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Abstract: Based on the modified scale boundary finite element method and continued 
fraction solution, a high-order doubly asymptotic transmitting boundary (DATB) is 
derived and extended to the simulation of vector wave propagation in complex layered 
soils. The high-order DATB converges rapidly to the exact solution throughout the entire 
frequency range and its formulation is local in the time domain, possessing high accuracy 
and good efficiency. Combining with finite element method, a coupled model is 
constructed for time-domain analysis of underground station-layered soil interaction. The 
coupled model is divided into the near and far field by the truncated boundary, of which 
the near field is modelled by FEM while the far field is modelled by the high-order 
DATB. The coupled model is implemented in an open source finite element software, 
OpenSees, in which the DATB is employed as a super element. Numerical examples 
demonstrate that results of the coupled model are stable, accurate and efficient compared 
with those of the extended mesh model and the viscous-spring boundary model. Besides, 
it has also shown the fitness for long-time seismic response analysis of underground 
station-layered soil interaction. Therefore, it is believed that the coupled model could 
provide a new approach for seismic analysis of underground station-layered soil 
interaction and could be further developed for engineering. 
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1 Introduction 
The fast development of urbanization has catalyzed for underground space exploitation, 
especially urban rail transit. The dynamic response of embedded structures in layered soil 
such as metro station and tunnels is greatly affected by soil-structure interaction (SSI) 
[Wolf (1989)], of which the radiation damping of the semi-infinite foundation is the main 
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difficulty and key point of simulation. Extensive numerical approaches have been 
developed over the past 40 years to model the unbounded domain. Most of them could be 
summarized as approximate and rigorous methods. Approximate methods like the 
artificial boundary conditions [Dan (1999, 2004)] are spatially and temporally local, 
which are computationally efficient but must be set with a quite distance from the 
interested region to obtain required accuracy [Lysmer (1969)]. Besides, most of the 
artificial boundaries are only singly asymptotic at high-frequency, resulting in a very high 
order of approximation for reasonable accuracy [Hagstrom and Hariharan (1998)] when 
confronting the evanescent wave decayed promptly in semi-infinite layered medium. 
While rigorous methods like the boundary element method (BEM) [Estorff and Hagen 
(2005); Luco and Barros (2010)], the thin layer method (TLM) [Kausel and Peek (1982); 
Kausel (2010)] and the scaled boundary finite element method (SBFEM) [Song and Wolf 
(1997); Wolf (2004)] are spatially and temporally global, thus computationally expensive. 
The SBFEM is a semi-analytical method, of which only the boundary is discretized and 
no fundamental solution is required to satisfy the damping condition of unbounded 
domain. Therefore, it is an appealing method for researching the unbounded domain. The 
application of the SBFEM could be found in Bazyar et al. [Bazyar and Song (2010a, 
2010b); Bransch and Lehmann (2011); Yaseri, Bazyar and Hataf (2014)], but it is still 
lack in efficiency because of globalization in the time domain, restricting the broad 
application of SBFEM. 
To balance well between accuracy and computational efficiency, there are many 
researches on the application of SBFEM in layered soils. Birk et al. [Birk and Behnke 
(2012)] modify the SBFEM in the case of layered soils by replacing the scale center with 
line and successfully apply it to the three-dimension problems. Chen et al. [Chen, Birk 
and Song (2015)] apply SBFEM to elastic wave propagation simulation in layered soil in 
the time domain. However, it is time-consuming because of convolutional integration 
solution. Based on the SBFEM, Bazyar et al. [Bazyar and Song (2008)] construct a high-
order transmitting boundary using continued fraction solution, realizing time localization. 
Extra factor matrices are introduced by Birk et al. [Birk and Song (2009)] to improve the 
numerical stability, making it suitable for large-scale problems. However, it could not 
model evanescent waves because of singly asymptotic at high-frequency and only the 
propagating waves is absorbed. Hence, a high-order doubly asymptotic transmitting 
boundary (DATB) is proposed by Prempramote et al. [Prempramote, Song, Tin-Loi et al. 
(2010)] for scalar wave propagation in semi-infinite layered medium, in which continued 
fraction solution is expanded at both high and low frequency, obtaining dynamic stiffness 
solution closed to the exact solution. Wang et al. [Wang, Jin, Prempramote et al. (2011)] 
and Gao et al. [Gao, Jin, Wang et al. (2011)] expand this boundary to unbounded 
reservoir and apply it with FEM to the seismic response analysis of dam-reservoir 
systems. Furthermore, the high-order DATB is applied for problem of vector wave 
propagation in single layered soil [Prempramote (2011)]. However, it does not go further 
application on complicated layers situation. 
In all, lots of researches have concentrated on the solution in the frequency domain and it 
is still relied on time-consuming convolutional integration solution in the time domain, 
resulting in low efficiency. Besides, it is rarely reported the application of high-order 
DATB on time-domain analysis of underground station-layered soil interaction, 
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especially in multiple layered soils.  
In this paper, the excellent high-order DATB is extended to simulation of the vector wave 
propagation in the complicated layered soils. Combining the high-order DATB with the 
finite element method (FEM), a coupled model is constructed for the seismic response 
analysis of the realistic complicated underground station-layered soil systems. The 
coupled model is numerically implemented in OpenSees to study the seismic response of 
the underground station-layered soil systems. OpenSees, the open system for earthquake 
engineering simulation (http://opensees.berkeley.edu), is an open source general purpose 
finite element software for modeling structural and geotechnical systems. The accuracy 
and efficiency of the coupled model are validated by numerical examples. 

