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Abstract: In the field of earthquake engineering, the advent of the performance-based 

design philosophy, together with the highly uncertain nature of earthquake ground 

excitations to structures, has brought probabilistic performance-based design to the 

forefront of seismic design. In order to design structures that explicitly satisfy 

probabilistic performance criteria, a probabilistic performance-based optimum seismic 

design (PPBOSD) framework is proposed in this paper by extending the state-of-the-art 

performance-based earthquake engineering (PBEE) methodology. PBEE is traditionally 

used for risk evaluation of existing or newly designed structural systems, thus referred to 

herein as forward PBEE analysis. In contrast, its use for design purposes is limited 

because design is essentially a more challenging inverse problem. To address this 

challenge, a decision-making layer is wrapped around the forward PBEE analysis 

procedure for computer-aided optimum structural design/retrofit accounting for various 

sources of uncertainty. In this paper, the framework is illustrated and validated using a 

proof-of-concept problem, namely tuning a simplified nonlinear inelastic single-degree-

of-freedom (SDOF) model of a bridge to achieve a target probabilistic loss hazard curve. 

For this purpose, first the forward PBEE analysis is presented in conjunction with the 

multilayer Monte Carlo simulation method to estimate the total loss hazard curve 

efficiently, followed by a sensitivity study to investigate the effects of system (design) 

parameters on the probabilistic seismic performance of the bridge. The proposed 

PPBOSD framework is validated by successfully tuning the system parameters of the 

structure rated for a target probabilistic seismic loss hazard curve. The PPBOSD 

framework provides a tool that is essential to develop, calibrate and validate simplified 

probabilistic performance-based design procedures. 
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1 Introduction 

The seismic design philosophy has evolved from the safeguard against collapse of 

structures and loss of life to performance-based seismic design (PBSD). Aimed at 

improving and ensuring post-earthquake functionality, PBSD has been developed in 

response to the substantial economic losses due to earthquakes (e.g., a total loss of $24 

billion for the 1994 Mw 6.7 Northridge earthquake [Eguchi, Goltz, Taylor et al. (1998)]. 

However, uncertain structural performance is inevitable because of various sources of 

uncertainty, i.e., the randomness in structural loads (e.g., earthquake loads), the variability 

in demands imposed on the structural system, and the uncertainties in the capacity of the 

system to withstand those demands as well as other socio-economic variables (e.g., 

uncertainty in repair cost for damaged components). With the highly uncertain nature of 

earthquake ground motions, the advent of performance-based design philosophy has 

brought probabilistic PBSD to the forefront of seismic design. The need to account for 

these uncertainties has prompted the development of a modular probabilistic performance 

evaluation methodology, the performance-based earthquake engineering (PBEE) 

methodology, under the auspice of the Pacific Earthquake Engineering Research (PEER) 

Center [Cornell and Krawinkler (2000)]. PBEE aims to evaluate probabilistically the 

seismic performance of a structure under specific site and soil conditions in an uncertainty 

propagation framework, herein referred to as forward PBEE analysis. In the last two 

decades, significant research efforts have been devoted to the development of the PEER 

PBEE methodology [Cornell and Krawinkler (2000); Porter (2003); Baker (2007); Günay 

and Mosalam (2013); Lin, Haselton and Baker (2013)]. Applications of the PEER PBEE 

methodology for probabilistic performance assessment of various testbed structures can be 

found in the literature [Comerio (2005); Kunnath, Larson and Miranda (2006); Zhang 

(2006); Conte and Zhang (2007); Goulet,  Haselton, Mitrani-Reiser et al. (2007); Haselton, 

Liel, Deierlein et al. (2011); Mosalam and Günay (2014); Li and Conte (2017); Romano, 

Faggella, Gigliotti et al. (2018); Li and Conte (2019)]. With its wide acceptance as a tool 

for probabilistic performance assessment, the PEER PBEE methodology has formed the 

basis for structural design codes or evaluation guidelines, e.g., FEMA P-58 [FEMA (2012)] 

in which PBEE is specialized to performance-based seismic assessment of new and existing 

building structures. 

Notwithstanding the significant progress in PBEE for probabilistic performance assessment, 

more limited research has been performed in inverse PBEE for structural design purposes 

[Jalayer and Cornell (2003); Mackie and Stojadinovic (2007); Zakeri and Zareian (2017)]. 

This is due to the probabilistic nature of the PBEE methodology, which hinders its 

application to the design process to achieve a design target explicitly described in 

probabilistic terms. The design process is essentially a decision-making process. Old-

fashioned design was performed through a manual trial-and-error approach, guided by a 

both a simple design philosophy and engineering experience. Currently, in professional 

practice, the uncertainties are accounted for by applying a subjective “factor of safety 

approach” in the allowable stress methodology or a semi-probabilistic “partial safety 

approach” in the Load and Resistance Factor Design (LRFD) [Ellingwood (2000)]. The 

application of a fully probabilistic and risk-informed approach (e.g., PBEE) in developing a 

practical performance-based design methodology requires the inversion of the available 
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probabilistic performance-based assessment methodology, herein referred to as the inverse 

PBEE analysis. In order to conquer the inverse problem of explicitly satisfying probabilistic 

performance criteria confronted in the design process, computer-aided structural design 

using mathematical optimization becomes essential because of the increased complexity in 

the probabilistic design process [Austin, Pister and Mahin (1987); Haukaas (2008)]. 

It is worth noting that significant research has been performed on a closely related topic, i.e., 

reliability-based seismic design optimization [Jensen, Valdebenito, Schuëller et al. (2009); 

Taflanidis and Beck (2009); Barbato and Tubaldi (2013); Tubaldi, Barbato and  Dall’Asta 

(2016)], which also addresses the inverse problem in the presence of uncertainties. In these 

studies, the seismic design problem is treated as an inverse problem considering 

uncertainties associated with the earthquake loading (intensity and time history) and in 

some cases the structural model parameters. The inverse problem was cast either as a zero-

finding problem [Barbato and Tubaldi (2013)] to achieve a target reliability, or as an 

optimization problem, in which reliability metrics (i.e., the probability of failure of the 

system) are used to define the objective/constraint functions. However, these studies 

focused on the system reliability (or probability of failure) based on a pre-defined critical 

threshold value of a response quantity, instead of the full probabilistic description of the 

structural system performance at a continuum of levels of response (demand) and loss and 

at a discrete set of damage states. It is also worth mentioning that the above studies 

represent the earthquake ground motions analytically as a random process (e.g., non-

stationary filtered white noise process) linked to a ground motion intensity measure such as 

the peak ground acceleration (PGA). In contrast, the study reported in this paper uses 

ensembles of scaled historic earthquake ground motion records to represent the record-to-

record variability in the forward PBEE analysis. These earthquake records are selected 

based on the magnitude-distance deaggregation of the site seismic hazard, the geological 

and seismological conditions and the local site conditions. This earthquake ground motion 

characterization is currently predominantly used in performance-based earthquake 

engineering, both at the level of research and engineering practice. 

The aforementioned need calls for an innovative optimum seismic design framework in 

the presence of uncertainty by using the versatile and modular probabilistic PBEE 

methodology. Aiming at promoting the practical application of probabilistic methods for 

design purposes, this paper proposes a probabilistic performance-based optimum seismic 

design (PPBOSD) framework. This framework is an extension of the PBEE methodology 

obtained by wrapping a decision-making layer in the design process around the forward 

PBEE analysis using mathematical optimization. The PPBOSD framework is illustrated 

and validated using a simplified nonlinear inelastic single-degree-of-freedom (SDOF) 

model of a bridge structure as a proof-of-concept study, before applying it to more 

complex and realistic engineering problems in the future. In the validation example, a 

well-posed optimization problem of tuning system (design) parameters of the structure to 

achieve a target probabilistic loss hazard curve is defined and solved using the proposed 

PPBOSD framework. 

