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ABSTRACT

In this paper, a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,
and two operators of ordered weighted average and induced ordered weighted average are developed. Several
fundamental features are also derived. The induced ordered weighted average operator is essential in a q-ROFH
environment as the induced ordered aggregation operators are special cases of the existing aggregation operators
that already exist in q-ROFH environments. The main function of these operators is to help decision-makers gain
a complete understanding of uncertain facts. The proposed aggregation operator is applied to a decision-making
problem, with the aim of selecting the most promising real estate project for investment.
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1 Introduction

Decision making [1] is a crucial aspect of our daily lives. Due to the complexity and subjectivity
of complex alternatives, decision-makers are frequently confronted with a considerable measure of
ambiguity in decision-making problems. To address these problems, Zadeh [2] developed fuzzy set
theory. Each element of such set is assigned a membership value, between 0 and 1. The fuzzy set
theory has a significant impact on the decision-making process. The fuzzy set theory has numerous
applications in numerous domains of engineering, humanities, health, and physical sciences. In recent
years, fuzzy set theory has also been utilized in the fields of energy, medicine, materials, economics,
and nearly every other scientific discipline. There must be uncertainty if the decision-makers do not
have sufficient knowledge to deal with the data necessary to express their preference for the object.
Experts mostly consider membership and non-membership values in the decision-making process
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that the fuzzy set cannot handle. Using the framework of fuzzy multisets, Du et al. [3] developed
a multicriteria group decision-making method in 2021, which accounts for varying degrees of risk
associated with each criterion.

To deal with this type of circumstance, Atanassov [4,5] proposed intuitionistic fuzzy sets, whose
primary components are intuitionistic fuzzy numbers (IFN). Intuitionistic fuzzy numbers are defined
by a membership function and a non-membership function, with the condition that the sum of the
membership and non-membership grades is less than or equal to one. When the sum is greater than 1,
the intuitionistic fuzzy sets do not work under specific conditions. Several operations on intuitionistic
fuzzy sets were developed by De et al. [6,7] and incorporated into Sanchez’s method for medical
diagnosis. The distance between intuitionistic fuzzy sets was discussed by Szmidt et al. [8]. Using
intuitionistic fuzzy sets as a theme, Gulzar et al. [9] introduced the t-intuitionistic fuzzy subgroup with
basic algebraic properties and complex intuitionistic fuzzy sets in group theory and its applications. In
some instances, when the sum of the degrees of MM and NMM is greater than 1, their sum of squares
may be less than or equal to 1. Intuitionistic fuzzy sets fail in this situation.

To address these problems, Yager [10] proposed a novel concept known as the Pythagorean fuzzy
set, a generalization of the intuitionistic fuzzy sets. The quadratic sum of membership and non-
membership is less than or equal to 1, distinguishing it from other entities. Intuitionistic fuzzy sets
and Pythagorean fuzzy sets are incredibly valuable for characterising fuzzy data. It is obvious that the
Pythagorean fuzzy set can represent more decision-making information and is more inclusive than the
intuitionistic fuzzy set. However, the Pythagorean fuzzy set frequently fails when the decision-maker is
able to specify the degree of the membership and non-membership in a particular case where their sum
is greater than 1. Some findings for Pythagorean fuzzy sets were developed in 2015 [11]. Pythagorean
fuzzy sets, as well as a more refined approach to linguistic, Garg [12] utilized Pythagorean fuzzy sets
for MCDM problems.

Yager [13] came up with q-rung orthopair fuzzy sets (q-ROFS), the key feature of which is that
the sum of the qth power of the membership and non-membership grade cannot exceed 1. Because of
this, q-ROFS is advantageous to both the intuitionistic fuzzy set and the Pythagorean fuzzy set when
dealing with ambiguous data. Innovative applications of fuzzy sets include aggregation operators,
information measures, and decision-making tools. Madasi et al. [14] recently proposed the topic of
N-cubic q-rung orthopair fuzzy sets, along with their properties and the use of mobile apps in the
education sector as an application.

In order to address the issue of making group decisions based on several criteria, Zulqarnain
et al. [15] developed certain aggregation operators inside the framework of the Interval-Valued
Pythagorean fuzzy soft set. After transforming the function F into a multi-valued function, Smaran-
dache [16] introduced the hypersoft set. Hypersoft sets are a fundamental mathematical tool for dealing
with ambiguity and uncertainty in problem-based decision-making. Zulqarnain et al. [17,18] devel-
oped the Pythagorean fuzzy hypersoft sets, along with fundamental operations and techniques. By
combining these concepts, Khan et al. [19] constructed a new structure called q-rung orthopair fuzzy
hypersoft sets (q-ROFHSs). In q-ROFHSs, the multi-parameter membership and non-membership
grades are limited to the qth power.

It is crucial to understand the aggregation operators in the q-rung orthopair fuzzy environment
and other types of fuzzy sets for tackling problems involving decision-making. In order to solve the
decision-making techniques, the induced intuitionistic fuzzy ordered weighted geometric (I-IFOWG)
and induced interval-valued intuitionistic fuzzy ordered weighted geometric (I-IIFOWG) operators
were developed by Wei [20]. The induced generalised intuitionistic fuzzy ordered weighted averaging
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(I-GIFOWA) and induced generalised interval-valued intuitionistic fuzzy ordered weighted averaging
(I-GIIFOWA) operators were introduced by Xu et al. [21]. For the sake of better decision-making,
Zulqarnain et al. [22] also explored a variety of aggregation operators in a Pythagorean fuzzy hypersoft
environment. Basic aggregation operators, such as the weighted average and weighted geometric
operators were designed by Liu et al. [23], and they were applied in a scenario based on q-rung
orthopair fuzzy information. Several fundamental operations and exponential aggregation operators
were developed by Peng et al. [24] for the q-rung orthopair fuzzy set. Two aggregation operators the
complex q-rung orthopair fuzzy weighted average (Cq-ROFWA) and the complex q-rung orthopair
fuzzy weighted geometric (Cq-ROFWG) were introduced by Liu et al. [25]. For a complex q-rung
orthopair fuzzy (Cq-ROF) environment, Garg et al. [26] developed power aggregation operations.
The q-rung orthopair fuzzy hypersoft weighted average (q-ROFHWA) and q-rung orthopair fuzzy
hypersoft weighted geometric (q-ROFHWG) aggregation operators were developed by Khan et al. [27]
for use in decision-making problems.