2 Summary of SBFEM of semi-infinite layers with constant depth 
Underground station is usually buried in the complicated layered soils. Thus, the key 
equations of the SBFEM for vector wave problem in layered soils [Prempramote, Song, 
Tin-Loi et al. (2010)] are briefly presented in this section. 
As shown in Fig. 1, elastic semi-infinite layers with constant depth are assumed to be 
isotropic. As a special case, the scaling center of semi-infinite layers in the SBFEM is 
located at infinity [Li, Cheng, Deeks et al. (2005)]. The model is divided into the near 
field and far field by the truncated boundary. One-dimensional line element is brought in 
to discretize the truncated boundary Bv shown in Fig. 1(a) and a typical line element is 
shown in Fig. 1(b). Besides, free boundary condition is imposed on the upper boundary 
Bu and fixed boundary condition is imposed on the bottom boundary Bb. 

           
   (a) geometry and discretization                       (b) a typical line element 

Figure 1: Elastic semi-infinite layers with constant depth  

The geometry of the line element in the scaled boundary coordinates (ξ ,η ) is expressed as 
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where 0ξ ≥  ( 0ξ =  denotes the vertical boundary Bv), [ ( )]N η  is the shape function 
vector formulated in the coordinate η  and { }by  is the vertical coordinate vector of nodes 
on the vertical boundary Bv.  
For two-dimensional problem of semi-infinite layers, the scaled boundary finite element 
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(SBFE) equation in displacement is derived by using the scale boundary transformation 
as well as Galerkin weighted residual method and formulated in the frequency domain as 

( ){ } ( ) ( ){ } ( ){ } ( ){ }0 1 1 2 2 0
, ,

[ ] [ ] [ ] [ ] [ ] 0TE U E E U E U M U
ξξ ξ

ξ ξ ξ ω ξ+ − − + =           (2) 

where the coefficient matrices are independent of ξ  and defined in the Prempramote 
[Prempramote (2011)]. 

The dynamic stiffness matrix of an unbounded domain [ ( )]S ω∞  (superscript ∞  denotes 
for unbounded domain) is defined by the excitation force-displacement relationship as 

{ } ( ){ }[ ( )]R S Uω ξ∞=                  (3) 

where { }R  is nodal forces on the truncated boundary. 

