the model is a bilinear function as

fr(h, t) = hTMrt, (27)

The DistMult model [105] simplifies the matrix M r and restricts it to a diagonal matrix, i.e., M r =
diag(r). However, due to hTdiag(r)t = tTdiag(r)h, the Distmult model can only deal with symmetric
relations.

In addition to RESCAL and its extended models, some semantic matching models employ neural
network-based frameworks to semantically match entities and relationships [106,107]. ConvE [106] is a
semantic matching KGE model that uses a multilayer CNN architecture. The model mainly consists of
an encoder and a scorer. For the input triplet < h, r, t >, the encoder projects the head entity h and the
tail entity t into d-dimensional space, resulting in h and t. The scorer first converts the vectors of head
entity embedding h ∈ R

d and relation embedding r ∈ R
d into second-order vectors: h̄, r̄ ∈ R

dw×dh , where
d = dw × dh. Then, h̄ and r̄ are concatenated and input to a convolutional layer for feature extraction.
Next, the model flattens and linearly transforms the extracted feature tensors. The framework of the
ConvE model is shown in Fig. 11. The scoring function is defined as follows:

fr(h, t) = σ(vec(f ([h̄; r̄]) ∗ ω)W)t. (28)
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Due to the introduction of CNN in the KGE model, the expressive power of the ConvE model is
enhanced, and the number of model parameters is controlled.

Figure 11: The ConvE model framework. In this model, the entity and relation embeddings are
first reshaped and concatenated (Step 1); and then the resulting matrix is then used as input to a
convolutional layer (Step 2); the resulting feature map tensor is vectorised and projected into a d-
dimensional space (Step 3), and matched with the candidate object embeddings (Step 4). The figure is

adapted from [106], and the symbol “ ×

‘‘

represents dropout

NTN [107] is another semantic matching model. It uses a neural network structure to describe each
triple and gives a score, which is an extension of the SLM model [107]. For a given triple < h, r, t >,
the scoring function for NTN is defined as

fr(h, t) = rTσ(hTŴ rt + M r

(
h
t

)
+ br), (29)

where Ŵ r ∈ R
d×d×k is a relation-r-specific tensor, and M r ∈ R

k×2d is the relation-r-specific weight matrix.
The NTN model is very expressive. However, this model contains a large number of model parameters
for each relation, thus affecting the efficiency of the model.

We summarize the basic characteristics of some of the most common KGE models in Table 6. For
more other KGE models, we refer the reader to the KGE review [96]. In general, the main difference
between KGE and other types of models is that KGE models are able to generate representations for
relations in an explicit manner, thus more fully expressing the heterogeneity of relational semantics in
the HINs. However, the basic KGE model has the following defects:

• The encoder usually has the disadvantage of direct encoding.

• Such models usually only consider the low-order neighbor relationships when modeling the
structural information of the HINs.

• Further, such models usually do not model attribute information.

In order to improve the quality of generated embeddings, some KGE models extend the basic
KGE model [110–112], and some models combine more other network information when generat-
ing embeddings, including entity attribute information [113], relations path [114], logic rules, and
supervision information for some downstream ML tasks. Common downstream ML tasks related
to knowledge graphs mainly include knowledge graph completion, link prediction, and recommender
systems [115], etc.
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Table 6: Knowledge graph embedding models

Model Entity
embeddings

Relation
embedding

Score fucntion Limitations

TransE [97] h, t ∈ R
d r ∈ R

d ‖h + r − t‖l1/2 ‖h‖2
2 = 1, ‖t‖2

2 = 1

TransH [98] h, t ∈ R
d r, wr ∈ R

d
∥∥∥(h − wT

r hwr) + dr

−(t − wT
r twr)

