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Abstract: Aircraft skin health concerns whether the aircraft can fly safely. In this paper, 

an improved mechanical structure of the aircraft skin inspection robot was introduced. 

Considering that the aircraft skin surface is a curved environment, we assume that the 

curved environment is equivalent to an inclined plane with a change in inclination. Based 

on this assumption, the Cartesian dynamics model of the robot is established using the 

Lagrange method. In order to control the robot’s movement position accurately, a 

position backstepping control scheme for the aircraft skin inspection robot was presented. 

According to the dynamic model and taking into account the problems faced by the robot 

during its movement, a position constrained controller of the aircraft skin inspection 

robot is designed using the barrier Lyapunov function. Aiming at the disturbances in the 

robot, we adopt a fuzzy system to approximate the unknown dynamics related with 

system states. Finally, the simulation results of the designed position constrained 

controller were compared with the sliding mode controller, and prove the validity of the 

position constrained controller.  
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1 Introduction 

Today, the health inspection of the aircraft skin is mainly done by humans. The 

inspection efficiency is low, the assessment of the test results is not standard, and it is 

greatly affected by human factors. A variety of wall-climbing robots are designed to 

accomplish some tasks. In Apostolescu et al. [Apostolescu, Alexandrescu, Ionascu et al. 

(2011)], a climbing robot using the electro-pneumatically vacuum cups was designed. In 

Miyake et al. [Miyake, Ishihara, Shoji et al. (2006)], a small-size and light weight 

window cleaning robot was developed, the prototype robot consists of two driven wheels 

and an active suction cup. In Nagakubo et al. [Nagakubo and Hirose (1994)], a kind of 

wall climbing robot was designed with a gecko-like structure by observing the gecko 

climbing wall behavior. In Rosa et al. [Rosa, Messina, Muscato et al. (2002)], a type of 

low-cost climbing robot was proposed which can climb cylindrical painted iron surfaces 

using eight suction cups, the robot carries an ultrasonic probe equipment to evaluate the 

integrity of the metal in the inspection of storage tanks. 
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In order to solve the problems of suction and motion for wall-climbing robots, many 

useful control strategies have been proposed. In Wettach et al. [Wettach, Hillenbrand and 

Berns (2006)], the basic thermodynamic model was presented, which was necessary to 

describe the changes of the pressure under robot motion condition. Based on this model, a 

controller of vacuum chambers was designed to adjust the chambers pressure. In Yong et 

al. [Yong, Wang, Fang et al. (2007)], based on the multiple-model adaptive estimation 

and the Boolean logic reasoning, an approach to fault detection and identification in 

suction foot control of a climbing robot was presented. In Zhang et al. [Zhang, Zhang and 

Zong (2008)], a new pneumatic climbing robot was presented to satisfy the requirements 

of glass-wall cleaning. Furthermore, a segment and variable bang-bang controller was 

developed to implement the precise control of the position servo system for the X 

cylinder during the sideways movement. In He et al. [He, Li, and Chen (2017)], a 

comprehensive survey of the recent development of the human-centered intelligent robot 

was provided, and the issues and challenges in the field were discussed. 

In recent years, researches on intelligent control strategies of robots under input or output 

constrains have been conducted in-depth. In He et al. [He, Ge, Li et al. (2017); He, Dong 

and Sun (2015)], some control strategies for some articulated robots and affine nonlinear 

systems were designed when the systems are subjected to external disturbances and 

output constraint. In Chen et al. [Chen, Ge and Ren (2011)], an adaptive tracking control 

method was proposed for a class uncertain multiple input and multiple output nonlinear 

systems with input constraint. In Ren et al. [Ren, Ge, Tee et al. (2010)], aiming at output 

feedback nonlinear systems in the presence of unknown functions, a class of control 

strategies were presented by using adaptive neural network and Backstepping technique. 

In Li et al. [Li, Li and Jing (2014)], a novel indirect adaptive fuzzy controller for a class 

of uncertain nonlinear systems with input and output constrains was proposed by using a 

barrier Lyapunov function and an auxiliary design system to solve input and output 

constraints. In Chen et al. [Chen, Ge, and How (2010)], the author proposed a robust 

adaptive neural network control strategy for a class of uncertain multi-input and multi-

output nonlinear systems with input nonlinearities. Niu et al. [Niu and Zhao (2013); Niu, 

Liu, Zong et al. (2017)] investigated the control strategies under output constraint for 

switching systems and time-varying output constraint system. Ngo et al. [Ngo, Mahony 

and Jiang (2005); Li, Li, Liu et al. (2017)] dealt with a class of control problems for 

nonlinear multi-input and multi-output systems with full state constraints. 