Due to the inadequacies of such mathematical modelling problems, we proposed q-ROFHS baesd
mathematical model of such daily life problems in decision-making. For these mathematical models
in the q-ROFH context, some aggregation operators and decision-making approaches are required.
Therefore, we developed ordered weighted average and induced ordered weighted average aggregation
operators in the q-ROFH environment.

Here are some of the key aspects of this research:

• The q-ROFHS process expert data with multi-sub-attributes of uncertainty in order to make
decisions.

• Important aggregation operators in the decision-making process include ordered weighted
average and induced ordered weighted average.

• Using basic operational laws, properties of the ordered weighted average and induced ordered
weighted average aggregation operator.

• A novel decision-making technique was presented by using the proposed aggregation operators.

• Research is conducted within a real company to determine the efficacy and viability of the
proposed method. The interpretations demonstrate that the predefined model is more practical
and reliable for understanding the facts.

The remaining study of this article is organized as follows. In Section 2, briefly some basic
materials related to the proposed structure are introduced. Section 3 consists of ordered weighted
average and induced ordered weighted average operators with properties. In Section 4, the algorithm
of the proposed structure is presented based on aggregation operators. A real-life application is also
presented in this section. Section 5 describes the comparative analysis of the proposed structure with
existing structures. Section 6 presents the conclusion and future work.

2 Preliminaries

In this section, we compile some basic data that will be utilised to construct the structure of the
article.

Definition 2.1 (16). The pair (H, A) is called a hypersoft set over Y , where H is the cartesian of
n disjoint sets H1, H2, . . . , Hn having attribute values of n distinct attributes h1, h2, . . . , hn, respectively,
and H : A → P(Y).
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Definition 2.2 (19). Let Y = {Y1, Y2, . . . , Yn} be a collection of disjoint attribute valued sets
corresponding to n distinct attributes a1, a2, . . . , an, respectively, with the condition Ai ∩ Aj = φ, for
i �= j and i, j ∈ {1, 2, . . . , n}. A q-rung orthopair fuzzy hypersoft set §A over Y is defined as

§A =
{(〈

h, ψA(h), ψ̃A(h)

〉)
|h ∈ H and q ≥ 1

}
,

where

(a) q − ROF(Y) is the collection of all q-rung orthopair fuzzy sets over Y .

(b) H = Y1 × Y2 × . . . × Yn

(c) A is a q-rung orthopair fuzzy over Y with ψA, ψ̃A : H → X , and

(d) δA(h) is a q-rung orthopair fuzzy set for h ∈ H with δA(h) : H → Q(Y).

Here q − ROFHS(Y) represents the collection of all q − ROF subsets of Y , such that 0 ≤ (
ψA(h)

)q +(
ψ̃A(h)

)q

≤ 1.

Definition 2.3 (19). The score function of the q-ROFHNs is defined as SA(h) = ψ
q
A(h) − ψ̃

q
A(h)

3 Ordered and Induced Ordered Weighted Average Aggregation Operators

In this section, we use the concept of ordered weighted averaging operator and develop the q-rung
orthopair fuzzy hypersoft ordered weighted averaging operator (q-ROFHOWA) and the induced-q-
rung orthopair fuzzy hypersoft ordered weighted averaging operator (I-q-ROFHOWA).

Definition 3.1. An ordered weighted averaging q-rung orthopair fuzzy hypersoft (q-ROFHOWA)
operator is defined as:

I − q − ROFHOWA
(
Ea11

, Ea12
, ..., Eanm

) = n⊕
j=1

vj

(
m⊕

i=1
wiEσaij

)
where wi = {1, 2, . . . , n} and vj = {1, 2, . . . , m} are weight vectors for experts and sub-attributes of the
selected parameters respectively, having the condition that, wi > 0,

∑m

i=1wi = 1, and vj > 0,
∑n

j=1vj = 1.
Then the mapping for the q-ROFHOWA operator is defined as q − ROFHOWA : �n → � is the
collection of all q-ROFHNs.

Theorem 3.1. Let Eaij , (i = 1, 2, . . . , n)(j = 1, 2, . . . , m) be the collection of q-ROFHNs,
then their aggregated values by using the q-ROFHOWA operator are also q-rung orhtopair fuzzy

hypersoft values, and q − ROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

) =
(

q

√
1 −∏n

j=1

(∏m

1=1

(
1 − ϕq

σaij

)wi
)vj

,

∏n

j=1

(∏m

1=1

(
ϕ̃σaij

)wi
)vj)

where wi = {1, 2, . . . , n} and vj = {1, 2, . . . , m} are weight vectors for experts

and sub-attributes of selected parameters, respectively, having the condition that, wi > 0,
∑m

i=1wi = 1,
and vj > 0,

∑n

j=1vj = 1, and σij are permutations of (i = 1, 2, . . . , m), (j = 1, 2, . . . , n) such that
Eσ(i−1)j

≥ Eσ(i)j
and Eσi(j−1)

≥ Eσi(j)
∀i, j.