∥∥∥2

2

‖wr‖2 = 1

TransR [99] h, t ∈ R
d r ∈ R

k, Mr ∈ R
k×d ‖hMr + r − tMr‖1/2 ‖h‖2

2 ≤ 1, ‖t‖2
2 ≤ 1, ‖r‖2

2 ≤
1, ‖hMr‖2

2 ≤ 1, ‖tMr‖2
2 ≤ 1

TransD [100] h, t, hp, tp ∈
R

d
r, rp ∈ R

d
∥∥hMrh + dr − tMrt

∥∥
1/2 ‖h‖2

2 ≤ 1, ‖t‖2
2 ≤ 1, ‖r‖2

2 ≤
1,

∥∥hMrh
∥∥2

2 ≤ 1, ‖tMrt‖2
2 ≤ 1

KG2E [101] h, t ∈ R
d r ∈ R

d 1
2
(μT�−1μ + log det�),

� = �h + �t + �r

‖h‖2 ≤ 1, ‖r‖2 ≤ 1, cminI ≤
�h, �t, �r ≤ cmaxI , cminI > 0

RESCAL [104] h, t ∈ R
d Mr ∈ R

d×d hT Mrt ‖h‖2 ≤ 1, ‖t‖2 ≤ 1, ‖Mr‖F ≤ 1
DistMult [105] h, t ∈ R

d r ∈ R
d hT diag(r)t ‖h‖2 ≤ 1, ‖t‖2 ≤ 1, ‖r‖2 ≤ 1

ConvE [106] h, t ∈ R
d r ∈ R

d σ(vec(f ([h̄; r̄]) ∗ ω)W)t h̄, r̄ ∈ R
kw×kh , k = kw × kh

SLM [107] h, t ∈ R
d μr ∈ R

d , Mr1,
Mr2 ∈ R

k×d
μT

r f (Mr1h + Mr2t + br) ‖h‖2 ≤ 1,
∥∥μr

∥∥
2 ≤ 1, ‖t‖2 ≤

1, ‖Mr1‖F ≤ 1, ‖Mr2‖F ≤ 1
NTN [107] h, t ∈ R

d μr, br ∈ R
k, Mr1,

Mr2 ∈ R
k×d , M̂r ∈

R
d×d×k

μT
r f (hT M̂rt + Mr1h + Mr2t + br) ‖h‖2 ≤ 1,

∥∥μr
∥∥

2 ≤ 1, ‖t‖2 ≤
1, ‖Mr1‖F ≤ 1, ‖Mr2‖F ≤
1, ‖br‖2 ≤ 1

RotatE [108] h, t ∈ C
d r ∈ C

d ‖h � r − t‖1/2 |ri| = 1
HolE [109] h, t ∈ R

d r ∈ R
d rT (h ∗ t) ‖h‖2 ≤ 1, ‖r‖2 ≤ 1, ‖t‖2 ≤ 1

3.6 Hybrid Models
To leverage the advantages of multiple techniques, some hybrid models have been proposed.

3.6.1 GNN + RW

Some models fuse graph nueral networks and random walk techniques to generate network
embeddings. The typical idea of this type of model is to use GNN as the encoder instead of the direct
encoding function in the common random walk-based models [116,117].

GATNE [116] is one such type of hybrid model. The idea of GATNE is similar to the MNE
model [41], but it is more general. Specifically, GATNE first uses the GNN framework to aggregate
the neighbor node features of each node within each sub-network G r, and obtaines the aggregated
features of each node vi, namely ur

i = agg
j∈N r(i)

(ur
j). Next, based on the obtained aggregated features,

the model represents the embedding of each node vi in each sub-network G r as the sum of the base
embedding bi and the relation r-specific node embeddings, i.e.,

zr
i = bi + αr · MT

r · U i · ar
i , (30)

where U i = stack(u1
i , ...ur

i , ..., u|R|
i ) ∈ R

d0∗|R|, αr is a hyperparameter denoting the importance of the edge
embeddings toward the overall embedding, and M r is a trainable weighting matrix. The model then
samples a large number of random walk sequences based on a specific meta-path defined in the HIN,
and uses the skip-gram algorithm to solve the optimized node embeddings. It is worth mentioning that,
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besides the transduction version GATNE-T, the authors also proposed an inductive version GATNE-I
which can generate embeddings for nodes that are currently unobserved in the HINs.

Due to the introduction of the GNN encoder in the random walk-based model, the GATNE model
can not only flexibly encode low-order and higher-order structural information, but also capture the
attribute information of the network well.

3.6.2 GNN + KGE

As mentioned in Section 3.5, traditional KGE models are usually not good at handling higher-
order structural information and attribute information. Some studies used the GNN encoder to
replace the direct encoding function in the basic KGE model to improve the modeling ability of the
HNE models [118–121].

LinkNBed is a KGE model that incorporates the idea of GNN. The model contains three layers:
atomic, context, and final representation. At the atomic level, the model directly encodes all entities,
relationships, entity types, and attribute information contained in the knowledge graph as follows:

h = σ(WEvh), r = σ(WRvr)

t = σ(WEvt), T = σ(W lvl),
(31)

where WE, WR, and W l are the projection matrices of entities, relations, and node types, respectively. At
the context layer, the model uses an attention mechanism to aggregate contextual feature information
of various objects as follows:

Nc(z) = agg
∀z′∈N (z)

(q(z′) × z′), (32)

where z can be an entity or relationship and q(z′) is the weight calculated using the attention mecha-
nism. In the final representation layer, the model aggregates the object’s own feature representation,
context feature representation, and attribute feature representation to obtain the final representation
of the entities and relationships. The scoring function for each tuple < h, r, t > is defined as

fr(zh, zt) = σ

(
d∑

q=1

zh � zr � zt

)
. (33)

Because of the introduction of GNN encoders based on KGE models, this model can effectively
capture more information in HINs, including low-order, high-order structural information, relational
semantic information, and attribute information.

Similar to the LinkNBed model, the NKGE [120], CACL [121], SACN [119], LightCAKE [122]
and HRAN [123] models are also KG+GNN-type hybrid models. The main difference among these
models is the type of encoder or decoder: LinkNBed and LightCAKE use a GAT network when
aggregating neighbor node information, SACN uses a GCN model, NKGE uses a deep memory
network, and HARN uses a two-level GNN. When defining the ternary scoring function, LinkNBed
uses a simplified version of the bilinear function, LightCAKE uses TransE/DistMult, SACN and
NKGE use ConvE models, whereas CACL and HRAN use CNN-based deformation models.