Following the derivation in Prempramote [Prempramote (2011)], Eq. (2) can be 
transformed into the formulation in dynamic stiffness as 

1 0 1 1 2 2 0([ ( )] [ ])[ ] ([ ( )] [ ] ) [ ] [ ] 0TS E E S E E Mω ω ω∞ − ∞+ + − + =            (4) 
where ω  is the excitation frequency. Based on Eq. (4), the high-order DATB could be 
constructed with the help of continued fraction solution and would be described in 
Section 3. 

3 High-order doubly asymptotic transmitting boundary 
In this section, continued fraction solution is applied in Eq. (4) to approximate the 
dynamic stiffness matrix of unbounded domain at both high-frequency and low-
frequency range. The transmitting boundary condition is constructed using the continued 
fraction solution of dynamic stiffness matrix and the auxiliary variable technique. The 
solution process of the continued fraction expansion at both high frequency and low 
frequency range can be found in Prempramote [Prempramote (2011)], only the key 
equations are presented. 
To start with, the continued fraction solution is firstly determined at the high-frequency 
limit (ω →∞ ) and is expressed as 

(1) (1) 1 (1)[ ( )] [ ] (i )[ ] [ ][ ( )] [ ]TS K C X Y Xω ω ω∞ −
∞ ∞= + −           (5a) 

( ) ( ) ( ) ( 1) ( 1) 1 ( 1)
0 1[ ( )] [ ] (i )[ ] [ ][ ( )] [ ] ( 1,2,3..., )i i i i i i T

HY Y Y X Y X i Mω ω ω+ + − += + − =        (5b) 

where [ ]K∞  and [ ]C∞  are stiffness matrix and damping matrix of unbounded domain 
respectively. ( )

0[ ]iY  and ( )
1[ ]iY  are coefficient matrices to be determined recursively in the 

solution procedure. ( )[ ]iX  is the factor matrix introduced to improve numerical stability. 

HM  is the order of the continued fraction solution at high frequency range. 
To determine a valid solution over the whole frequency range, the continued fraction 
solution for the residual of the high frequency range is constructed at the low-frequency 
limit ( 0ω → ). Introducing ( 1)[ ( )] [ ( )]HM

LY Yω ω+= , the continued fraction solution of 
[ ( )]LY ω  at the low-frequency limit is expressed as 
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(0) (0) 2 (1) (1) 1 (1)
0 1[ ( )] [ ] (i )[ ] (i ) [ ][ ( )] [ ]T

L L L L L LY Y Y X Y Xω ω ω ω −= + −          (6a) 
( ) ( ) ( ) 2 ( 1) ( 1) 1 ( 1)

0 1[ ( )] [ ] (i )[ ] (i ) [ ][ ( )] [ ] ( 1,2,3..., )i i i i i i T
L L L L L L LY Y Y X Y X i Mω ω ω ω+ + − += + − =      (6b) 

where (0)
0[ ]LY , (0)

1[ ]LY , ( )
0[ ]i

LY  and ( )
1[ ]i

LY  are coefficient matrices to be calculated 
recursively. The factor matrix ( )[ ]i

LX  is introduced to improve numerical stability of the 
continued fraction solution. LM  is the order of the continued fraction solution at low 
frequency range. 
Substituting continued fraction solution of dynamic stiffness matrix (Eqs. (5)-(6)) into Eq. 
(3) as well as introducing auxiliary variables, the high-order DATB in the frequency 
domain is constructed. Apply the inverse Fourier transform, this transmitting boundary is 
formulated in the time domain as: 
[ ]{ } [ ]{ } { }Z z Z z zK u C u f+ =                (7) 

where [ ]ZK  is the generalized stiffness matrix and [ ]ZC  is the generalized damping 
matrix. { }zu  denotes the displacement amplitude and the auxiliary variables on the 
boundary Bv. { }zf  denotes the amplitude of the excitation forces on the boundary Bv. All 
of them are the frequency-independent coefficient matrices and defined as: 
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where the block matrices 1[ ]K , [ ]AK  and [ ]AC  are defined as 
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where subscript “A” represents the auxiliary variables. 
Eq. (7) is a first order ordinary differential equation and can be solved using the standard 
time integration scheme, such as Newmark method. Thus, the time-consuming 
convolutional integration is avoided in the transient analysis and the computational 
efficiency is improved. 