In this paper, we mainly study the motion control of the inspection robot on the surface of 

the aircraft skin. Considering the chattering in the sliding mode controller, the robot 

movement is restricted by the work environment, on the one hand the chattering will 

cause a violent change in the robot’s adsorption force, which will lead to the drastic 

change of the robot's adsorption force and cause the robot to fall off because of the lack 

of enough adsorption force. On the other hand, the inaccurate position control of the 

robot can cause the robot legs touch the surface of the aircraft skin, and then affect the 

normal motion of the robot. It may cause the robot breaks down or slides directly from 

the surface of the plane. So we must avoid the robot legs touching the surface of the 

aircraft skin. Inspired by the above researches, we design a position controller based on 

the backstepping control with output constraint. 
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This paper is organized as follows. Section 2 describes the structure of the aircraft skin 

inspection robot, and Section 3 analyzes the dynamics of the inspection robot. In Section 

4, the backstepping control method of the robot is designed by using a barrier Lyapunov 

function, and the fuzzy system-based adaptive method is used to approximate the 

unknown dynamics related with system states. Then, the stability of the closed-loop of 

the robot system is proved by the constructed Lyapunov function. Simulation results are 

given in Section 5. 

2 The structure of the aircraft skin inspection robot 

The aircraft skin health inspection robot with dual-frame is shown in Fig. 1. The robot 

can absorb on the aircraft fuselage using negative pressure. The robot can provide a load 

of about 15Kg that is enough to support the body and keep stability during inspection. 

There are four layers in the robot‘s structure. The first and fourth layers of the robot are 

the outer frame and inner frame, two servomotors and a speed reducer are installed so 

that the two frames can rotate. The servomotor of the outer frame is used to drive the 

rotating movement of the inner frame, and the servomotor of the inner frame is used to 

drive the rotating movement of the outer frame. The second layer of the robot is a 

mechanism for the robot to achieve pitch attitude adjustment. The purpose is to enable 

the robot to adapt the surface curvature of the aircraft skin during movement. The third 

layer is the sliding layer of the robot. A sliding servomotor is used to drive the ball screw 

to generate translational motion. The inner and outer frames are respectively installed 

with four mechanical legs, and the legs are connected with vacuum suction cups, so that 

the robot can adsorb on the surface of the aircraft skin. 

 
 

Figure 1: Aircraft skin inspection robot with double frame 

3 Dynamic modelling 

Fig. 2 gives an improved structure of the aircraft skin inspection robot with double frame. 

The following discussion will focus on the movement of the robot on an inclined plane 

with a dip angle  . 

http://xueshu.baidu.com/s?wd=paperuri%3A(d864d8a72bc6a74ecc67109f228ec7af)&filter=sc_long_sign&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_ks_para=q%3DNeural%20network-based%20adaptive%20tracking%20control%20for%20a%20nonholonomic%20wheeled%20mobile%20robot%20with%20unknown%20wheel%20slips%2C%20model%20uncertainties%2C%20and%20unknown%20bounded%20disturbances
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Figure 2: Structure of the robot  

In Fig. 2, O XYZ−  is the global coordinate system, 1 1 1 1O X Y Z− is the body coordination 

system. 1O  is selected at the point B  of the robot. G  is the gravity of the robot. Point A  

is selected as the reference point of position and velocity. r  is the horizontal distance 

between point A   and the rotation servomotor axis of the outer frame. 1r  is the distance 

from point A  to the fixed end of the ball screw. s  is the torque of the sliding servomotor 

acting on the ball screw, sw  is the angular velocity of the motor driving the ball screw, 

and s  is the rotation angle of the ball screw. The rotation of the ball screw drives the 

horizontal movement of the sliding layer. p  is the torque produced by a pitch motor, p  

is the angular velocity of the pitch motor, and the p  is the angle between inner frame 

and outer frame which is produced by the pitch motor, r  is the rotation torque produced 

by the rotating motor, r  is the rotational angular velocity, and the r  is the angle of 

rotation axis. 1 2,n nF F   are the support forces.  1 2,t tF F are the absorption forces. The 

driving system of the robot is shown in Fig. 3. 
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Figure 3: The driving system of the robot 
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3.1 Dynamic model in joint space 

In Fig. 3, the moment of inertia of the inner frame is calculated by 

1

2

1 12

r

r r L
I y dy

− −
=                                                                                                                  (1)   

where I  is the inertia of the inner frame , 1m  is  the mass of the sliding motion body, L is 

total sliding distance, 1y  is the horizontal sliding distance of the inner frame, and   is the 

equivalent mass density of the rigid body, which satisfies 

1m L=                                                                                                                              (2) 

The kinetic model is derived by the Lagrange formula as follows: 

Kinetic energy of the inner frame is  

2 2

1

1 1

2 2
k rE m r I= + ( )( )2

2

1

1

2
s rm k I = +

                  (3) 

where sr k= , k  is the helical pitch of the ball screw. 