3.6.3 GNN + AE

To reduce the influence of noise and enhance the robustness of the model, some studies fuse the
VAE framework with GNNs [124,125].
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The RELEARN model [124] shown in Fig. 12 is a VAE framework designed for relational learning
in a multi-relational heterogeneous social network. This model firstly represents the edge embedding
hij for each edge eij as a weighted sum of K independent global relation embeddings w1, w2, ..., wK (each
wk follows a Gaussian distribution), i.e.,

hij =
K∑

k=1

zijkwijk, (34)

where zijk is the relation factor obeying the K multinomial distribution, and it can be obtained by
the following steps: firstly, the model use the GCN framework to aggregate the neighbor features of
each node to obtain the aggregated node embeddings; next, for each edge eij = (vi, vj), the model
concatenates the aggregated feature representations of the two nodes vi and vj, and then inputs the
concatenated vector yij = [ui; uj] to a feedforward neural network to obtain the relation factor zij =
fr(yij). In the decoding stage, the model uses the VAE framework to attempt to reconstruct various types
of information of the network from the learned edge embeddings. The decoder network of RELEARN
consists of three decoders, including a structural information decoder (E), an attribute information
decoder (A), and an information diffusion decoder (D).

Figure 12: RELEARN model framework

Due to the use of the VAE framework, the RELEARN model can not only capture various types
of information in the network, but also has good robustness.

3.6.4 Other Hybrid Models

Besides the above categories of hybrid models, some other types of hybrid models have been
proposed, such as the KGE + RW models [126]. Moreover, some emerging hybrid models use
reinforcement learning [127] or adversarial learning [128,129] frameworks. We provide a summary
of some common hybrid HNE models in Table 7.
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Table 7: Hybrid models

Type Model Encoder Decoder Loss function Preserve
ST

Preserve
AT

GNN +
RW

GATNE [116] Generalized
GCN

softmax(z(r)
i · cj) − ∑

vi∈V

∑
t∈T

∑
vj∈Nt(vi)

ŝij log DEC(zi, zj) 1st ∼ nth yes

HGCN [117] GCN softmax(zi · cj) − ∑
vi∈V

∑
t∈T

∑
vj∈Nt(vi)

ŝij log DEC(zi, zj) 1st ∼ nth yes

LinkNBed
[118]

GNN σ(
∑d

q=1 zh
�zr � zt)

αLs1 + βLY + λLReg
a 1st ∼ nth yes

SACN [119] WGCN Conv-TransE Ls2
b 1st ∼ nth yes

GNN +
KGE

NKGE [120] Deep
Memory
Network

TransE/ConvE Ls1 or Ls2 1st ∼ nth yes

CACL [121] CNN σ(pT · (ec ⊗ r)) LY 1st ∼ nth no
Light-CAKE
[122]

GNN TransE/DistMult Ls2 1st ∼ nth no

HRAN [123] GCN ConvD Ls2 1st ∼ nth yes

GNN +
AE

RELEARN
[124]

GCN FNN
∑

X∈{E,A,D} Eqφ (Z, W , H|X) ·log pθ (X |H) − KLpart 1st ∼ nth yes

HeteHG-VAE
[125]

GCN σ(zV k

i · zE
j )

∑K
k=1 Eqφ [log pθ (HV k |ZV K

, ZE ; λV k
)] − KLpart 1st ∼ nth yes

RW +
KGE

PRE [126] DIRECT softmax(zi · zj),
KGE

∑
vi∈V

∑
vj∈N (vi)

[− log p(vj|vi) +LKGE(vi, vj)] 1st ∼ nth no

Note: aLs1 = ∑
(h,r,t)∈�+

∑
(h′ ,r,t′)∈�−

[
ξ + fr(h, t) − fr(h′, t′)

]
+.

bLs2 = − 1
N

∑
i yilog σ(fr(h, t)) + (1 − yi)log (1 − σ(fr(h, t))).

3.7 Summary
Sections 3.1 to 3.6 present an overview of the six existing HNE model types. For each type, we list

the main characteristics of some representative models and use detailed tables to analyze and compare
the basic elements of each model. It can be seen that the existing six models have obvious differences
in encoder, decoder and empirical proximity matrix. At the same time, we also analyze their modeling
ability in terms of capturing structural, relational semantic and attribute network information.

We summarize the advantages and disadvantages of these models in Table 8. From the perspective
of modeling capability, MF models and KGE models are good at modeling low-order structural
features, whereas other types are good at modeling both low- and high-order structural features.
Furthermore, the KGE model has stronger semantic modeling capabilities, whereas GNN models have
good ability to capture the attributes and higher-order structural information of the network. Hybrid
models are usually able to model more network information by leveraging the advantages of multiple
models.
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Table 8: Summary of advantages and disadvantages of various types of models

Model type Advantages Disadvantages

MF Shallow model, easy to implement, higher
operating efficiency

(a) For large-scale networks, the
decomposition of large dense higher-order
adjacency matrices is intractable. (b)
Attribute information usually needs to be
handled separately. (c) Not good at
handling different semantic information

RW Edge sampling can reduce the model
complexity; flexible; convenient to model
low-order and high-order network
structures

(a) It is prone to skewness problems and
requires careful design of sampling
strategies. (b) Defining meta-paths needs
human prior experience. (c) Attribute
information usually needs to be handled
separately

AE Many off-the-shelf AE frameworks are
available; capable of capturing 1–2 order
structural information

(a) Too many parameters in the multilayer
AE framework and the training cost is
high; (b) Not good at dealing with
complex and diverse semantic
information; (c) Attribute information
usually needs to be handled separately

GNN Deep learning-based model; can easily and
effectively capture the attribute, low- or
high-order structure information in the
networks

(a) Over-smoothing is prone to occur as
the number of convolutional layers
increases, and the model will be more
easily disturbed and attacked. (b)
Inappropriate neighbor sampling
functions will lead to loss of important
network information

KGE Can model many different types of
semantic relations well; many ready-made
KGE models that can be easily integrated
with other technologies

(a) Traditional KGE models only model
low-order proximities; (b) Attribute
information usually needs to be handled
separately

HB In general, hybrid models are able to
model more information in the network

Complexity of the hybrid model and the
training cost typically increases compared
to other types

4 Application Fields, Benchmark Datasets, Open Source Code, and Performance Comparison

This section focuses on application fields, benchmark datasets, open source tools, and perfor-
mance evaluations for HNE.