This paper is structured as follows. First, the motivation behind the proposed PPBOSD 

framework is articulated, and an illustrative example of a SDOF bridge model, which is 

used to demonstrate conceptually the application of the PPBOSD framework, is presented. 
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Second, the steps of the forward PBEE analysis, which is an indispensable component of 

PPBOSD, are described in the context of quantitatively assessing the seismic 

performance of the illustrative structure in probabilistic terms. Note that a multilayer 

Monte Carlo simulation procedure is implemented to estimate efficiently the total seismic 

loss hazard of the structure, which is needed in the PPBOSD framework. Third, a 

parametric probabilistic PBEE analysis is conducted to investigate the effects of the 

system (design) parameters on the probabilistic seismic performance of the structure. 

Finally, for illustration and validation purposes, the inelastic SDOF bridge model 

parameters are optimized (i.e., tuned), using the PPBOSD framework, to achieve a target 

seismic loss hazard curve of the bridge. The underlying assumptions and limitations of 

the presented research are critically discussed in the conclusions. 

2 PPBOSD framework and illustrative application 

The well-established PEER PBEE methodology is used primarily to sequentially quantify 

and analyze the uncertainties in the seismic intensity and earthquake records, structural 

response (demand), structural capacity, seismic damage (i.e., limit-state exceedances), 

and eventually the seismic loss (e.g., repair cost, down time) for a structure, at a given 

site, due to future earthquakes. The PBEE methodology (i.e., forward PBEE analysis) 

consists of four analytical steps: probabilistic seismic hazard analysis, probabilistic 

demand hazard analysis, probabilistic damage hazard analysis, and probabilistic loss 

hazard analysis (Fig. 1). Each step determines the probabilistic characteristics of 

intermediate (or interface) variables, respectively referred to as the earthquake ground 

motion Intensity Measure (IM), Engineering Demand Parameter (EDP), Damage 

Measure (DM), and Decision Variable (DV) such as monetary loss. 

  

Figure 1: Forward PBEE analysis and need for inverse PBEE analysis 

For a newly designed or an existing structure, forward PBEE analysis can be used as a 

reliable tool to assess its probabilistic seismic performance, which depends on the system 

parameter vector x consisting of geometric, material and mechanical properties of the 
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various structural components and seismic mitigation devices of the structure. However, 

the probabilistic performance of the structure may be unacceptable or not optimal 

according to target seismic design objectives, which are typically defined, based on the 

public’s expectations, by stakeholders, decision-makers and design code committees. 

This underlies the motivation behind an inverse PBEE analysis. For example, through the 

evaluation process using PBEE, an initial structural design is characterized by its seismic 

demand or loss hazard curve (i.e., probability of exceedance of any specified value of 

EDP or DV in 100 years) such as the hazard curve #1 in Fig. 2 expressed in terms of the 

probability of exceedance in 100 years. In contrast, the target performance can be 

characterized by hazard curve #2, #3, or #4 which would require tuning the design 

parameter vector x for this target design specification. Ideally, it is desirable to reduce the 

seismic risk (i.e., probability of exceedance) across the entire range of EDP or DV values, 

e.g., from hazard curve #1 to hazard curve #4. However, if hazard curve #4 is not feasible 

due to practical design constraints such as the initial construction cost, the decision-

makers (e.g., engineers, stakeholders, or owners) can aim at improving the design by 

targeting hazard curve # 2 or hazard curve #3 as an alternative to reducing the seismic 

risk across all EDP or DV values. Namely, the decisions are made to place more 

emphasis in the seismic performance either at the low hazard level (or short return period 

or high probability of exceedance) or at the high hazard level (or long return period or 

low probability of exceedance), respectively.  

 

Figure 2: Illustration of the motivation for proposed probabilistic performance-based 

optimum seismic design framework 

When aiming at improving the seismic performance at low hazard (or short return period 

or high probability of exceedance) levels, the performance of the initial structural design 

can be improved from hazard curve #1 to hazard curve #2. As seen from Fig. 2, this can 

be achieved by either minimizing the probability, ( )
1VP x , of exceeding a low threshold 

value v1 of the EDP or DV, or by minimizing the 86th percentile of the EDP (edp0.86) or 

DV (dv0.86), both of which may lower the structural performance at high hazard levels (or 

long return period or low probability of exceedance). Conversely, improving the seismic 

performance at high hazard levels may reduce the performance at low hazard levels. In 
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such a case, for example, the initial structural design could be altered so that its 

performance characterized by hazard curve #1 is improved to the performance 

characterized by hazard curve #3. Similarly, this can be achieved by either minimizing 

the probability, ( )
2VP x , of exceeding a high threshold value v2 of the EDP or DV or by 

minimizing the 10th percentile of the EDP (edp0.10) or DV(dv0.10) (see Fig. 2). Note that 

10% (a high hazard level) and 86% (a low hazard level) probability of exceedance in 100 

years correspond to return periods of 945 years and 50 years, respectively, based on the 

assumption of the Poisson random occurrence model. Alternatively, and more generally, 

the complete target loss hazard curve (defined by many discrete points at different hazard 

levels) can be used to express the probabilistic design objectives, as shown later in the 

illustrative example.  

The above inverse PBEE problem, which is confronted for design improvement or design 

optimization in the face of uncertainty, can be solved by the innovative optimum 

structural design framework (i.e., PPBOSD) proposed in this paper. PPBOSD extends the 

PBEE evaluation methodology, which can be viewed as an open loop, by wrapping a 

decision-making layer using optimization around the forward PBEE analysis in order to 

close the loop as shown in Fig. 3. This decision-making layer allows the use of various 

computational optimization tools, e.g., OpenSees-SNOPT [Gu, Barbato, Conte et al. 

(2012)], to update the initial structural design to achieve the performance objectives. The 

probabilistic seismic design objectives can be defined in terms of demand hazard, 

damage hazard, and/or loss hazard characteristics (e.g., hazard curves of EDP or DV, 

probability of limit-state exceedances, or statistics of EDP, DM, and/or DV in a specified 

exposure time). These design objectives can be cast into either objective or constraint 

functions in the optimization problem formulation. Thus, the proposed PPBOSD 

framework provides a tool to search for either a feasible design that satisfies all constraint 

functions or an optimum design that minimizes the objective function while satisfying all 

constraint functions. In PPBOSD, the current design is first assessed using the forward 

PBEE analysis for its probabilistic performance, which is compared with the design 

objectives expressed in terms of target hazard levels or statistics. If the design objectives 

are not satisfied, the current design will be updated in the decision-making layer through 

optimization by tuning the structural design parameters x.  