Proof. The q-ROFHOWA operator can be proved using the principle of mathematical induction
as follows. For m = 1, we get wi = 1. Then, we have,
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q − ROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

)
= n⊕

j=1
vjEσa1j

=
⎛
⎝ q

√√√√1 −
n∏

j=1

(
1 − ϕq

σaij

)vj

,
n∏

j=1

(
ϕ̃σaij

)vj

⎞
⎠

=
⎛
⎝ q

√√√√1 −
n∏

j=1

(
1∏

1=1

(
1 − ϕq

σaij

)wi

)vj

,
n∏

j=1

(
1∏

1=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (1)

For n = 1, we get vj = 1.

q − ROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

)
= m⊕

i=1
wiEσai1

=
⎛
⎝ q

√√√√1 −
m∏

i=1

(
1 − ϕq

σaij

)wi

,
m∏

i=1

(
ϕ̃σaij

)wi

⎞
⎠

=
⎛
⎝ q

√√√√1 −
1∏

j=1

(
m∏

i=1

(
1 − ϕq

σaij

)wi

)vj

,
1∏

j=1

(
m∏

i=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (2)

So, Eq. (2) is true for all m = 1 and n = 1. Suppose that the equation holds for m = k2, n = k1 +1,
and m = k2 + 1, n = k1.

k1+1⊕
j=1

vj

(
k2⊕
i=1

wiEσaij

)

=
⎛
⎝ q

√√√√1 −
k1+1∏
j=1

(
k2∏

1=1

(
1 − ϕq

σaij

)wi

)vj

,
k1+1∏
j=1

(
k2∏

1=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (3)

= k1⊕
j=1

vj

(
k2+1⊕
i=1

wiEσaij

)

=
⎛
⎝ q

√√√√1 −
k1∏
j=1

(
k2+1∏
1=1

(
1 − ϕq

σaij

)wi

)vj

,
k1∏
j=1

(
k2+1∏
1=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (4)

Now we prove the equation for n = k1 + 1 and m = k2 + 1.
k1+1⊕
j=1

vj

(
k2+1⊕
i=1

wiEσaij

)

= k1+1⊕
j=1

Eσaj

(
k2⊕
i=1

wiEσaij ⊕ wi+1Eσa(k2+1)j

)
(5)
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=
(

k1+1⊕
j=1

k2⊕
i=1

wivjEσaj

)(
k1+1⊕
j=1

vjwi+1Eσa(k2+1)(j)

)

= 2
k1+1∏
j=1

(
k2+1∏
1=1

(
ϕ̃σa(i)(j)

)wi

)vj

⊕ 2
k1+1∏
j=1

(
k2+1∏
1=1

(
ϕ̃σa(k2+1)(j)

)wk2+1

)vj

= q

√√√√1 −
k1+1∏
j=1

(
k2+1∏
1=1

(
1 − ϕq

σaij

)wi

)vj

,2
k1+1∏
j=1

(
k2+1∏
i=1

(
ϕ̃σa(i)(j)

)wi

)vj

= k1+1⊕
j=1

vj

(
k2+1⊕
i=1

wiEσaij

)
(6)

So, it is valid for n = k1 + 1 and m = k2 + 1.

Remark 3.2. If the value of q is fixed, which is q = 1, the proposed q-ROFHOWA operator reduces
to the IFHOWA operator.

Remark 3.3. If the value of q is fixed, which is q = 2, the proposed q-ROFHOWA operator reduces
to the PFHOWA operator.

Remark 3.4. If there are single parameters, which is e1, e2, . . . , en, then the proposed q-ROFHOWA
operator reduces to the q-ROFSOWA operator.

Remark 3.5. From the above remarks, it is clear that IFHOWA, PFHOWA and q-ROFSOWA
operators are the special cases of the proposed q-ROFHOWA operator.

The I-q-ROFHSOWA operator is idempotent, bounded and monotonic. These can be proved by
the following theorem:

(Idempotency) Let Eaij =
(
ϕaij

, ϕ̃aij

)
be a collection of q-ROFHNs, (∀i = 1, 2, . . . , n)(j =

1, 2, . . . , m). If Eσaij = E11 are mathematically identical, then q−ROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

) = E.

Proof. As we know,

q − ROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

)
=
(

q

√
1 −

k1+1∏
j=1

(
k2+1∏
1=1

(
1 − ϕq

σaij

)wi
)vj

,2
k1+1∏
j=1

(
k2+1∏
i=1

(
ϕ̃σa(i)(j)

)wi
)vj
)

Eσa(i)(j)
= Eij, so

=
⎛
⎝ q

√
1 −

((
1 − ϕq

σaij

)∑m
i=1wi

)∑n
j=1vj

,2
((

ϕ̃σa(i)(j)

)∑m
i=1wi

)∑n
j=1vj

⎞
⎠

=
(

q

√
1 −

(
1 − ϕq

σaij

)
,2
(
ϕ̃σa(i)(j)

))

=
(
ϕaij

, ϕ̃aij

)
= E

(Boundedness) Let Eaij =
(
ϕaij

, ϕ̃aij

)
be a collection of q-ROFHNs, for all i = 1, 2, ... m, j =

1, 2, . . . , n. If Emin min = min min Ea(i)(j)
and Emax max = max max Ea(i)(j)

, then Emin min ≤ q − ROFHOWA
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(
Ea11

, Ea12
, . . . , Eanm

) ≤ Emax max, where wi and vj are weight vectors for expert’s and sub attributes of
selected parameters respectively, such that wi > 0,

∑m

i=1wi = 1, and wi > 0,
∑n

i=1vj = 1.

Proof. Let f (x) = q
√

1 − (1 − xq), x ∈ [0, 1] . Then,

d
dx

(f (x)) = −qxq−1

(
q

√(
1 − xq

q

)
− 1

)
< 0,

so f (x) is a decreasing function on [0, 1]. As ϕmin min ≤ ϕaij
≤ ϕmax max, f

(
ϕminjmini

)
≤ f

(
ϕaij

)
≤

f
(
ϕmaxjmaxi

)
.