4.1 Application Fields and Evaluation Metrics
Once new vertex representations are learned via HNE techniques, they can be used to solve

various subsequent machine learning tasks. HNE benefits various graph analytics applications such
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as node classification, node clustering, link prediction, recommender systems, visualization (Fig. 13).
Meanwhile, the effectiveness of representation learning can also be validated by evaluating their
performance on these various subsequent tasks [12].

Figure 13: Application fields of HNE

4.1.1 Node Classification

Node classification is perhaps the most common benchmark task for evaluating node embeddings.
Typically, network vertices are partially or sparsely labeled owing to high labeling costs, and most
vertices in a network have unknown labels. The vertex classification problem aims to predict the labels
of unlabeled vertices given a partially labeled network, e.g., determining the research field or affiliation
information of an author. A good vertex representation improves the accuracy of node classification.

According to the classification task, node classification can be further divided into binary-
class classification, multi-class classification, and multi-label classification (each node is associated
with one or more labels from a finite label set). In the application of HNE, most cases are multi-
class classification [4,21,45,52,72,112] or multi-label classification [5,21,39,48,49,52,61,62,72,80],
and these models tipically use the Micro_F1 or Macro_F1 as the performance evaluation metric
[5,6,21,26,30,32,38,48,49,52,59,61,70,73,76,77,80,86,87,112,127,129]. A few models use the average
accuracy (ACC) [41,45] or the mean average precision (MAP) [62] as the evaluation metric.

4.1.2 Node Clustering

Node clustering is also a very common application of HNE models. Its goal is to cluster similar
nodes into the same cluster and dissimilar nodes into different clusters as much as possible. Node
clustering has a wide range of uses in bioinformatics, computer science, and sociology; for example,
clustering a group of proteins with the same function in a biological network or clustering groups of
people with similar interests in a social network into a cluster.
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For simplicity, most HNE studies choose k-means as the clustering algorithm [4,6,32,36,38,39,45,
52,61,76,80,86,112]. Node clustering is an unsupervised approach and does not use label information
during model training; therefore, when evaluating the performance of node clustering tasks, for most
models, the normalized mutual information [4–6,35,36,38,39,45,52,61,70,76,77,80,86,112,129] and the
adjusted Rand index [5,6,36,39,52,76,77,80] are selected as the performance evaluation metrics.

4.1.3 Link Prediction

Link prediction is a very important ML task in graph mining systems. Its goal is to predict possible
connections or existing but not observed relationships in current heterogeneous networks. Link
prediction techniques can discover implicit or missing interactions in networks, identify false links, and
understand network evolution mechanisms. For example, predicting unknown connections between
people in social networks can be used to recommend friendships or identify suspicious relationships.
Alternatively, link prediction methods are used in biological networks to predict previously unknown
interactions between proteins, thereby significantly reducing the cost of empirical methods. A good
network representation should be able to capture both explicit and implicit connections between
network vertices, enabling applications to predict links.

Link prediction is often viewed as a simple binary classification problem: for any two potentially
linked objects, the task is to predict whether a link exists (1) or does not exist (0). The vast majority of
existing link prediction tasks use the area under the receiver operating characteristic curve (AUC) as
the performance evaluation metric [30,31,36,39,41,42,48,52,59,60,62,76,80,110,112,116,130–132]. In
addition, some studies use the F1-score [58,60,80,112,116], average precision [36,49,53,58,60,76,132],
or recall [50,60] as the performance evaluation metric for link prediction tasks.

4.1.4 Recommender Systems

HNE is also frequently used in Recommender Systems (RSs). RSs can significantly enhance the
commercial value of enterprises and effectively reduce the information overload of users. For over a
decade, many businesses and companies have used RSs to recommend friends, products, and services to
their customers [27,43,47,88,91,115]. Recommendation tasks are closely related to link prediction, but
the main difference is that link prediction outputs a binary prediction, whereas RSs output a ranking
list of length K.

For RSs, the most commonly used performance evaluation metrics are precision@k [27,34,47,58,
88,115], recall@k [27,34,40,47,50,58,88,115], MAP@k [34,40,47], and NDCG@k [34,47,88,115,129].
A few models use other metrics, such as AUC [75,130], Hit Ratio@k [115,129,133], and RMSE score
[46,91].

4.1.5 Knowledge Graph Related Applications

Compared to general HINs, a knowledge graph has more abundant heterogeneous entity types
and semantic relation types. The main application tasks related to KGE are link prediction, triple
classification, and relational fact extraction.