This paper focuses on the illustration and validation of the proposed PPBOSD framework, 

rather than a practical application to a complex large-scale bridge system, which is 

considered as the next stage of this research. Accordingly, a simple nonlinear bridge 

structural model is selected herein for simplicity but without loss of generality. This 

structural model consists of an inelastic SDOF system, which is commonly used to 

represent macroscopically a bridge behavior in its longitudinal or transverse direction. A 

nonlinear FE model of the Humboldt Bay Middle Channel Bridge (HBMC, see Fig. 4(a)) 

previously developed in OpenSees [Conte and Zhang (2007)] is used to calibrate the 

nonlinear SDOF system parameters. The initial stiffness of the SDOF model obtained 

from the static pushover analysis of the bridge in the longitudinal direction is k0=137,200 

kN/m, and the effective lumped mass accounted for is m=6.15×106 kg, thus leading to an 

initial fundamental period of vibration T1=1.33 s. The nonlinear model parameters 

associated with this inelastic SDOF model (Fig. 4(b)) are the yield strength Fy=10,290 kN 
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(i.e., corresponding to a yield displacement Uy=0.075 m), and the post-yield stiffness 

ratio (=ratio of the post-yield stiffness to the initial stiffness) b=0.10. The Menegotto-

Pinto hysteretic material model is used to approximately represent the cyclic force-

displacement response behavior and energy dissipation capabilities of an inelastic 

structural system such as a bridge. Furthermore, linear viscous damping with a damping 

ratio of 2% is incorporated in the SDOF bridge model to account for sources of energy 

dissipation beyond the hysteretic energy dissipation due to inelastic action of the 

materials during an earthquake. Note that the nonlinear SDOF bridge model is used in 

this study only for the purpose of illustrating and validating the proposed PPBOSD 

framework, these being the main objectives of this paper, without the intention to assess 

comprehensively the probabilistic seismic performance of the actual bridge. 

 

Figure 3: Probabilistic performance-based optimum seismic design (PPBOSD) framework 

 
(a) 

 
 

(b) 

Figure 4: Humboldt bay middle channel (HBMC) bridge (courtesy of Caltrans): (a) 

isometric view, and (b) simplified nonlinear SDOF model to represent the longitudinal 

nonlinear response behavior of the bridge 
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In engineering practice, various structural response quantities or parameters, referred to 

as engineering demand parameters (EDPs), strongly correlated with different types of 

structural or non-structural damage are of interest. This study considers three EDPs, 

namely relative displacement ductility, μ , peak absolute acceleration, 
  
A

Abs.
, and 

normalized hysteretic energy dissipated, 
 
E

H
, as defined in Eqs. (1)-(3), respectively. 
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In the equations above, dt =earthquake duration (i.e., the total duration of the ground 

motion record downloaded from the PEER NGA database), ( )u t =displacement response 

relative to the ground, =relative acceleration response, =earthquake ground 

acceleration, g =acceleration due to gravity, ( )R t  =internal resisting force, and ( )E dE t  

=elastic strain energy stored in the system at time = dt t . The three response parameters 

defined in Eqs. (1)-(3) are selected as EDPs associated with the following damage/failure 

or limit-states: first-excursion failure, dynamic stability of vehicles traversing the bridge 

during the earthquake, and cumulative damage (e.g., low-cycle fatigue damage), 

respectively.  

3 Forward PBEE analysis 

The PEER PBEE methodology breaks down the seismic risk assessment procedure into 

four successive steps. These probabilistic steps sequentially quantify the uncertainty in 

the earthquake ground motion intensity measure (IM), the engineering demand parameter 

(EDP), the damage measure (DM) and the decision variable (DV), as implied by the 

underlying mathematical model expressed in Eq. (4). 

( ) ( ) ( ) ( ) ( )| , , | , | =   DV IMdv G dv dm edp im G dm edp im dG edp im d im           (4) 

Here, ( )X x  denotes the mean annual rate (MAR) of occurrence of the random event 

 ,X x namely the MAR of random variable X exceeding a given value x, 

and ( ) ( )=  =G x y P X x Y y  represents the conditional complementary cumulative 

distribution function (CCDF) of random variable X given random variable Y = y. In the 

probabilistic conditioning and deconditioning process, “one-step” forward dependence is 

assumed, i.e., ( ) ( ), =G dm edp im G dm edp and ( ) ( ), , =G dv dm edp im G dv dm . This 
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process aims at propagating the uncertainty related to the seismic input and structural 

capacity, all the way to the EDPs, DMs, and DVs using the total probability theorem. The 

four steps of the PEER PBEE methodology are described below with select results to 

illustrate the process of forward PBEE analysis, as well as deaggregation results to 

increase the transparency of the hazard analysis. A multilayer Monte Carlo simulation 

method [Zhang (2006); Yang, Moehle, Stojadinovic et al. (2009)] is implemented to 

estimate efficiently the total loss hazard of the structure.  

3.1 Probabilistic seismic hazard analysis 

Pioneered by the theoretical framework developed by Cornell [Cornell (1968)], 

probabilistic seismic hazard analysis (PSHA), Step (1) of the PBEE methodology, has 

become the most accepted approach for assessing the site-specific seismic hazard in a 

probabilistic manner [Shome, Cornell, Bazzurro et al. (1998); Luco and Cornell (2007); 

Petersen, Frankel, Harmsen et al. (2008)]. The probabilistic seismic hazard, which 

consists of the uncertainty quantification of the earthquake ground motion IM, is 

characterized by the MAR of the earthquake ground motion IM exceeding a specified 

threshold value im , ( ) ( )IM IMim IM im=   . Based on the Poisson process assumption 

for the random occurrence of earthquakes in time, the MAR of exceedance can be 

converted to the probability of exceedance (PE) in a specified exposure time (e.g., annual 

PE or PE in 50 years abbreviated as PE50). The IM is selected as the 5% damped linear 

elastic pseudo-spectral acceleration at the fundamental period ( 1T ) of the structural 

system ( )1, 5% =aS T , which has been shown to be a statistically efficient and sufficient 

predictor among a family of earthquake ground motion intensity measures [Shome, 

Cornell, Bazzurro et al. (1998); Luco and Cornel (2007)]. 

The PSHA for a specific site location and soil condition can be performed using the 2008 

Interactive Deaggregation tool provided by the United States Geological Survey (USGS). 

The site location in this study is assumed to be in the City of Oakland, California, at 

latitude=37.803° N and longitude=122.287° W. The soil condition is characterized by the 

average shear wave velocity in the top 30 meters of soil at the site location (Vs30=360 

m/s). The seismic hazard curve obtained from the 2008 Interactive Deaggregation tool 

will be needed in Step (2) of the forward PBEE analysis. 

The seismic hazard can be deaggregated with respect to the seismological variables, i.e., 

magnitude (M) and source-to-site distance (R), to gain additional insight into the 

contributing earthquakes. This insight will benefit the earthquake ground motion 

selection for the ensemble time history analyses. Fig. 5 shows the M-R deaggregation of 

the seismic hazard corresponding to PE50=2%, and two modes are observed in the M-R 

plane. The higher mode is mainly contributed by the Hayward Fault to the east of 

Oakland, and the lower mode is mainly contributed by the San Andreas Fault to the west 

of Oakland. This deaggregation information (i.e., 5.9<M<7.3 corresponding to the 

primary mode, 0<R<40 km) guided the earthquake ground motion selection process, 

together with the geological and seismological conditions (i.e., fault mechanism as strike-

slip) and local site conditions. Accordingly, a large number (i.e., 146) of horizontal 

earthquake ground motion records are selected from the PEER NGA database of 
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historical records, and are used as seismic inputs for the ensemble nonlinear time history 

analyses required for the probabilistic characterization of the seismic response (or 

demand) in the second step of the PBEE analysis. 