⇔ q
√

1 − max
j

max
i

ϕq ≤ q
√

1 − ϕ
q
σaij ≤ q

√
1 − min

j
min

i
ϕq

⇔ q

√
n∏

j=1

(
m∏

i=1

(
1 − max

j
max

i
ϕq

)wi
)vj

≤ q

√
n∏

j=1

(
m∏

i=1

(
1 − ϕ

q
σaij

)wi

)vj

≤ q

√
n∏

j=1

(
m∏

i=1

(
1 − min

j
min

i
ϕq

)wi
)vj

⇔ q

√√√√((
1 − max

j
max

i
ϕq

)∑m
i=1wi

)∑n
j=1vj

≤ q

√
n∏

j=1

(
m∏

i=1

(
1 − ϕ

q
σaij

)wi

)vj

≤ q

√√√√((
1 − min

j
min

i
ϕq

)∑m
i=1wi

)∑n
j=1vj

⇔ q
√−1 + min

j
min

i
ϕq ≤ q

√
−

n∏
j=1

(
m∏

i=1

(
1 − ϕ

q
σaij

)wi

)vj

≤ q
√−1 + max

j
max

i
ϕq

⇔ min
j

min
i

(ϕ) ≤ q

√
1 −

n∏
j=1

(
m∏

i=1

(
1 − ϕ

q
σaij

)wi

)vj

≤ max
j

max
i

(ϕ) (7)

As ϕ̃min min ≤ ϕ̃aij
≤ ϕ̃max max, f

(
ϕ̃minjmini

)
≤ f

(
ϕ̃aij

)
≤ f

(
ϕ̃maxjmaxi

)
.

⇔ q

√
min

j
min

i
ϕ̃ ≤ q

√
ϕ̃σaij

≤ q

√
max

j
max

i
ϕ̃

⇔ q

√√√√ n∏
j=1

(
m∏

i=1

(
min

j
min

i
ϕ̃

)wi
)vj

≤ q

√√√√ n∏
j=1

(
m∏

i=1

(
ϕ̃σaij

)wi

)vj

≤ q

√√√√ n∏
j=1

(
m∏

i=1

(
max

j
max

i
ϕ̃

)wi
)vj

⇔ q

√√√√((
min

j
min

i
ϕ̃

)∑m
i=1 wi

)∑n
j=1 vj

≤ q

√√√√ n∏
j=1

(
m∏

i=1

(
ϕ̃σaij

)wi

)vj

≤ q

√√√√((
max

j
max

i
ϕ̃

)∑m
i=1 wi

)∑n
j=1 vj

⇔ q

√
min

j
min

i
ϕ̃ ≤ q

√√√√ n∏
j=1

(
m∏

i=1

(
ϕ̃σaij

)wi

)vj

≤ q

√
max

j
max

i
ϕ

⇔ min
j

min
i

(ϕ̃) ≤ q

√√√√ n∏
j=1

(
m∏

i=1

(
ϕ̃σaij

)wi

)vj

≤ max
j

max
i

(ϕ̃) (8)
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Let q − ROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

) = E. Then Eqs. (7) and (8) can be written as
minj mini (ϕ

q) ≤ ϕq
σaij

≤ maxj maxi (ϕ
q) and minj mini (ϕ̃) ≤ ϕ̃σaij

≤ maxj maxi (ϕ̃) . Thus,

S (H) = ϕq − ϕ̃
q ≤ ϕq

maxj maxi
− ϕ

q
minj mini

= S (Hmax) (9)

S (H) = ϕq − ϕ̃
q ≥ ϕ

q
minj mini

− ϕq
maxj maxi

= S (Hmin) (10)

If S(H) < S(Hmax) and S(H) > S(Hmin), then we have,

Hmin < qROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

)
< Hmax (11)

If S(H) = S(Hmax), then we have ϕq = ϕq
maxj maxi

and ϕ̃
q = ϕ̃

q

maxj maxi
. Thus A (H) = ϕq+ϕ̃. Therefore,

q − ROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

)
< Hmax (12)

If S(H) = S(Hmin), then we have ϕq − ϕ̃ = ϕ
q
minj mini

and ϕq = ϕ
q
minj mini

and ϕ̃ = ϕ̃minjmini
. Thus

A (H) = ϕq + ϕ̃ = ϕ
q
minj mini

+ ϕ̃minjmini
. Therefore,

q − ROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

)
< Hmin (13)

So by Eqs. (14) and (15), we get

Hmin ≤ q − ROFHOWA
(
Ea11

, Ea12
, . . . , Eanm

) ≤ Hmax (14)

Definition 3.2. An induced q-rung orthopair fuzzy hypersoft ordered weighted averaging
(I-q-ROFHSOWA) operator is defined as:

I − q − ROFHSOWA
(〈

Ea11
, ua11

〉
,
〈
Ea12

, ua12

〉
, . . . ,

〈
Eanm , uanm

〉)
= n⊕

j=1
vj

(
m⊕

i=1
wiEσaij

)

=
⎛
⎝ q

√√√√1 −
n∏

j=1

(
m∏

1=1

(
1 − ϕq

σaij

)wi

)vj

,
n∏

j=1

(
m∏

1=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (15)

where wi = {1, 2, . . . , n} and vj = {1, 2, . . . , m} are weight vectors for experts and sub-attributes of
selected parameters respectively, having the condition that, wi > 0,

∑m

i=1wi = 1, and vj > 0,
∑n

j=1vj = 1.
Also σaij is the σij value of the q-ROFHSOWA pair

〈
Eaij , uaij

〉
having the ith and jth largest uaij , and

uaij in
〈
Eaij , uaij

〉
being referred to as the order inducing variable and Eaij as the q-rung orthopair fuzzy

hypersoft argument variable.