Link prediction in a knowledge graph is a typical task of predicting an entity that has a specific
relation with another given entity, i.e., predicting h given (r, t) or t given (h, r), where the former
is denoted as (?, r, t) and the latter is denoted as (h, r, ?). Essentially, link prediction in knowledge
graphs is a knowledge graph completion task, i.e., the task of adding missing knowledge to the
graph. The most commonly used indicators for knowledge graph link prediction tasks are mean
rank [97–99,101,102,106,108,114,115,120,121], MRR [105,106,108,113,118–121,134], and Hits@n
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[97–102,105,106,108,113–115,118–121,132,134]. Triple classification consists of verifying whether an
unseen triple fact (h, r, t) is true or not, e.g., (Pablo Picaso, nationality, Spain) should be classified as a
true fact, whereas (Pablo Picaso, nationality, United States) is a false one [107]. Accuracy is generally
used as the evaluation metric in the triple classification task [98–102,107,121]. Relation extraction aims
to extract relational facts from plain text in which entities have been detected. For example, given the
phrase “Paris is in France,” where the entities “h = Paris” and “t = France” have been detected, the
relation extractor should predict that the relation between these two entities is “is in.” For the relation
extraction task, the precision–recall curve [98,99,114] is mainly used as the performance evaluation
metric.

4.1.6 Visualization

The problem of graph visualization on 2D interfaces has been studied for a long time, with
applications in areas such as biology, sociology, and data mining. Researchers can easily leverage
existing general-purpose techniques to visualize high-dimensional datasets, which are useful for mining
communities and other hidden structures. Common graph visualization approaches include applying a
dimensionality reduction technique such as principal component analysis (PCA) [124] or t-distributed
stochastic neighbor embedding (t-SNE) [4–6,26,31,51,61,72,73,76,86,88,125,129] to plot the node
embedding vectors generated by the HNE models in a 2D space with different colors indicating the
nodes’ categories.

4.1.7 Other Applications

Besides the most common HNE applications discussed above, the applications of HNE models
also include similarity search [45,51,70,86], information retrieval [50,130], network alignment [29,81],
user profiling [83], and anomaly detection [63].

4.2 Benchmark Datasets
Benchmark datasets play a critical role in the evaluation of HNE models. According to the types of

heterogeneous networks contained in the datasets, the commonly used benchmark datasets in existing
HNE models can be divided into categories such as social networks, bibliographic networks, text
networks, biological networks, knowledge graphs.

DBLP2 and Aminer3 [135] are the most frequently used bibliographic network datasets
[4,6,26,28,30,32,36,38,48,49,51,52,59,61,70,72,73,76,78,79,82,86,112], whereas some other models
use ACM4 [6,32,48,70,72,77,79,86], Cora [78,82,104,126], DBIS [4,39], or other datasets. More-
over, the most frequently used social network datasets are Twitter5 [26,28,30,41,60,128], Flickr6

[5,30,62,130,136], and Gowalla7 [27]. Among the commercial networks, the Yelp8 and Amazon9

datasets have been widely used [36,39,46–49,51,61,73,88,110]. 20NG10 and WikiPedia11 are commonly

2http://dblp.uni-trier.de/xml/.
3https://www.aminer.org/data/.
4http://dl.acm.org.
5https://snap.stanford.edu/data/higgs-twitter.html.
6https://www.flickr.com/.
7http://snap.stanford.edu/data/loc-gowalla.html.
8https://www.yelp.com/dataset/.
9http://jmcauley.ucsd.edu/data/amazon/index.html.
10http://qwone.com/jason/20Newsgroups/.
11http://www.mattmahoney.net/dc/textdata.

http://dblp.uni-trier.de/xml/
https://www.aminer.org/data/
http://dl.acm.org
https://snap.stanford.edu/data/higgs-twitter.html
https://www.flickr.com/
http://snap.stanford.edu/data/loc-gowalla.html
https://www.yelp.com/dataset/
http://jmcauley.ucsd.edu/data/amazon/index.html
http://qwone.com/jason/20Newsgroups/
http://www.mattmahoney.net/dc/textdata
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used text network datasets [22,26,28,58,113]. MovieLens12, IMDB13, MR14, and YahooMusic15

are widely used video and music datasets [21,26,28,36,39,42,47,52,82,88,91,115]. In the field of
KGE, Wordnet16, Freebase17, and Yago18 are widely used knowledge bases [21,42,97–103,105–
109,111,113,119–123,126].

4.3 Open Source Code and Tools
Open source codes and platforms are also critical for HNE research. In this section, we list some

open source codes and platforms.

4.3.1 Open Source Code

Open source code plays a very important role, enabling researchers to reproduce or improve
existing HNE models. We extracted the open source code of some common HNE models from related
papers, as listed in Table 9.