 

Figure 5: M-R deaggregation of the probabilistic seismic hazard corresponding to a 

probability of exceedance of 2% in 50 years (PE50=2%) 

3.2 Probabilistic demand hazard analysis 

Probabilistic demand hazard analysis (PDeHA) aims at predicting probabilistically the 

structural response (i.e., EDP) to future earthquakes. The probabilistic characterization of 

an EDP is obtained through the corresponding seismic demand hazard curve, which is 

defined as the MAR of EDP exceeding a threshold value edp , ( )EDP edp , or 

alternatively the probability of exceedance in 50 years, 50 [ ]PE P EDP edp=   in an 

exposure time of 50 years. Mathematically, through the total probability theorem, the 

demand hazard curve is obtained as the convolution of P EDP edp IM im =   , the 

conditional CCDF of the EDP given IM = im , and the demand hazard curve ( ) IM im , 

thus accounting for all seismic hazard levels, as 

( ) ( )EDP IM

IM

edp P EDP edp IM im d im=  =                 (5) 

Thus, a crucial step of probabilistic demand hazard analysis is to find the probability 

distribution of the EDP of interest given a value im of IM, P EDP edp IM im =   , 

which is referred to as the probabilistic demand conditional on the seismic hazard level. 

The conditional probabilistic demand analysis can be performed through the commonly 

used cloud method [Baker (2005)]. In this method, an ensemble of nonlinear dynamic 

analyses of the structure of interest are performed for the selected suite of earthquake 

ground motion records, which have various IM values. The corresponding seismic 

response dataset for the selected earthquakes, 
  

im
i
,  edp

i
éë ùû  ( 1, 2, , 146i = ), is used to 

build a statistical model of EDP given IM based on linear regression analysis. The 

conditional mean value of ln EDP given IM , ln | EDP IM , is estimated as 
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ln |
ˆˆ ˆ  ln EDP IM a b IM = +                         (6) 

and the conditional variance, 2

ln | EDP IM , is estimated as 

( )
2

2 1

ˆˆ  ln 

ˆ
2

=

 − +
 

=
−


n

i i

i

ln edp a b im

s
n

                            (7) 

where â  and b̂  are obtained through regression analysis. Accordingly, the conditional 

random variable  | =EDP IM im  is fully characterized by the conditional probability 

density function (PDF) (see Fig. 6) or conditional CCDF, ( )| |EDP IMG edp im , which often, 

including for the example presented here, is well represented by the lognormal 

probability distribution,  

( )  
( )

|

ˆˆln  ln 
| | 1  

ˆ

 − +
 =  = = −
 
 

EDP IM

edp a b im
G edp im P EDP edp IM im

s
         (8) 

where   is the standard normal CDF and ln denotes the natural logarithmic function. 

 

Figure 6: Conditional seismic demand hazard analysis result for EDP=relative 

displacement ductility 

The conditional probabilistic demand reflects the record-to-record variability when the 

earthquake IM is fixed. To account for the uncertainty in the earthquake IM, the 

convolution of the conditional CCDF of the EDP and the seismic hazard curve obtained 

through PSHA is performed according to Eq. (6). This leads to the (unconditional) 

probabilistic demand hazard curve, ( )EDP edp , as shown in Fig. 7(a) for EDP=relative 

displacement ductility ( ) . The demand hazard curve presented shows that the MAR of 

the relative displacement ductility exceeding 1, 2, 4, 6, 8 =  is 1.84×10-2, 0.77×10-2, 
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0.16×10-2, 0.04×10-2, and 0.01×10-2, respectively, as indicated by the solid circles in Fig. 

7(a). Note that the MAR of exceedance of 1.84×10-2 corresponds to a mean return period 

of 55 years (=1/1.84×10-2), i.e., the relative displacement ductility will exceed 1.0 (i.e., 

the structure will yield) at least once every 55 years on average. 

The seismic demand hazard with a given MAR of exceedance arises from a continuous 

range of seismic hazard levels (or IM values) as expressed by Eq. (6) and the contribution 

of each seismic hazard level to the demand hazard varies with the demand hazard level. 

In order to investigate the relative contribution of an IM bin ( ) iim  to a hazard point on 

the demand hazard curve, ( )EDP edp , a demand hazard deaggregation analysis can be 

performed according to Eq. (9). 

( )
( )

( )

 






 =  

    





IM

EDP

IM

IM i

i

i

d im
edp P EDP edp IM dim

dim

d im
P EDP edp IM im

dim

                                                (9) 

The right-hand term in the above equation is referred to as the deaggregation of the 

demand hazard (at EDP=edp) with respect to the intensity measure IM, indicating the 

contribution of the IM bin, iim , to ( )EDP edp . Fig. 7(b) shows the deaggregation 

results for the five seismic demand hazard points ( )1, 2, 4, 6, 8 =  shown on the 

probabilistic seismic demand hazard curve in Fig. 7(a). The deaggregation curves shift 

towards higher IM values (i.e., to the right) as the EDP values increase, which reflects the 

fact that earthquake ground motions of higher intensity levels contribute more to higher 

values of the EDP. Similarly, the other two EDPs defined in Eqs. (2) and (3) are 

quantified probabilistically but not presented here due to space limitation [Li (2014)]. 

 
(a) 

 
(b) 

Figure 7: (a) Probabilistic seismic demand hazard curve for the relative displacement 

ductility (solid circles denoted for the points to be deaggregated), and (b) deaggregation 

of demand hazard points shown in Fig. 7(a) with respect to the intensity measure IM 
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3.3 Probabilistic damage hazard analysis 

The third step of the PBEE methodology, probabilistic damage hazard analysis (PDaHA), 

is to predict probabilistically the seismic damage to the structure of interest due to future 

earthquakes. Practically, seismic damage is associated to a damage or failure mode (or 

mechanism). This study considers three damage or failure modes for the illustrative 

bridge structure, which are associated with the three selected EDPs, respectively. For 

each damage/failure mode/mechanism, a set of discrete limit-states are considered, 

corresponding to discrete values of the damage measure, DM = k . In this study, it is 

assumed that there are three limit-states ( )limit-states 3=n  for each damage/failure mode, i.e., 

k ( )0, 1, 2, 3 , corresponding to slight ( )1k = , moderate ( )2k = , and extensive 

( )3k =  damage, respectively. Herein, the structure of interest is said to be in damage (or 

limit-) state kDS  if { }=DM k and exceedance of the k-th damage (or limit-) state is 

denoted and defined as { }= kEDS DM k . The seismic damage hazard is characterized 

by the MAR, 
kEDS , of exceeding the k-th limit-state for each damage/failure mode. 


kEDS is computed through the convolution integral in Eq. (10), 

 | ( ) =  =
k

EDPEDS

EDP

P DM k EDP edp d edp                                                       (10) 

in which the conditional probability  | =P DM k EDP edp is referred to in the literature 

as probabilistic capacity curve (or function) and characterizes the uncertainty in 

predicting the structural capacity against the k-th limit-state of the damage/failure 

mechanism of interest. Probabilistic capacity curves are typically obtained through 

comparing analytical or empirical capacity models with corresponding experimental data 

[Gardoni, Mosalam and Der Kiureghian (2002)]. For the purpose of this study, the 

probabilistic capacity curves for each of the three limit-states associated with each of the 

three damage/failure modes considered (first-excursion failure, dynamic stability of 

vehicles traversing the bridge, cumulative damage) are postulated (as normal CDFs) and 

defined in Tab. 1; they are also depicted graphically in Fig. 8(a). 