Theorem 3.6. Let
〈
Eaij , uaij

〉
(i = 1, 2, . . . , n)(j = 1, 2, . . . , m) be a collection of 2 tuples, then their

aggregated values by using the I-q-ROFHOWA operator is also a q-rung orhtopair fuzzy hypersoft
value and

I − q − ROFHOWA
(〈

Ea11
, ua11

〉
,
〈
Ea12

, ua12

〉
, . . . ,

〈
Eanm , uanm

〉)

=
⎛
⎝ q

√√√√1 −
n∏

j=1

(
m∏

1=1

(
1 − ϕq

σaij

)wi

)vj

,
n∏

j=1

(
m∏

1=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (16)

where wi = {1, 2, . . . , n} and vj = {1, 2, . . . , m} are weight vectors for experts and sub-attributes of
selected parameters respectively, having the condition that, wi > 0,

∑m

i=1wi = 1, and vj > 0,
∑n

j=1vj = 1.
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Proof. The I-q-ROFHOWA operator can be proved using the principle of mathematical induction
as follows. For m = 1, we get wi = 1. Then we have,

I − q − ROFHOWA
(〈

Ea11
, ua11

〉
,
〈
Ea12

, ua12

〉
, . . . ,

〈
Eanm , uanm

〉)
= n⊕

j=1
vjEσa1j

=
⎛
⎝ q

√√√√1 −
n∏

j=1

(
1 − ϕq

σaij

)vj

,
n∏

j=1

(
ϕ̃σaij

)vj

⎞
⎠

=
⎛
⎝ q

√√√√1 −
n∏

j=1

(
1∏

1=1

(
1 − ϕq

σaij

)wi

)vj

,
n∏

j=1

(
1∏

1=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (17)

For n = 1, we get vj = 1.

I − q − ROFHOWA
(〈

Ea11
, ua11

〉
,
〈
Ea12

, ua12

〉
, . . . ,

〈
Eanm , uanm

〉)
= m⊕

i=1
wiEσai1

=
⎛
⎝ q

√√√√1 −
m∏

i=1

(
1 − ϕq

σaij

)wi

,
m∏

i=1

(
ϕ̃σaij

)wi

⎞
⎠

=
⎛
⎝ q

√√√√1 −
1∏

j=1

(
m∏

i=1

(
1 − ϕq

σaij

)wi

)vj

,
1∏

j=1

(
m∏

i=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (18)

So, Eq. (2) is true for m = 1 and n = 1. Suppose that the equation holds for m = k2, n = k1 + 1,
and m = k2 + 1, n = k1.

= k1+1⊕
j=1

vj

(
k2⊕
i=1

wiEσaij

)

=
⎛
⎝ q

√√√√1 −
k1+1∏
j=1

(
k2∏

1=1

(
1 − ϕq

σaij

)wi

)vj

,
k1+1∏
j=1

(
k2∏

1=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (19)

= k1⊕
j=1

vj

(
k2+1⊕
i=1

wiEσaij

)

=
⎛
⎝ q

√√√√1 −
k1∏
j=1

(
k2+1∏
1=1

(
1 − ϕq

σaij

)wi

)vj

,
k1∏
j=1

(
k2+1∏
1=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (20)
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Now we prove the equation for n = k1 + 1 and m = k2 + 1.
k1+1⊕
j=1

vj

(
k2+1⊕
i=1

wiEσaij

)

= k1+1⊕
j=1

Eσaj

(
k2⊕
i=1

wiEσaij

k2⊕
i=1

wi+1Eσa(k2+1)j

)

=
k1+1∏
j=1

(
k2+1∏
1=1

(
ϕ̃σaij

)wi

)vj

⊕
k1+1∏
j=1

(
k2+1∏
1=1

(
ϕ̃σa(k2+1)j

)wk2+1

)vj

(21)

= q

√√√√1 −
k1+1∏
j=1

(
k2+1∏
1=1

(
1 − ϕq

σaij

)wi

)vj

,
k1+1∏
j=1

(
k2+1∏
1=1

(
ϕ̃σaij

)wi

)vj

= k1+1⊕
j=1

vj

(
k2+1⊕
i=1

wiEσaij

)
So, it is valid for n = k1 + 1 and m = k2 + 1.

Example 3.7. Let Y be the set of decision makers to decide the best laptop given as Y = {y1, y2, y3} .
Also consider the set of attributes as P1 and P2, where P1 represents the laptop type and P2 represents
the laptop RAM. Then their corresponding attributive sets can be P1 = {a11 = HP, a12 = Dell} ,
and P2 = {a21 = 8 GB, a22 = 16 GB, a23 = 32 GB} . Suppose A1 = {a11, a12} , A2 = {a21, a22} and,
a11 = (a11, a21) , a12 = (a11, a22) , a21 = (a12, a21) , a22 = (a12, a22) . Then A = A1 × A2 will have
2-tuple elements, and we suppose q = 8. Then the I-q-ROFHS set

(
H, A

)
can be written as〈

Ea11
, ua11

〉 = 〈.3, (.4, .2)〉 ,
〈
Ea12

, ua12

〉 = 〈.4, (.5, .3)〉, 〈Ea21
, ua21

〉 = 〈.6, (.4, .7)〉 ,
〈
Ea22

, ua22

〉 = 〈.5, (.6, .3)〉 .
Performing the ordering of q-ROFHS pairs with respect to the first component we have

〈
Ea21

, ua21

〉 =
〈.6, (.4, .7)〉 ,

〈
Ea22

, ua22

〉 = 〈.5, (.6, .3)〉, 〈Ea12
, ua12

〉 = 〈.4, (.5, .3)〉 ,
〈
Ea11

, ua11

〉 = 〈.3, (.4, .2)〉 . This order
includes the order of the q-ROFHS arguments:

〈
Eσa11

, uσa11

〉 = 〈.6, (.4, .7)〉 ,
〈
Eσa12

, uσa12

〉 = 〈.5, (.6, .3)〉,〈
Eσa21

, uσa21

〉 = 〈.4, (.5, .3)〉 ,
〈
Eσa22

, uσa22

〉 = 〈.3, (.4, .2)〉 . Let wi = (.2, .1, .4, .3) , vj = (.6, .1, .3) , and
q = 8.