4 Coupled model and implementation in OpenSees 
Employing the same grids and shape functions at the common boundary (i.e., Bv), the 
high-order doubly asymptotic transmitting boundary can be seamlessly coupled with 
FEM. Regardless of material damping, the finite element equation modeling near-field in 
the time domain is expressed as 

[ ] [ ] { } [ ] [ ] { } { }
[ ] [ ] { } [ ] [ ] { } { }

ss sb s ss sb s s

bs bb b bs bb b b

M M u K K u f
M M u K K u r

         
+ =         −         





         (10) 

where matrices [ ]M  and [ ]K  stand for the mass matrix and the stiffness matrix 
respectively, subscript “s” denotes all the other degree of freedom except those on the 
boundary and “b” denotes the degree of freedom on the boundary. { }su  and { }bu  are the 
displacement vector. { }sf  and { }br  are the nodal force vector. 
Combining Eqs. (7) and (10), the coupled model could be built. As the coefficient 
matrices of Eq. (8) result from the repeated inversion in the continued fraction solution, 
possible spurious modes may exist, resulting in the instability of Eq. (10). To guarantee 
the numerical stability, a spectrum shifting technique is proposed by Birk et al. [Birk, 
Prempramote and Song (2012)] to remove spurious modes, where [ ]ZK  is modified 
while [ ]ZC  remains still. 
Marking superscript “~” for modification of the stiffness matrices, the coupling equation 
is obtained by substituting Eq. (7) into Eq. (10) as: 
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Eq. (11) has the same characteristics as the finite element equation, i.e., the coefficient 
matrices are symmetric and sparse. This coupled model is implemented in the open 
source finite element software OpenSees. The high-order DATB is employed as a super 
element in OpenSees. As the coeffect matrices of the super element are constant, they can 
be solved only once by MATLAB and read into OpenSees during the analysis. The main 
solution procedure of the coefficient matrices in MATLAB are summarized as Fig. 2. 
Moreover, the TCL (Tool Command Language) script for the input of the DATB super 
element is also generated by MATLAB. As the coefficient matrices of the DATB super 
element is solved and stored in binary file before the transient analysis, the DATB super 
element in OpenSees simply reads in the coefficient matrices according to the analysis 
procedure and thus computationally efficient. 

 

Figure 2: The main solution procedure of the coefficient matrices in MATLAB 

5 Numerical examples 
In this section, the accuracy and efficiency of the coupled model are examined in the time 
domain by two numerical examples. As the coupled model is constructed on the high-
order DATB, the results of the coupled model are denoted by DATB for simplicity. The 
extend mesh model (EMM) is analyzed by FEM to provide a reference solution. Besides, 
the viscous-spring boundary model [Liu, Du, Du et al. (2006)] (VSB) is also employed to 
make a comparison with DATB. All the methods are conducted through using the open 
source finite element software OpenSees.  
In Section 5.1, surface traction is applied at double semi-infinite layered soil. And in 
Section 5.2, a metro station buried in double layered soil subjected to El-Centro seismic 
wave is analyzed. Moreover, in Section 5.3, the calculation efficiency is discussed among 
numerical examples. 
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5.1 Semi-infinite layered soil under surface traction of triangular impulse 
In this example, the double semi-infinite layered soil subjected to surface traction in the 
inclined direction of 45° is illustrated in Fig. 3. The top of the soil is free boundary 
condition and the bottom of the soil is fixed. Both have the height of 0.5. The material 
properties of soils are presented in Fig. 3. 
Standard four-node quadrilateral element in OpenSees is selected to model near and far 
field for plane-strain condition. The near field needs to be discretized with 100 quadrilateral 
elements (size of element is 0.1×0.1). As for the boundary between near and far field, 10 
two-node line elements of equal length are used for discretization in the DATB model. 
While for the EMM, total discretization area is 80×1 so that responses are not affected by 
the waves reflected at the truncated boundary under correspondingly analyzing time. 8000 
quadrilateral elements (size of element is 0.1×0.1) are used for discretization. 
The time history of triangle impulse ( )p t  is plotted in Fig. 4 and the maximum surface 
traction is denoted as P . The total analyzing time is 30 and the dimensionless time step 