The conditional probability of exceeding a damage (or limit-) state 

(e.g., { }= kEDS DM k ), for a failure mode associated with a specific EDP = edp, 

 | =P DM k EDP edp , can be evaluated as  |


= =
dm k

P DM dm EDP edp . The 

conditional probability of a damage state exceedance can then be convolved with the 

seismic demand hazard curve to yield the seismic damage hazard as in Eq. (10). 

Fig. 8(b) reports the probability of exceeding damage or limit-states I, II, and III in 50 

years for each of the three damage or failure modes considered, as well as the mean 

return periods (RPs) of damage/limit-state exceedances, which are commonly used to 

measure their occurrence frequency in engineering practice.   

The seismic damage hazards calculated above contain contributions from a continuous 

range of EDP bins, as well as a continuous range of IM bins of the earthquake input 
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ground motions. Similar to the demand hazard deaggregation, the damage hazard can be 

deaggregated with respect to the associated EDP and the IM, respectively. Eqs. (11) and 

(12) show the contributions to the damage hazard 
kEDS

 of the EDP bins, ( )
i

edp , and 

IM bins, ( )
i

im , respectively. 

 
( )

( )
( )

|


   = k

EDP i
EDS i i

i

d edp
P DM k EDP edp edp

d edp
                                  (11) 

   
| ( ) |

|  |

| ( ) |
| |


  


 

  =  =

   =  =  =    

 



k

IM
EDS

EDP IM

IM
j j i i

i j

d im
P DM k EDP dP EDP IM im dim

dim

d im
P DM k EDP dP EDP IM im im

dim

               (12) 

Table 1: Parameters of postulated probabilistic capacity curves defined in terms of the 

normalized capacity (i.e., measured-to-predicted capacity ratios) 

Associated EDP Limit-

States 

 

Predicted 

capacity 

Measured-to-predicted 

capacity ratio (Normally 

distributed) 
Mean c.o.v 

Relative 
Displacement Ductility 

[-] 

I μ=2 1.095 0.201 

II μ=6 1.124 0.208 

III μ=8 1.254 0.200 

Peak Absolute 

Acceleration 
[g] 

I A
Abs

=0.10 0.934 0.128 

II A
Abs

=0.20 0.952 0.246 

III A
Abs

=0.25 0.973 0.265 

Normalized Hysteretic 

Energy Dissipated [-] 

I E
H
=5 0.934 0.133 

II E
H
=20 0.965 0.140 

III E
H
=30 0.983 0.146 
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(a) 

 
(b) 

Figure 8: (a) Illustration of the probabilistic capacity curves and definition of conditional 

probability of damage states given EDP, and (b) seismic damage hazard results for the 

damage (or limit-) states associated with the EDPs considered for the illustrative example 

The damage hazard deaggregation with respect to EDP and IM, shown in Fig. 9, reveals 

the relative contributions of different EDP or IM bins to the damage hazard. It shows that 

exceedance of increasingly severe damage/limit-states are predominantly contributed by 

increasing higher EDP or IM values or bins. 
 

 
(a)  

(b) 

Figure 9: Damage hazard deaggregation with respect to (a) EDP and (b) IM for different 

damage/limit-state exceedances associated with EDP=relative displacement ductility 

(values of MAR of exceedance are indicated for each limit-state) 

3.4 Probabilistic loss hazard analysis 

The objective of the final step of the PBEE methodology, probabilistic loss hazard 

analysis (PLHA), is to quantify the decision variable (DV) probabilistically. The DV can 

be the direct economic loss (i.e., total repair or replacement cost, TL ) due to seismic 

damage, or the loss factor defined as the total loss normalized by the system replacement 

cost. The total loss hazard can be expressed in the form of a loss hazard curve, which 

provides the MAR or annual probability of the DV exceeding a threshold value. The total 
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loss TL  is defined as the summation of all the component-wise repair costs (
jL , j =1, 2, 3 

here) associated with the three damage/failure modes considered here. In a real-world 

bridge application, which is more involved/detailed than the illustrative example 

considered here, the damage/failure modes would consist of: failure of bridge piers, 

failure of shear keys, failure of abutment, deck unseating, etc. In the present illustrative 

example, jL  is assumed to lump all the component-wise repair costs associated with the 

j-th damage/failure mechanism of the bridge. For each component, the loss hazard curve, 

( )
jL l , is obtained according to Eq. (13), 

 
   

[ ]
imit-states

1
1

( ) | |   
+

=

  =   =   −   

j

j j
j

k k

n

j

L j DM j k EDS EDS
kDM

l P L l DM d P L l DS                 (13) 

in which the integration reduces to a summation over the discrete damage states (as 

favored in practice) considered for the j-th damage/failure mode. The repair cost 

conditional CCDF,  
| 

 
j

j kP L l DS , quantifies the uncertainty in the component repair 

cost related to the j-th damage/failure mode given a damage level between the k-th and 

(k+1)-th limit-states (i.e., damage state  j
kDS ). Due to lack of statistical data on repair 

and replacement costs, they are assumed to be normally distributed with the means and 

coefficients of variation (c.o.v.) presented in Tab. 2 to facilitate illustration of the 

methodology proposed in this paper. 

Table 2: Statistics of repair costs as a function of failure mode and damage states 

Failure mode 

associated 

EDP 

Limit-State 
Repair/Replacement cost 

(Normally distributed)  
Mean ($) c.o.v. 

Relative 

Displacement 

Ductility [-] 

I 146,500 0.12 

II 246,400 0.25 

III 350,000 0.32 

Peak Absolute 

Acceleration 

[g] 

I 55,000 0.11 

II 100,000 0.20 

III 500,000 0.28 

Normalized 

Hysteretic 

Energy 

Dissipated [-] 

I 55,650 0.13 

II 110,000 0.22 

III 520,000 0.28 
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With the probabilistic characteristics of the component losses determined in terms of 

component loss hazard, the total loss hazard can be computed through a multi-fold 

integration of the joint PDF of the component losses. However, it is computationally 

prohibitive, if not impossible, to derive that joint PDF and carry out the multi-fold 

integration, especially when a large number of components and damage/failure modes 

exist in real-world applications. To address this challenge, a multilayer Monte Carlo 

Simulation (MMCS) method is implemented and used as a simple yet powerful technique 

to estimate the total loss hazard. This method can efficiently incorporate and propagate 

the uncertainties arising at all stages of the PBEE analysis (e.g., random time occurrences 

of earthquakes governed by a Poisson process, IM, EDP, and DM) all the way to the final 

random variable DV= TL . Such a treatment of uncertainty propagation in the forward 

PBEE analysis empowers the proposed PPBOSD framework, which involves a large 

number of forward PBEE analyses during the optimization process. The flowchart of the 

MMCS method developed for this study is shown in Fig. 10 and presented in detail below. 

First, the number of earthquakes in the year being simulated is randomly generated 

according to the Poisson random occurrence model, and IM for each earthquake ground 

motion is simulated according to its probabilistic characteristics derived from PSHA. 

Second, for a given IM level, a set of EDPs is then stochastically simulated according to 

the joint PDF of the EDPs estimated through the results of an ensemble of FE seismic 

response analyses of the structure of interest. Note that the conditional joint PDF of the 

EDPs given IM can be approximated by a NATAF model [Liu and Der Kiureghian 

(1986)] defined by the marginal PDFs and correlation coefficients of the EDPs estimated 

from the results of the ensemble of nonlinear time-history analyses performed in the 

PSDeH analysis. This relaxes the more restrictive assumption, that the EDPs are jointly 

lognormal, used in FEMA P-58 and by Yang et al. [Yang, Moehle, Stojadinovic et al. 