I − q − ROFHOWA
(〈

Ea11
, ua11

〉
,
〈
Ea12

, ua12

〉
,
〈
Ea21

, ua22

〉
,
〈
Ea22

, ua22

〉)

=
⎛
⎝ q

√√√√1 −
3∏

j=1

(
4∏

1=1

(
1 − ϕq

σaij

)wi

)vj

,
3∏

j=1

(
4∏

1=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8

√√√√√√√√√
1 −

((
1 − .78

).2
)

×
((

1 − .68
).1
)

×
((

1 − .58
).4
)

×
((

1 − .48
).3
).6

×
((

1 − .48
).2
)

×
((

1 − .68
).1
)

×
((

1 − .58
).4
)

×
((

1 − .48
).3
).1

×
((

1 − .78
).2
)

×
((

1 − .68
).1
)

×
((

1 − .58
).4
)

×
((

1 − .48
).3
).3

(
.7.2 × .3.1 × .3.4 × .2.3

).6

× (
.7.2 × .3.1 × .3.4 × .2.3

).1

× (
.7.2 × .3.1 × .3.4 × .2.3

).3

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (.5099, .3149)
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The I-q-ROFHSOWA operator is idempotent, bounded and monotonic. These properties can be
proved by the following theorems:

(Idempotency) Let
〈
Eaij , uaij

〉
(i = 1, 2, . . . , n)(j = 1, 2, . . . , m) be a collection of 2-tuples

I-q-ROFHSNs. If
〈
Eσaij , uσaij

〉 = 〈
Eσa11

, uσa11

〉
are mathematically identical, then,

I − q − ROFHOWA
(〈

Ea11
, ua11

〉
,
〈
Ea12

, ua12

〉
, . . . ,

〈
Eanm , uanm

〉)

=
⎛
⎝ q

√√√√1 −
n∏

j=1

(
m∏

1=1

(
1 − ϕq

σaij

)wi

)vj

,
n∏

j=1

(
m∏

i=1

(
ϕ̃σaij

)wi

)vj
⎞
⎠ (22)

where wi = {1, 2, . . . , n} and vj = {1, 2, . . . , m} are weight vectors for experts and sub-attributes
of selected parameters, respectively, having the condition that, wi > 0,

∑m

i=1wi = 1, and vj > 0,∑n

j=1vj = 1.

i. Let Eaij =
(
ϕaij

, ϕ̃aij

)
be a collection of I-q-ROFHSNs, for all i = 1, 2, ... m, j = 1, 2, . . . , n.

If Eσaij = Ea11
are mathematically identical, then for all i = 1, 2, ... m, j = 1, 2, . . . , n, then

I − q − ROFHOWA
(〈

Ea11
, ua11

〉
,
〈
Ea12

, ua12

〉
, . . . ,

〈
Eanm , uanm

〉) = u.

(Boundedness) Let
〈
Eaij , uaij

〉
be a collection of I-q-ROFHSNs, (for all i = 1, 2, ... m, j = 1, 2, . . . , n.

If Emin min = min min Eaij and Emax max = max max Eaij , then
Emin min ≤ I − q − ROFHOWA(

〈
Ea11

, ua11

〉
,
〈
Ea12

, ua12

〉
, . . . ,

〈
Eanm , uanm

〉
) ≤ Emax max.

(Monotonicity) Let
〈
Eaij , uaij

〉
,
〈
Eaij , u∗

aij

〉
for all i = 1, 2, ... m, j = 1, 2, . . . , n be two sets of 2-tuples.

If uaij ≤ u∗
aij

, then I − q − OFHOWA
(〈

Ea11
, ua11

〉
,
〈
Ea12

, ua12

〉
, . . . ,

〈
Eanm , uanm

〉)
≤ I–q–ROFHOWA

(〈
Ea11

, u∗
a11

〉
,
〈
Ea12

, u∗
a12

〉
, . . . ,

〈
Eanm , u∗

anm

〉)
.

4 Decision Making with q-ROFHOWA I-q-ROFHOWA Operator

Here we will analyze the applicability of the q-ROFHOWA and I-q-ROFHOWA operators
and show their fundamental aspects. As mentioned earlier, the q-ROFHOWA operator provides a
parameterized family of aggregation functions, but the I-q-ROFHOWA operator has the fundamental
aspect of reordering the arguments to be aggregated, based on the order inducing variable. Also,
the inducing order determines the generation of q-ROF measures. The following part provides an
illustration of the above-mentioned innovative approaches. We analyze a group decision-making
problem where an ordinary person studies the real-estate and decides which real estate developer’s
project is the best and worth investing. Also, they want to know about the soundness and reliability of
real-estate developers. So, in this case, we want to reveal some of the attributes of the real estate before
investing in a project. We choose four agents (alternatives) of different companies of real estate, which
are represented as follows:

1. Agent 1 (A1, Estate Land Marketing)

2. Agent 2 (A2, Star Marketing)

3. Agent 3 (A3, ZEM builders)

4. Agent 4 (A4, Actual real estate)
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After careful review of the information, the group of experts establishes the following information
about investment in a real estate project. The following are some attributes of real estate from different
companies agents:

U = {Ability to deliver, Property location,Valuation of the property}
We also consider their respective attributes, i.e.,

U1 = Ability to deliver = {Strong team (a11), Financial experts (a12), Incredible architects and
urban planning engineers to design the project (a13)}

U2 = Property location = {Closeness to the market (a21), transport hubs (a22)}
U3 = Valuation of the property = {Investment analysis (a31), listing price (a32)}
A committee of decision makers has a weight vector (.32, .12, .36, 20), and thus Ú = U1 ×U2 ×U3

is a set of sub attributes having 3 tuples.