Table 9: Open source code for some typical HNE models

Model Link Language

MNE [41] https://github.com/HKUST-KnowComp/MNE python, C++
Metapath2vec [4] https://ericdongyx.github.io/metapath2vec/m2v.html C
HeteSpacey
Walk [48]

https://github.com/HKUST-KnowComp/HeteSpaceyWalk python

Hin2Vec [49] https://github.com/csiesheep/hin2vec python,C
Hyper-Gram [42] https://github.com/HKUST-KnowComp/HPHG/ python
SHNE [50] https://github.com/chuxuzhang/WSDM2019_SHNE python
DIME [60] http://www.ifmlab.org/files/code/Aligned-Autoencoder.zip python
HGT [84] https://github.com/acbull/pyHGT python
HetGNN [80] https://github.com/chuxuzhang/KDD2019_HetGNN python
HAN [6] https://github.com/Jhy1993/HAN python
HAHE [73] https://github.com/zhoushengisnoob/HAHE python
Graph
Inception [72]

https://github.com/zyz282994112/GraphInception.git python

TransE [97] https://everest.hds.utc.fr/doku.php?id&#x003D;en:transe python
ConvE [106] https://github.com/TimDettmers/ConvE python
HEER [111] https://github.com/GentleZhu/HEER python
KTUP [115] https://github.com/TaoMiner/joint-kg-recommender python
RELEARN [124] https://github.com/yangji9181/RELEARN python
GATNE [116] https://github.com/THUDM/GATNE python

12https://grouplens.org/datasets/movielens/.
13https://ai.stanford.edu/amaas/data/sentiment/.
14http://www.cs.cornell.edu/people/pabo/movie-review-data/.
15https://github.com/fmonti/mgcnn/tree/master/Data/yahoo_music.
16https://wordnet.princeton.edu/.
17https://developers.google.com/freebase.
18https://yago-knowledge.org/.

https://github.com/HKUST-KnowComp/MNE
https://ericdongyx.github.io/metapath2vec/m2v.html
https://github.com/HKUST-KnowComp/HeteSpaceyWalk
https://github.com/csiesheep/hin2vec
https://github.com/HKUST-KnowComp/HPHG/
https://github.com/chuxuzhang/WSDM2019_SHNE
http://www.ifmlab.org/files/code/Aligned-Autoencoder.zip
https://github.com/acbull/pyHGT
https://github.com/chuxuzhang/KDD2019_HetGNN
https://github.com/Jhy1993/HAN
https://github.com/zhoushengisnoob/HAHE
https://github.com/zyz282994112/GraphInception.git
https://everest.hds.utc.fr/doku.php?id&#x003D;en:transe
https://github.com/TimDettmers/ConvE
https://github.com/GentleZhu/HEER
https://github.com/TaoMiner/joint-kg-recommender
https://github.com/yangji9181/RELEARN
https://github.com/THUDM/GATNE
https://grouplens.org/datasets/movielens/
https://ai.stanford.edu/ amaas/data/sentiment/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://github.com/fmonti/mgcnn/tree/master/Data/yahoo_music
https://wordnet.princeton.edu/
https://developers.google.com/freebase
https://yago-knowledge.org/
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4.3.2 Open Source Platforms and Toolkits

Open source platforms and toolkits can help researchers quickly and easily build workflows for
HNE. We summarize several popular toolkits and platforms for heterogeneous graphs as follows:

• Deep Graph Library (DGL). The DGL is an easy-to-use, high-performance, and scalable open
source platform for deep learning on graph data. DGL collects rich example implementa-
tions of popular GNN models on a wide range of topics, such as GCMC, MAGNN, and
HGT. It provides independent application programming interfaces (APIs) for homogeneous
graphs, heterogeneous graphs, and knowledge graphs. The official website of DGL is https://
www.dgl.ai/.

• PyTorch Geometric (PyG). PyG is a library for deep learning on irregularly structured input
data such as graphs, point clouds and manifolds, built upon PyTorch. In addition to general
graph data structures and processing methods, it contains a variety of recently published
methods from the domains of relational learning and 3D data processing [137]. Related code
and documentation can be found at https://pytorch-geometric.readthedocs.io/en/latest/.

• OpenKE. OpenKE is an open source framework for knowledge embedding organized by
THUNLP based on the TensorFlow toolkit [138]. OpenKE provides a fast and stable toolkit
including the most popular knowledge representation learning methods such as TansE, TransR,
and TransD. OpenKE can support fast model verification and large-scale knowledge represen-
tation learning. Moreover, new models can be easily integrated into the OpenKE framework.
Related toolkits and documentation are published at http://openke.thunlp.org/.

• OpenHINE. OpenHINE is an open source toolkit for HNE developed by researchers at the
DMGroup of Beijing University of Posts and Telecommunications. It unifies the input/out-
put/evaluation interface of the HNE model, and in addition, it revises and reproduces classic
HNE models, including DHNE, HAN, HeGAN, HERec, HIN2vec, Metapath2vec, Meta-
Graph2vec, and RHINE. Related code and datasets can be found at https://github.com/BUPT-
GAMMA/OpenHINE.

4.4 Performance Evaluation of Heterogeneous Network Embedding Models
In this subsection, we compare the performance of some typical HNE models on a subset of the

publicly available DBLP dataset [139] for the link prediction task [112,125].

The dataset consists of 14,475 authors, 14,376 papers, 20 conferences, 8,920 words, and a total of
170,794 links. There are three types of relationships in the heterogeneous network: “paper-conference,”
“paper-author,” and “paper-word.” The HNE models in the comparison include examples from most
of the six model types: PTE, metapath2vec, ESim, HIN2Vec, HGT, TransE, ConvE, HEER, RHINE,
HGCN, and HeteHG-VAE. For the link prediction task for all models, the heterogeneous edges
in the original HIN are divided into two parts: 80% of the edges were used for training, and the
remaining 20% were used for testing. The performance evaluation metric was AUC. Table 10 presents
the performance comparison of all models on the link prediction task.