t∆  is 0.1. 

 

Figure 3: Double semi-infinite layered soils subjected to inclined surface traction  

 

Figure 4: Time history of triangular impulse  

The accuracy of the DATB is investigated with the order of 4H LM M= = . The 
displacement responses at Point A and B are plotted in Figs. 5 and 6, respectively. 
Excellent agreement is shown between the response of the DATB and the EMM through 
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the whole calculating time, demonstrating the high accuracy of the DATB. As for the 
VSB, unsatisfactory results can be seen in both Point A and B. Besides, the results of 
Point B deviate much more from the EMM than those of Point A, manifesting a 
significant error at the boundary of the VSB. It is indicated the deficiency of the VSB in 
the long-time dynamic analysis. 

     
    (a) horizontal displacement                            (b) vertical displacement 

Figure 5: Displacement responses at point A  

     
  (a) horizontal displacement                             (b) vertical displacement 

Figure 6: Displacement responses at point B  

5.2 Metro station embedded in semi-infinite layered soil 
In Section 5.2, a metro station embedded in semi-infinite layered soil is studied under El-
Centro wave. Two layered soils are selected and the metro station is chosen as double-
layered island platform station.  
As shown in Fig. 7, the physical dimension of the near field model is 66 m×55 m and the 
metro station is horizontally located in the middle of near field. The top of the soil (the 
ground surface) is free boundary condition and the bottom of the soil is fixed. Three 
observant Point A, B and C are selected for displacement.  
As depicted in Fig. 8, the metro station is mainly consisted of the roof slab (RS), the middle 
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slab (MS), the base slab (BS), the lateral wall (LW) and the columns. The thickness of RS, 
MS, BS and LW is 0.8 m, 0.5 m, 0.9 m and 0.8 m, respectively. The columns are spatial in 
practical and the principle of equivalent stiffness is introduced considering the plane-strain 
condition. Therefore, the width of the columns is equivalent to 0.4 m. 
The near field soils are modeled by 3300 quadrilateral elements (size of elements is 1 
m×1 m). Another 55 two-node line elements are used for discretizing the vertical 
boundary to model far field in the DATB. As for the EMM, the entire discretization area 
is determined as 3000 m×55 m. Totally 84171 elements are used to model near field soil 
as well as underground station in the EMM. 186 quadrilateral elements are applied to 
model the metro station. The metro station is assumed to deform together with the soils 
during the seismic as one kind of the soil-structure interaction (SSI). Therefore, the 
common girds are shared by station and soils in modeling. The mesh model of the near 
field is illustrated in Fig. 9. 

 

Figure 7: Metro station embedded in semi-infinite layered soil suffered by El-Centro wave  

 

Figure 8: Details and geometry of the metro station  
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Figure 9: The mesh model of the near field 

The material constants of the soils are presented in Fig. 7. And material of the metro 
station is C30 concrete with the Young’s modulus 3000 MPacE = , mass density 

32500 kg/mcρ =  and Poisson’s ratio 0.20cν = . Both the metro station and the soils are 
considered as elastic constitutive model. 
El-Centro wave is selected as input seismic wave and loaded as the time history of 
acceleration at the nodes on the left boundary in Fig. 7. It is triangularly inclined 
distributed at a direction of 45° to horizontal line. The time history of acceleration of El-
Centro wave and its Fourier transform are plotted in Fig. 10. The entire duration lasts for 
10s and time step t∆  is 0.02 s. 