Ú = {a11, a12}×{a21, a22}×{a31, a32} =
{
(a11, a21, a31) , (a11, a22, a31) , (a12, a21, a31) , (a12, a22, a31)

(a11, a22, a32) , (a11, a21, a32) , (a12, a21, a32) , (a12, a22, a32)

}
, and

Ú = {
á1, á2, á3, á4, á5, á6, á7, á8

}
is a set of all sub-attributes with the weights (.18, .12, .15, .20, .16,

.05, .10, .04), respectively. As the environment is very uncertain, the group of experts of the company
needs to assess the available information with q-ROFHS numbers. In this problem, we will use the
q-ROFHOWA and I-q-ROFHOWA operators. First, we construct a decision matrix of sub-attributes
in Table 1, and then we show that the team of experts present their idea in the form of an induced
q-rung orthopair fuzzy hypersoft number. They also use the attitudinal character of the expert team
to show the order-inducing variables, which are shown in Tables 2–5. Then, in Table 7, we can make
an aggregated value by using I-q-ROFHOWA operator, which is shown in Table 6. In this example,
we use the I-q-ROFHOWA operator for choosing the best and the worth-ranking order of different
alternatives. Finally, X2 is the best alternative, and the ranking order is shown as: X2 � X4 � X3 � X1.

X1 = (.7859, .4991), X2 = (.8700, .5999), X3 = (.8530, .6671), X4 = (.8663, .5960)

Table 1: Decision matrix of the experts

á1 á2 á3 á4 á5 á6 á7 á8

X1 (.99, .87) (.89, .99) (.94, .87) (.93, .87) (.99, .87) (.95, .87) (.84, .87) (.94, .87)
X2 (.87, .89) (.86, .88) (.89, .79) (.87, .85) (.94, .79) (.89, .99) (.99, .79) (.85, .76)
X3 (.79, .88) (.89, .98) (.85, .98) (.92, .88) (.86, .94) (.86, .94) (.83, .86) (.93, .79)
X4 (.88, .97) (.88, .99) (.86, .92) (.88, .93) (.88, .94) (.99, .90) (.88, .96) (.89, .77)

Table 2: Decision matrix (A1)

á1 á2 á3 á4 á5 á6 á7 á8
X1 〈.8, (.79, .87)〉 〈.9, (.89, .99)〉 〈.5, (.94, .87)〉 〈.7, (.95, .87)〉 〈.4, (.94, .81)〉 〈.8, (.91, .87)〉 〈.5, (.84, .84)〉 〈.9, (.94, .84)〉
X2 〈.5, (.77, .89)〉 〈.6, (.88, .88)〉 〈.4, (.89, .79)〉 〈.6, (.87, .85)〉 〈.3, (.94, .79)〉 〈.7, (.89, .92)〉 〈.4, (.92, .99)〉 〈.7, (.86, .76)〉
X3 〈.4, (.79, .87)〉 〈.2, (.89, .93)〉 〈.3, (.85, .98)〉 〈.5, (.90, .78)〉 〈.2, (.86, .94)〉 〈.5, (.89, .94)〉 〈.3, (.86, .86)〉 〈.6, (.90, .74)〉
X4 〈.2, (.88, .96)〉 〈.1, (.89, .79)〉 〈.2, (.86, .92)〉 〈.4, (.84, .90)〉 〈.1, (.88, .94)〉 〈.3, (.93, .90)〉 〈.2, (.88, .91)〉 〈.3, (.89, .77)〉
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Table 3: Decision matrix (A2)

á1 á2 á3 á4 á5 á6 á7 á8
X1 〈.5, (.94, .87)〉 〈.6, (.84, .84)〉 〈.8, (.94, .81)〉 〈.6, (.95, .77)〉 〈.8, (.94, .81)〉 〈.5, (.94, .87)〉 〈.4, (.88, .84)〉 〈.7, (.94, .87)〉
X2 〈.4, (.89, .79)〉 〈.5, (.92, .99)〉 〈.6, (.94, .99)〉 〈.5, (.81, .95)〉 〈.7, (.94, .77)〉 〈.4, (.89, .79)〉 〈.3, (.90, .91)〉 〈.6, (.89, .79)〉
X3 〈.3, (.85, .98)〉 〈.4, (.86, .86)〉 〈.4, (.86, .94)〉 〈.4, (.79, .79)〉 〈.6, (.86, .74)〉 〈.3, (.85, .98)〉 〈.2, (.83, .87)〉 〈.5, (.85, .98)〉
X4 〈.1, (.96, .92)〉 〈.2, (.88, .91)〉 〈.2, (.87, .94)〉 〈.3, (.74, .91)〉 〈.2, (.88, .94)〉 〈.1, (.96, .92)〉 〈.1, (.81, .98)〉 〈.4, (.96, .92)〉

Table 4: Decision matrix (A3)

á1 á2 á3 á4 á5 á6 á7 á8
X1 〈.4, (.95, .87)〉 〈.9, (.84, .84)〉 〈.9, (.94, .87)〉 〈.7, (.95, .77)〉 〈.4, (.94, .81)〉 〈.5, (.71, .87)〉 〈.7, (.94, .86)〉 〈.7, (.89, .99)〉
X2 〈.3, (.87, .85)〉 〈.8, (.92, .99)〉 〈.8, (.89, .79)〉 〈.5, (.77, .83)〉 〈.3, (.94, .79)〉 〈.4, (.89, .90)〉 〈.6, (.79, .70)〉 〈.3, (.88, .88)〉
X3 〈.2, (.90, .78)〉 〈.7, (.86, .86)〉 〈.5, (.85, .98)〉 〈.4, (.93, .77)〉 〈.2, (.86, .94)〉 〈.3, (.99, .74)〉 〈.4, (.75, .90)〉 〈.2, (.89, .93)〉
X4 〈.1, (.84, .90)〉 〈.1, (.88, .91)〉 〈.4, (.86, .92)〉 〈.3, (.89, .79)〉 〈.1, (.88, .94)〉 〈.2, (.73, .91)〉 〈.3, (.96, .82)〉 〈.1, (.89, .79)〉