Table 10: Performance comparison of some typical HNE models on link prediction task

Type MF RW GNN KGE HB

Model PTE MetaPath-2Vec ESim HIN-2Vec HGT TransE ConvE HEER HGCN HeteHG-VAE

AUC 0.846 0.796 0.8 0.80 0.862 0.783 0.833 0.829 0.858 0.898

https://www.dgl.ai/
https://www.dgl.ai/
https://pytorch-geometric.readthedocs.io/en/latest/
http://openke.thunlp.org/
https://github.com/BUPT-GAMMA/OpenHINE
https://github.com/BUPT-GAMMA/OpenHINE
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As Table 10 reveals, the performances of the various HNE models on the link prediction task
differ. The KGE model TransE performs relatively poorly because its model assumptions are too
simple and it is only suitable for one-to-one semantic relations. Slightly better than the TransE model
are the random walk-based models metapath2vec, Esim, and HIN2Vec. The performances of these
three models are mediocre, indicating that the earlier random walk models have some disadvantages:
ESim and HIN2Vec use random walk sequences that are too short; metapath2vec uses a single meta-
path, which limits the amount of semantic information that can be captured. With performances
above the performance of the RW-based models are two other KGE models (ConvE and HEER)
and the matrix factorization-based model PTE. The GNN-based model HGT, hybrid model HGCN,
and HeteHG-VAE perform relatively well, which demonstrates that GNN-based models capture the
network information of HINs well. The hybrid model HeteHG-VAE uses the framework of variational
AEs on top of the two-level GNN aggregation, which increases the robustness of the model. Hence,
its performance is the best.

5 Future Directions and Open Issues

HNE has made great progress in recent years, which clearly shows that it is a powerful and
promising graph analysis paradigm. In this section, we discuss and explore a range of open issues
and possible future research directions (Fig. 14).

Figure 14: Future directions and open issues

5.1 Improving the Interpretability
Feature representation learning greatly reduces the workload of manual feature extraction,

but such methods usually face the significant problem of poor interpretability, especially in some
deep learning-based embedding models. The neural network structure is like a “black box.” A
common argument against deep neural networks is that their hidden weights and activations are often
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unexplainable. Even if it has been experimentally verified that the embeddings generated by their
own methods achieve good performance, one cannot gain a deep understanding of the application
limitations of the model itself without interpreting the meaning of the learned feature representations.
Generally, interpretability has two meanings: 1) interpretability for end users, i.e., explaining to users
why the recommendation or prediction models based on HNEs give such results, and 2) interpretability
for the implementer, i.e., enabling the researcher to understand the meanings of the weights, biases,
and activation functions included in the model.

Some studies have considered the design of interpretable HNE models. Common approaches to
improve model interpretability include exploiting the rich information in knowledge graphs to generate
interpretable paths [133,140], attention mechanisms, and visual aids. We believe that it would be a good
research direction to integrate inference models with ML techniques to design interpretable embedding
models for specific ML tasks.

5.2 Dealing with Imbalances
Real-world HINs are often highly skewed. For such heterogeneous networks, if the skewness

problem is not considered when designing the HNE model, it is likely that the model will be unbalanced
during training, i.e., the model may be well-trained for some densely populated subnetworks but far
from convergence in some relatively sparse subnetworks. A good feature representation learning model
should overcome this problem.

A typical idea of existing studies that deal with skewness is to control the edge sampling to
ensure the number of samples of different relation categories in the dataset is as balanced as possible
[4,38,110]. However, this artificial control often changes the original distribution of the data, impacting
the effectiveness of the embeddings generated by the model. We believe that future research requires a
deeper understanding of the nature of skew phenomena and better solutions.

5.3 Beyond Local Structural Proximity
Many traditional graph representation learning models only consider the local structural prox-

imity between nodes. Node embeddings generated in this type of model are usually based on
“homogeneity”. That is, the goal of solving the model is to make the feature representations of nodes
with smaller network distances more similar, and vice versa more dissimilar. Most network structure
information other than local network structure features is ignored, including structural role proximity,
community structures, and motif structural features. This results in the generated node embeddings
losing much topological information and they may not meet the needs of various specific ML tasks.

Currently, some studies based on homogeneous network embeddings consider the structural
equivalence of nodes [37,141,142]. Moreover, some studies have considered the global structural fea-
tures [70,77,143] or higher-order triangle motif [144] when generating network embeddings. However,
the vast majority of existing HNE models ignore these issues. How future HNE models can improve
the ability to capture structural features other than local structural proximity remains a challenging
problem.

5.4 Considering Dynamism
Real-world networks are constantly changing. However, the vast majority of existing models are

designed for static snapshot networks and do not consider the temporal characteristics of the network,
resulting in the generated feature embeddings performing poorly on some time series-related ML tasks,
such as abnormal event sequence detection and temporal link prediction. In addition, most existing
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HNE models are transductive and can only generate embeddings for nodes that are currently observed
in the network. This leads to the need to constantly retrain the HNE model when the network structure
changes, which significantly increases resource consumption.