(2009)]. Third, the damage measure for each component (or lump of components in the 

illustrative example presented here) is randomly generated from the probabilistic capacity 

curves, and the component loss is simulated according to the PDF of the corresponding 

repair cost. For each year simulated, the total loss for that year is obtained by summing 

the repair costs over all the damaged components and all the earthquakes that occurred 

during that year. By simulating the seismic activity and resulting structural damage and 

economic loss for a large number of years (e.g., 100,000), an empirical CDF and CCDF 

of the total loss can be obtained. The CCDF of the total loss is referred to as the seismic 

loss hazard curve.  
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Figure 10: Flowchart of Multilayer Monte Carlo Simulation (MMCS) method for total 

loss hazard calculation 

The seismic loss hazard curve shown in Fig. 11 for the bridge structure considered in this 

study was obtained using the MMCS method developed. The total loss hazard curve 

indicates the annual probability of the repair or replacement costs exceeding a threshold 

value. For example, from Fig. 11, there is 0.3% probability that for a given year, the 

seismic repair cost for this bridge will exceed 20% of the total bridge replacement cost 

(i.e., loss factor of 0.2) or, alternatively, this level of loss for the bridge has a mean return 

period of exceedance of 330 years (=1/0.003).    

 

Figure 11: Probabilistic seismic loss hazard curve 

4 Parametric forward PBEE analysis 

Following the forward PBEE analysis procedure presented in the previous section, a 

parametric study (i.e., one-at-a-time perturbation-based sensitivity analysis) is performed 

in order to explore the effects of parametric changes on the forward PBEE analysis 

results. For the system considered in this paper, the yield strength (i.e., Fy) and the initial 

stiffness (i.e., k0) of the nonlinear SDOF system are each perturbed by -25% and 50%. 

The effects of varying the yield strength on the demand hazard curves for the relative 
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displacement ductility and peak absolute deck acceleration are shown in Figs. 12(a) and 

12(b), respectively. Note that an increase in the yield strength reduces the demand hazard 

for the relative displacement ductility, while it increases the demand hazard for the peak 

absolute deck acceleration. Consequently, varying the yield strength affects the loss 

hazard curve as well as shown in Fig. 13(a). By comparing Figs. 13(a) and 13(b), it is 

worth noting that the initial stiffness and the yield strength have opposite effects on the 

loss hazard curve. 

The sensitivity study of the forward PBEE analysis results indicates that the loss hazard 

changes as a function of the system parameters, thus giving rise to an inverse PBEE 

problem. For example, it is of interest to the various stakeholders and owner of the 

structure of interest to tune the system design (i.e., design parameters) such that an 

expected performance, expressed in terms of a target or desired probabilistic loss hazard 

curve, is achieved. 

 
(a) 

 
(b) 

Figure 12: Probabilistic seismic demand hazard curves for: (a) relative displacement 

ductility, and (b) peak absolute acceleration of SDOF systems with different yield strengths 

 
(a) 

 
 (b) 

Figure 13: Probabilistic seismic loss hazard curves for SDOF systems with (a) different 

yield strengths, and (b) different initial stiffnesses 
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5 Inverse PBEE analysis using the PPBOSD framework 

5.1 Inverse PBEE problem 

The aforementioned inverse PBEE problem, i.e., achieving a probabilistic performance 

objective, is highly challenging as the design objective is probabilistic and defined based 

on the loss hazard (i.e., result of the last step of the forward PBEE analysis). As such, this 

design or inverse PBEE problem can be solved using the PPBOSD framework newly 

proposed in this paper. 

For validation purposes, a well-posed inverse PBEE problem needs to be set up such that 

the solution to this problem is known as a priori. Thus, the target loss hazard is defined as 

the probabilistic loss hazard, * *= 0 yk F
T T

Obj

L Lν ν ( , )  , corresponding to a set of a priori 

selected optimum design parameters (e.g., *

0 =137,200 kN/mk , * =10,290 kNyF ). The 

mathematical formulation for the optimization problem is defined in Eq. (14),  

 
( )

0

2

0 0
,

0

  , ,

 :

                 80,000 187,200  (kN/m)

                 6,290 15,290 ( )

=

 

 

y

y y
k F

y

Minimize f k F k F

subject to

k

F kN

T T

Obj

L L 2|| ν ( ) - ν ||
 

                                                     (14) 

where the implicit objective function ( )0 , yf k F  defines the discrepancy between the 

current loss hazard curve 0 , yk F
TLν ( ) and the target loss hazard curve 

T

Obj

Lν , e.g., measured 

by the sum square regression/error (SSR) or L-2 norm square ( )2

2
. The objective 

function defined here is based on the total loss hazard curve, which involves a 

complicated implicit function evaluated through executing the simulator (e.g., the finite 

element model of the structure of interest subject to an ensemble of earthquake 

excitations) and evaluating performance objectives (e.g., the forward PBEE analysis). 

The proposed PPBOSD framework is expected, by using as a starting point an arbitrary 

but reasonable initial design, e.g., 0 = 100,000 kN/mk , =14,000 kNyF ), to steer the 

design process such that the loss hazard curve gets as close as possible to the target loss 

hazard curve and, in this validation example, to recover the optimum design parameters 

which are known a priori. The validation problem for the proposed PPBOSD framework 

is illustrated in Fig. 14. Note that in this validation case, the optimum parameters are 

selected a priori with the corresponding loss hazard curve taken as the target loss hazard 

curve. However, in a regular (real-world) problem, the optimum design is not known in 

advance and instead is expected to be determined using the PPBOSD framework 

presented here. 
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Figure 14: Illustration of validation problem for the proposed PPBOSD framework 

5.2 Solution to the inverse PBEE problem 

In the PPBOSD framework, tuning the initial design parameters requires computer-aided 

adjustment in an iterative way through mathematical optimization. Different optimization 

algorithms can be integrated in the PPBOSD framework, but this issue is beyond the scope 

of this study. Instead, the sparse nonlinear optimization software SNOPT, which was linked 

with OpenSees into the extended framework denoted as OpenSees-SNOPT [Gu, Barbato, 

Conte et al. (2012)], is used in the current version of the PPBOSD framework. For the 

validation example considered here, gradient-based sequential-quadratic programming (SQP) 

algorithms in SNOPT are used to tune the system parameters for a SDOF structural bridge 

model optimally rated for the target loss hazard curve. 

The optimization process (which stopped when the relative reduction in the objective 

function value was less than 
51.0 10− ) and results are summarized in Fig. 15, including 

the iteration path over the plot of the objective function (both the (3D) surface plot and 

the contour plot). The optimum solution end
X  obtained by the PPBOSD 

framework 0( 135,774 kN/m, 10,038 kN)= =end end

yk F  is close to the true optimum design 

point * *

0( 137,200 kN/m, 10,290 kN)= =yk F  with an error of 1.0% for the initial stiffness 

and 2.4% for the yield strength. The evolutions of the demand hazard and loss hazard 

curves during the optimization process are shown in Fig. 16. It is observed that over six 

iterations, both the loss hazard and demand hazard curves are driven closer and closer to 

their respective target hazard curves corresponding to the a priori selected optimum 

design parameters. Thus, the proof-of-concept example presented successfully illustrates 

and validates the proposed PPBOSD framework.  