Table 5: Decision matrix (A4)

á1 á2 á3 á4 á5 á6 á7 á8
X1 〈.4, (.94, .97)〉 〈.8, (.74, .84)〉 〈.7, (.92, .81)〉 〈.9, (.95, .73)〉 〈.4, (.94, .81)〉 〈.8, (.91, .87)〉 〈.9, (.88, .85)〉 〈.6, (.94, .87)〉
X2 〈.3, (.89, .79)〉 〈.6, (.90, .99)〉 〈.4, (.97, .89)〉 〈.4, (.87, .95)〉 〈.3, (.93, .77)〉 〈.5, (.80, .79)〉 〈.8, (.95, .91)〉 〈.5, (.81, .79)〉
X3 〈.2, (.75, .98)〉 〈.5, (.86, .96)〉 〈.2, (.86, .74)〉 〈.3, (.99, .71)〉 〈.2, (.87, .74)〉 〈.3, (.88, .91)〉 〈.7, (.93, .77)〉 〈.4, (.95, .88)〉
X4 〈.1, (.96, .82)〉 〈.4, (.88, .71)〉 〈.1, (.87, .90)〉 〈.2, (.78, .91)〉 〈.1, (.82, .94)〉 〈.2, (.86, 0.72)〉 〈.5, (.86, .78)〉 〈.1(.76, .90)〉

Table 6: Aggregated values

á1 á2 á3 á4 á5 á6 á7 á8

X1 (0.979, .87) (.922, .677) (.840, .991) (.569, .911) (.692, .891) (.785, .832) (.764, .800) (.881, .766)
X2 (.887, .689) (.699, .976) (.980, .681) (.704, .775) (.807, .753) (.656, .900) (.893, .712) (.764, .569)
X3 (.979, .808) (.854, .98) (.776, .793) (.599, .903) (.920, .784) (.744, .688) (.745, .923) (.549, .855)
X4 (.818, .907) (.791, .695) (.692, .852) (.764, .835) (.751, .813) (.821, .671) (.739, .787) (.558, .801)

Table 7: Comparision analysis

Methods Score values Ranking

q-ROFWA x1 = 0.3015, x2 = 0.1184, x3 = 0.1610, x4 = 0.1791 X1 � X4 � X3 � X2

q-ROFWG x1 = 0.1701, x2 = 0.0499, x3 = 0.0164, x4 = 0.1349 X1 � X4 � X3 � X2

q-ROFSWA x1 = 0.414877, x2 = 0.46537, x3 = 0.522354, x4 = 0.484856 X3 � X4 � X2 � X1

q-ROFSOWA x1 = 0.426939, x2 = 0.475573, x3 = 0.521928, x4 = 0.483572 X3 � X4 � X2 � X1

I-q-ROFHSOWA x1 = 0.268, x2 = 0.420,
x3 = 0.319, x4 = 0.413

X2 � X4 � X3 � X1

Calculate the score value by using Definition 2.3, which is X1 = 0.268, X2 = 0.420, X3 =
0.319, X4 = 0.413.
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5 Comparision Analysis

In this section, some current techniques under the existing structures, namely q-ROFS, q-ROFSS,
and our proposed structure of q-ROFHSS have been compared in order to show the effectiveness
of the proposed model. We have developed the MADM technique under the q-ROFHSOWA and
I-q-ROFHSOWA operators. Our proposed technique can explain the most suitable results of DM
problems. Since the proposed model is competent and adaptable, it can continue working hard despite
any disruptions that may occur. The results obtained from the proposed techniques are different
as compared to hybrid techniques. The results show that the operator of the proposed structure is
more capable, reliable and effective. Fig. 1 shows a graphical ranking order of the alternatives to our
proposed technique compared to the existing techniques.

Figure 1: Graphical representation of existing studies with proposed study

6 Conclusion

In this study, we developed a new decision-making technique under the q-rung orthopair fuzzy
hypersoft environment with the induced ordered weighted averaging operator. We have initiated
two types of operators i.e., ordered weighted averaging operator and induced ordered weighted
averaging operator. The induced ordered weighted averaging operator is very helpful in decision-
making problems with q-rung orthopair fuzzy hypersoft numbers under uncertain conditions. We
have also studied some of its basic results and properties. All attribute values are considered by
the method described in this article for selecting a real estate project based on the computation of
aggregation operators from considered data in the form of membership and non-membership. Finally,
we developed an application in an MADM problem. In this problem, we discussed the selection of the
best real-estate project for investment. The induced ordered weighted averaging operator is very useful
for this problem because this operator represents the uncertain data in the best form under q-rung
orthopair fuzzy hypersoft numbers. This decision-making technique proves the information in the best
way because in this process the decision-maker uses the order-inducing strategy. The main feature of
the suggested strategy is that it offers a useful and adaptable way to effectively help the DM in uncertain
situations. In addition, the proposed method can be used both for q-rung orthopair fuzzy hypersoft
numbers and q-rung orthopair fuzzy soft numbers, which accurately represent the uncertainty. We
plan to use the aggregation operator to solve DM problems in the future when dealing with more
ambiguous data, including interval-valued q-rung orthopair fuzzy hypersoft sets, and interval-valued
q-rung orthopair fuzzy hypersoft linguistic term sets.
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