To handle the dynamics of the HINs, we consider there are two possible solutions: 1) when
designing HNE models, consider the timing characteristics of the networks; 2) design inductive models
such that they can generate embeddings for currently unobserved nodes in the HINs. There have been
some studies devoted to generating embeddings for dynamic networks [145–149]. Such studies often
use some deep memory networks, such as LSTM, to capture the temporal characteristics of network
events. Moreover, some studies have designed inductive models to overcome the shortcomings of the
transductive models [67,116]. The main feature of inductive models is that the input to the model
does not depend on the number of nodes in the current networks, e.g., using auxiliary attributes other
than the node one-hot encoding vectors as the input of the HNE models. Because of the dynamic
and real-time nature of real-world networks, we believe that learning time-dependent embeddings
for continuous-time dynamic networks and developing inductive network embedding models are very
promising research directions.

5.5 Dealing with Heterogeneity
HINs usually contain rich heterogeneous attribute and relationship information: different types

of nodes, different types of attributes, different types of semantic relations, and even the same type of
node pairs may contain multiple different semantic relations. Highly heterogeneous networks bring
challenges to the design of HNE models.

Of the existing models, GNN-based models usually have better ability to integrate the affiliated
attributes. Meanwhile, KGE models perform better in handling various types of semantic relations. In
addition, for multimodal heterogeneous networks containing multiple different attribute information
(such as text, image, video), many studies have used various types of deep neural networks such as
FNN, CNN or RNN to extract attribute features, and fuse the generated content embeddings into
the final node embeddings [50,62,130]. This is more common in MF, RW, and AE types of HNE
models. Some other studies have treated network node attributes as nodes in the network and generated
embeddings for attribute nodes while generating entity node embeddings [84,112]. All of the above
approaches have improved the ability of the HNE models to deal with the multimodal and multiplex
issues. Owing to the inherent heterogeneity of complex networks, we believe that in the future research
field of HNE, fully considering the heterogeneity is still worthwhile.

5.6 Multi-Task Learning
Most existing HNE models focus on generating feature representations for the nodes in the HINs,

whereas some HNE models extend this task to generate edge embeddings, subgraph embeddings
[136,150], etc. Meanwhile, some other models combine the network embedding task with specific
downstream ML tasks to perform multiple tasks in one model simultaneously [30,31,58,61,63,76,118].

Compared with single-task learning, multi-task learning has the following advantages:

• it usually uses more data labels, which can better overcome the problem of data sparsity.

• it can effectively reduce overfitting of the model to specific task data and generate feature
representations with better generalization performance due to the need to meet the training
objectives of multiple tasks. For example, if edge and subgraph embeddings are generated
simultaneously as a node embedding, the generated network embedding will be able to better
capture the semantic information and global structural information contained in the network.
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5.7 Improving Scalability
Many existing HNE models are designed for small-scale heterogeneous networks and cannot be

scaled to large- and ultra-large-scale networks. However, real-world HINs often contain hundreds
of millions of nodes and complex relationships. For such huge networks, in addition to improving
the computing power of hardware computing platforms, some researchers have considered using
a distributed parallelization strategy to divide large datasets into multiple small data samples in a
“divide-and-conquer” manner [85]; there are also some studies that reduce the model complexity by
data sampling to reduce the amount of data to be processed [151]. These methods effectively improve
the scalability of the HNE model for large-scale networks. However, we believe that besides the above
strategies, more and better methods to improve model efficiency and scalability are to be studied.

5.8 Improving Robustness
Available real-world heterogeneous network data is often incomplete, including incomplete nodes,

link relationships, or affiliated information. Also, the available data often contains erroneous and noisy
information.

A powerful HNE model needs to tolerate such data incompleteness and noise to learn more robust
network embeddings. Generally speaking, generative models are more robust than traditional models
due to adding noise to the model input [62,124] or using an adversarial learning framework [79,129].
More strategies to improve the robustness of HNE models are to be investigated.

5.9 More Theoretical Analysis
Most existing studies evaluate the performance of HNE models experimentally, and in-depth

theoretical analysis is lacking, which may lead to model evaluation limitations and application bias
problems. As mere experimental results may be limited to a specific dataset or task, failure to
theoretically analyze and demonstrate the properties of the HNE model may result in the essence
of the model not being deeply understood. In addition to the complexity analysis, if the theoretical
characteristics of the model can be explored in more depth, it will substantially help us understand,
apply, and expand the function of the model. For example, we could explore how deep learning models
are intrinsically related to traditional models or explore higher-order Markov properties of random
walks based on meta-paths. These theoretical analyses will bring more in-depth insights and rich
perspectives to researchers.

6 Conclusions

In this paper, we provide a systematic and comprehensive review of research problems in HNE.
From the encoder-decoder perspective, we divide existing HNE research into six categories: MF, RW,
AE, GNN, KGE, and hybrid models. For each type of model, we first overview the basic common
characteristics. Then, taking typical HNE models as examples, we systematically review each model
type. We highlight the novel contribution of each representative HNE model, and summarize the
advantages and disadvantages of each model type. We also provide a wealth of valuable relevant
resources, including the application areas, benchmark datasets, open-source code and tools of this
research field. Finally, we present an in-depth discussion about open issues and future directions.
As a result, we believe that future HNE research must better deal with the heterogeneity, dynamics,
skewness, and sparsity of the HINs; improve model interpretability, scalability, and robustness; and
strengthen theoretical analysis to facilitate model application and expansion.
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