The proposed PPBOSD framework is expected to be applied to more complex real-world 

problems in the field of earthquake engineering, and to support the decision-making 

process in structural design/retrofit with probabilistic performance objectives highly 

pertinent to the various stakeholders. Note that the illustrative example considers the 
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continuous range of hazard levels, while in practice, a finite (small) set of discrete hazard 

levels can be used to define practical probabilistic performance objectives, e.g., focusing 

on a low hazard level and a high hazard level. Additionally, the objective functions of the 

optimization problems solved using the PPBOSD framework can also be defined in terms 

of the conditional demand hazard, unconditional demand hazard, and damage hazard, 

instead of the loss hazard exemplified in this paper. 

 
(a) 

 
(b) 

Figure 15: Optimization path for the PPBOSD illustrative example: (a) 3D plot, and (b) 

contour plot of the objective function 

 
(a) 

 
(b) 

Figure 16: Evolution of the PBEE evaluation results during the optimization process: (a) 

probabilistic seismic demand hazard curves, and (b) probabilistic seismic loss hazard curves 

6 Conclusions and discussion 

The well-established probabilistic performance-based earthquake engineering (PBEE) 

methodology has been mainly used for performance evaluation of existing or newly 

designed structural, geotechnical or soil-foundation-structural systems, thus referred to 
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herein as forward PBEE analysis. In contrast, the use of the PBEE methodology for 

design purposes in the presence of uncertainty is more limited, because design is strictly a 

more challenging inverse PBEE analysis problem. To address the performance-based 

design issue, this paper proposes a probabilistic performance-based optimum seismic 

design (PPBOSD) framework as an extension to the existing PBEE assessment 

methodology. In the PPBOSD framework, a decision layer supported by computational 

optimization is wrapped around the forward PBEE analysis methodology, which is aimed 

to tune the design parameters of the civil infrastructure system of interest to achieve 

seismic performance objectives expressed in probabilistic terms. As a first step of 

promoting the proposed PPBOSD framework, this paper focuses on illustrating and 

validating the framework using a simple proof-of-concept example, i.e., a nonlinear 

inelastic SDOF model representing macroscopically the longitudinal or transverse 

behavior of a bridge structure with a priori selected optimum design parameters. The 

PPBOSD framework in conjunction with the combined structural modeling and 

optimization software OpenSees-SNOPT successfully recovered the a priori selected 

optimum design parameters from a set of initial parameter values purposely taken away 

from the optimum values. It shows that a complicated and implicit probabilistic 

performance objective (e.g., defined in terms of a targeted probabilistic loss hazard curve) 

can be achieved using the PPBOSD framework. Note that the illustrative example used in 

this paper is based on a simple macroscopic structural model with two primary design 

variables for the purpose of clearly demonstrating the concepts and procedure. However, 

the design of complex real-world civil infrastructure systems (with more design variables) 

can also utilize the proposed PPBOSD framework, with the computational cost issue 

appropriately addressed (e.g., by using cloud and/or high-performance computing).  

However, when applying the proposed PPBOSD framework to real-world structures, the 

following potential difficulties or limitations will need to be addressed in future research. 

(1) A numerically robust nonlinear model of the real-world structure is required. Non-

collapse related non-convergence issues during the seismic response analysis need to be 

resolved using, for example, adaptive switching between nonlinear solution algorithms, 

integration methods, convergence criteria, etc., or explicit integration. If a physical 

collapse related convergence issue occurs, the collapse probability needs to be considered 

in the overall methodology [Zhang (2006); Romano, Faggella, Gigliotti et al. (2018)]. 

However, distinguishing between lack of convergence due to numerical issues or due to 

imminent physical failure (collapse) of the structure being analyzed is challenging and 

can possibly be addressed by artificial intelligence. (2) To render the PBEE analysis and 

the PPBOSD more practical, fragility curves for various structural members as well as the 

associated repair/replacement costs need to be developed and compiled for various types 

of structures as in the FEMA P-58 PACT tool [FEMA (2012)] for buildings. (3) The 

gradient-based optimization algorithms currently available in OpenSees-SNOPT may 

lead to a local minimum, and this issue can be addressed by using multiple starting points 

or using other global optimization methods. It is worth noting that from a practical 

viewpoint, a local minimum could already be highly beneficial, representing a significant 

improvement over the initial design. All the challenging issues mentioned above and 

possibly others can be appropriately tackled and implemented in the versatile architecture 

of the proposed framework.  
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The probabilistic design objective is expressed in terms of the target loss hazard curve in 

this study, but it can be defined to closely reflect the design objectives of decision-makers 

in practice. More importantly, this framework provides the proper tool needed to develop, 

calibrate and validate simplified probabilistic performance-based design procedures for 

engineering practice. Finally, the proposed PPBOSD framework can be extended to other 

natural and man-made hazards (e.g., tsunami, wind/hurricane/tornadoes, storm surge, fire, 

blast), as well as multi-hazard design problems.  

 

Acknowledgements: Support of this research by the Pacific Earthquake Engineering 

Research Center’s Transportation Systems Research Program under Award No. 1107-

NCTRCJ, with Prof. Stephen Mahin as the Pacific Earthquake Engineering Research 

center director, is gratefully acknowledged. The authors wish to thank Dr. Andre Barbosa 

at Oregon State University and Dr. Quan Gu at Xiamen University, China, for their help 

with the research presented in this paper. Any opinions, findings, conclusions or 

recommendations expressed in this publication are those of the authors and do not 

necessarily reflect the views of the sponsors. 

References 

Austin, M.; Pister, K.; Mahin S. A. (1987): Probabilistic design of moment-resistant 

frames under seismic loading. Journal of Structural Engineering, vol. 113, no. 8, pp. 

1660-1677. 

Baker, J. W. (2005): Vector-Valued Ground Motion Intensity Measures for Probabilistic 

Seismic Demand Analysis (Ph.D. Thesis).  Stanford University, California.  

Baker, J. W. (2007): Probabilistic structural response assessment using vector-valued 

intensity measures. Earthquake Engineering and Structural Dynamics, vol. 36, no. 13, pp. 

1861-1883. 

Barbato, M.; Tubaldi, E. (2013): A probabilistic performance-based approach for 

mitigating the seismic pounding risk between adjacent buildings. Earthquake 

Engineering and Structural Dynamics, vol. 42, no. 8, pp. 1203-1219. 

Comerio, M. C.; Stallmeyer, J. C.; Smith, R.; Makris, N.; Konstantinidis, D. et al. 

(2005): PEER testbed study on a laboratory building: exercising seismic performance 

assessment. PEER Report No. PEER 2005/12. Pacific Earthquake Engineering Research 

(PEER) Center, Oakland, California. 

Conte, J. P.; Zhang, Y. (2007): Performance-based earthquake engineering: application 

to an actual bridge-foundation-ground system. Proceedings of the 12th Italian National 

Conference in Earthquake Engineering. 

Cornell, C. A. (1968): Engineering seismic risk analysis. Bulletin of the Seismological 

Society of America, vol. 58, no. 5, pp. 1583-1606. 

Cornell, C.; Krawinkler, H. (2000): Progress and challenges in seismic performance. 

PEER Center News, vol. 3, no. 2. 



 

 

 
Probabilistic Performance-Based Optimum Seismic Design Framework                                     541 

Eguchi, R. T.; Goltz, J. D.; Taylor, C. E.; Chang, S. E.; Flores, P. J. et al. (1998): 

Direct economic losses in the Northridge earthquake: a three-year post-event perspective. 