     
(a) time history of acceleration                                (b) Fourier transform    

Figure 10: El-Centro seismic wave  
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The comparisons of the displacement responses under El-Centro wave among the DATB, 
the VSB and the EMM are shown in Figs. 11, 12 and 13. The DATB is calculated with an 
order 4H LM M= = . It can be observed from three figures that excellent agreement 
exists between the DATB and the EMM in both horizontal and vertical displacement 
among three observant points. However, the results of the VSB are less accurate 
compared with the DATB. Similar as the observations from Section 5.1, the results of the 
boundary (Point C) as plotted in Fig. 13 have a much more deviation than those of the 
inside points (A and B).  
Through the examples, it can be concluded that the DATB is much more accurate in 
modeling semi-infinite layered medium as well as solving time-domain problem than the 
VSB. The excellent agreement in Section 5.2 between the DATB and the EMM indicates 
that the DATB might be applicable to practical engineering project. 

     
  (a) horizontal displacement                             (b) vertical displacement 

Figure 11: Displacement responses at point A 

     
  (a) horizontal displacement                              (b) vertical displacement 

Figure 12: Displacement responses at point B  
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(a) horizontal displacement                             (b) vertical displacement 

Figure 13: Displacement responses at point C  

5.3 Comparison of the calculation efficiency 
To evaluate the efficiency of the coupled model, the computer times spent on the above 
time-domain analyze of two numerical examples are listed in Tab. 1. The times are 
recorded on a desktop computer with an Intel(R) Core(TM) i7-6700K 4.00 GHz CPU and 
48.0 GB of RAM. In Tab. 1, numerical examples (1) and (2) represent the example in 
Section 5.1 and metro station example in Section 5.2.  
For numerical example Ⅰ as well as Ⅱ, the calculation time of the DATB is close to that 
of the VSB, showing a good efficiency while ensuring a high accuracy. Therefore, it is 
shown that high-order doubly transmitting boundary balances well between accuracy with 
efficiency as it can greatly improve the accuracy while does not spend too much time. 

Table 1: Comparison on computer times of numerical examples 

Numerical example DATB VSB EMM 

(1) 
Degree of freedoms 442 264 17622 

Time (s) 7.5 6 197 

(2) 
Degree of freedoms 8484 7496 171688 

Time (s) 207.5 148 3121 

So far, the high-order doubly asymptotic boundary has been proved accurate and efficient. 
It is demonstrated that this coupled model is well suitable for long-time analysis of 
underground station-layered soil interaction in the time domain. 

6 Conclusions 
The high-order DATB is extended to the simulation of elastic wave propagation in semi-
infinite multiply layered soils. This transmitting boundary converges to the exact solution 
rapidly throughout the entire frequency range. A coupled model is constructed by 
combining the excellent DATB and FEM. This coupled model is implemented in the 
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open source finite element software OpenSees by employing a super element 
representing the high-order DATB. The coefficient matrices of the super element are 
constant matrices and solved only once by MATLAB.  
Numerical examples have witnessed the accuracy and efficiency of the coupled model. 
The coupled model is of high accuracy as excellent agreement shown between the results 
by DATB and the EMM. While compared with the VSB, the coupled model does not 
spend too much time on calculation, showing a better balance of accuracy and efficiency. 
It is also demonstrated that the coupled model is suitable for long-time analysis of 
underground station-layered soil interaction. Besides, the coupled model is achieved 
through OpenSees and can be further developed for engineering application. 
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