Earthquake Spectra, vol. 14, no. 2, pp. 245-264. 

Ellingwood, B. R. (2000): LRFD: implementing structural reliability in professional 

practice. Engineering Structures, vol. 22, no. 2, pp. 106-115. 

Federal Emergency Management Agency (FEMA) (2012): Seismic performance 

assessment of buildings volume 1-methodology. Technical Report FEMA-P58, 

Washington, DC. 

Gardoni, P.; Mosalam, K. M.; Der Kiureghian, A. (2002): Probabilistic capacity 

models and fragility estimates for reinforced concrete columns based on experimental 

observations. Journal of Engineering Mechanics, vol. 128, no. 10, pp. 1024-1038. 

Goulet, C. A.; Haselton, C. B.; Mitrani-Reiser, J.; Beck, J. L.; Deierlein, G. G. et al. 

(2007): Evaluation of the seismic performance of a code-conforming reinforced concrete 

frame building - from seismic hazard to collapse safety and economic losses. Earthquake 

Engineering and Structural Dynamics, vol. 36, no. 13, pp. 1973-1997. 

Gu, Q.; Barbato, M.; Conte, J. P.; Gill, P. E.  (2012): OpenSees-SNOPT framework 

for finite-element-based optimization of structural and geotechnical systems. Journal of 

Structural Engineering, vol. 137, no. 6, pp. 822-834.  

Günay, S.; Mosalam, K. M. (2013): PEER performance-based earthquake engineering 

methodology revisited. Journal of Earthquake Engineering, vol. 17, no. 6, pp. 829-858. 

Haselton, C. B.; Liel, A. B.; Deierlein, G. G.; Dean, B. S.; Chou, J. H. (2011): Seismic 

collapse safety of reinforced concrete buildings: I. Assessment of ductile moment frames. 

Journal of Structural Engineering, vol. 137, no. 4, pp. 481-491.  

Haukaas, T. (2008): Unified reliability and design optimization for earthquake 

engineering. Probabilistic Engineering Mechanics, vol. 23, no. 4, pp. 471-481. 

Jalayer, F.; Cornell, A. (2003): A Technical Framework for Probability-Based Demand 

and Capacity Factor (DCFD) Seismic Formats. RMS Technical Report No.43 to the 

PEER Center, Stanford University, California. 

Jensen, H. A.; Valdebenito, M. A.; Schuëller, G. I.; Kusanovic, D. S. (2009): 

Reliability-based optimization of stochastic systems using line search. Computer Methods 

in Applied Mechanics and Engineering, vol. 198, no. 49, pp. 3915-3924. 

Kunnath, S. K.; Larson, L.; Miranda, E. (2006): Modeling considerations in 

probabilistic performance-based seismic evaluation: case study of the I-880 viaduct. 

Earthquake Engineering and Structural Dynamics, vol. 35, no. 1, pp. 57-75. 

Li, Y. (2014): Probabilistic Performance-Based Optimum Seismic Design of Seismic 

Isolation for California High-Speed Rail Prototype Bridge (Ph.D. Thesis). University of 

California, San Diego, California.  

Li, Y.; Conte, J. P. (2017): Probabilistic performance-based optimum design of seismic 

isolation for a California high-speed rail prototype bridge. Earthquake Engineering and 

Structural Dynamics, vol. 47, no. 2, pp. 497-514. 

Li, Y.; Conte, J. P. (2019): Probabilistic evaluation of seismic isolation effects for a 

California high-speed rail prototype bridge. Journal of Structural Engineering. 



 

 

 
542                                                                                        CMES, vol.120, no.3, pp.517-543, 2019 

Lin, T.; Haselton, C. B.; Baker, J. W. (2013): Conditional-spectrum-based ground 

motion selection. part I: hazard consistency for risk-based assessments. Earthquake 

Engineering and Structural Dynamics, vol. 42, no. 12, pp. 1847-1865. 

Liu, P. L.; Der Kiureghian, A. (1986): Multivariate distribution models with prescribed 

marginals and covariance’s. Probabilistic Engineering Mechanics, vol. 1, no. 2, pp. 105-112. 

Luco, N.; Cornell, C. A. (2007): Structure-specific scalar intensity measures for near-

source and ordinary earthquake ground motions. Earthquake Spectra, vol. 23, no. 2, pp. 

357-392. 

Mackie, K. R.; Stojadinović, B. (2007): Performance-based seismic bridge design for 

damage and loss limit-states.  Earthquake Engineering and Structural Dynamics, vol. 36, 

no. 13, pp. 1953-1971. 

Mosalam, K. M.; Günay, S. (2014): Seismic performance evaluation of high voltage 

disconnect switches using real-time hybrid simulation: I. System development and 

validation. Earthquake Engineering & Structural Dynamics, vol. 43, no. 8, pp. 1205-1222. 

Petersen, M. D.; Frankel, A. D.; Harmsen, S. C.; Mueller, C. S.; Haller, K. M. et al. 

(2008): Documentation for the 2008 Update of the United States National Seismic 

Hazard Maps. U.S. Geological Survey Open-File Report, California. 

Porter, K. A. (2003): An overview of PEER’s performance-based earthquake 

engineering methodology. Proceedings of Conference on Applications of Statistics and 

Probability in Civil Engineering, Civil Engineering Risk and Reliability Association 

(CERRA), San Francisco, California. 

Porter, K. A.; Beck, J. L.; Shaikhutdinov, R. V. (2002): Sensitivity of building loss 

estimates to major uncertain variables. Earthquake Spectra, vol. 18, no. 4, pp. 719-743. 

Romano, F.; Faggella, M.; Gigliotti, R.; Zucconi, M.; Ferracuti, B. (2018): 

Comparative seismic loss analysis of an existing non-ductile RC building based on 

element fragility functions proposals. Engineering Structures, vol. 177, pp. 707-723. 

Shome, N.; Cornell, C. A.; Bazzurro, P.; Carballo, J. E. (1998): Earthquakes, records, 

and nonlinear responses. Earthquake Spectra, vol. 14, no. 3, pp. 469-500. 

Taflanidis, A. A.; Beck, J. L. (2009): Stochastic subset optimization for reliability 

optimization and sensitivity analysis in system design. Computers & Structures, vol. 87, 

no. 5-6, pp. 318-331. 

Tubaldi, E.; Barbato, M.; Dall’Asta, A. (2016): Efficient approach for the reliability-

based design of linear damping devices for seismic protection of buildings. ASCE-ASME 

Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, vol. 

2, no. 2, pp. C4015009.1-C4015009.10. 

Yang, T. Y.; Moehle, B.; Stojadinovic, B.; Der Kiureghian, A. (2009): Seismic 

performance evaluation of facilities: methodology and implementation. Journal of 

Structural Engineering, vol. 135, no. 10, pp. 1146-1154. 

Zakeri, B.; Zareian, F. (2017): Bridge design framework for target seismic loss. Journal 

of Bridge Engineering, vol. 22, no. 10, pp. 04017061-1-04017061-15. 



 

 

 
Probabilistic Performance-Based Optimum Seismic Design Framework                                     543 

Zhang, Y. (2006): Probabilistic Structural Seismic Performance Assessment 

Methodology and Application to an Actual Bridge-Foundation-Ground System (Ph.D. 

Thesis). University of California, San Diego, California. 

 