The potential energy of the moving inner frame is  

( ) ( )1 1 sin cosp s p rE m g k r   = − +                                                                                     (4) 

The Lagrange function of  the inner frame  can be written as： 

( )( ) ( ) ( )
2

2

1 1 1

1
sin cos

2

k p

s r s p r

L E E

m k I m g k r     

= −

= + − − +
                                                         (5) 

Therefore, the dynamics equation of the inner frame is given by: 
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                                (6) 

We can obtain the dynamic equation of the inner frame in joint space as follows: 

( ) ( ) ( )τ = M q q+ C q,q q+G q                                               (7) 

where  1 2 3

TT

r s pq q q    = =  q  is the vector of joint angles,
T

r s p   =  τ is  

a vector of torques at the joints,  ( )M q  is a mass matrix, ( )C q,q  is a vector of 

centrifugal and Coriolis terms, and ( )G q  is a vector of gravity terms. ( )M q , ( )C q,q  and 

( )G q are given by  
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3.2 Dynamic model in Cartesian space 

In Fig. 3, the position of the point A  in the coordinate system 1 1 1 1O X Y Z−  is expressed as: 
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                                                            (8) 

From (8), we can obtain: 
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(9) 

Define  1 1 1

T
x y z=x ，the transformation from joint velocity  to Cartesian velocity 

is d Jd=x q , 
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where 


=

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q
 is the Jacobian matrix, 
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 According to the above relationship, we can obtain: 
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where the range of  p is set as 60 ,60   − p such that the Jacobian matrix is full rank. 

In the Cartesian space, when the Jacobian matrix is full rank, the virtual control force 

= , ,
T

r s pF F F  xF is expressed as 

( )-T

xF = J q τ                                                 (11) 

Since  x = Jq , we can obtain: 

( )-1
q = J q x                              (12) 

From Eq. (12), we can obtain: 

( ) ( ) ( ) ( ) ( )-1
x = J q q + J q q = J q J q x + J q q                                                       (13) 

According to Eq. (12) and Eq. (13), we can obtain: 

( ) ( ) ( )( )-1 -1
q = J q x - J q J q x                        (14) 

Substituting Eq. (12) and Eq. (14) into Eq. (7), we can obtain: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )-1 -1 -1
τ = M q J q x - J q J q x + C q,q J q x + G q                  (15) 

Then, Eq. (15) can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )-1 -1 -1
τ = M q J q x + C q,q - M q J q J q J q x + G q                    (16) 

Multiplying both sides of (15) by ( )-T
J q  yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )-T -T -1 -1 -1
J q τ = J q M q J q x + C q,q - M q J q J q J q x + G q

             (17) 

According to Eq. (11) and considering the disturbance, we can obtain the following 

Cartesian dynamics model. 

( ) ( ) ( ) ( ) ( )tx x x x dis fF = M q x+C q,q x+G q + f + F q               (18)  

where 

( ) ( ) ( ) ( )-T -1

xM q = J q M q J q  is the Cartesian inertia matrix, 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( )-T -1 -1

xC q,q = J q C q,q - M q J q J q J q  is the Cartesian Coriolis/centripetal vector,  

( ) ( ) ( )-T

xG q = J q G q  is  the  Cartesian gravity vector , disf  is an unknown disturbance, and 

fF  is a friction force. 

Assumption 1: ( )tdisf is continuous and uniformly bounded, there exists a constant D , 

such that ( )  ), 0,t D t   disf . 

Eq. (18) has the following properties: 

The property 1: ( )xM q  is a positive definite symmetric matrix. 

The property 2: ( ) ( )x xM q - 2C q,q  is a skew symmetric matrix. 

4 Backstepping position controller design using barrier lyapunov function 

Define  1 1 1 1 2 1,
T

x y z= = =x x x x . 

Thus the dynamics model (18) can be transformed into a state-space expression as  
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The robot position error is defined as: 

1 1 d= −e x x                                                                                                                         (20) 

where   1 11 12 13, ,
T

e e e=e , dx is the desired position trajectory in Cartesian space. 

The auxiliary variable error is defined as: 

2 2= −e x α                                                                                                                         (21) 

where α is the virtual control. 

The derivative of 2e  is expressed as: 

2 2= −e x α                                                                                                                         (22) 

where   2 21 22 23, ,
T

e e e=e . 

In order to ensure that the legs do not touch the aircraft skin during the motion of the 

robot, we adopt the barrier Lyapunov function to restrain the trajectory tracking error. 

The barrier Lyapunov function is selected as follows: 
23
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where 0ib  is a small constant. 

The derivative of 1V  is written as: 
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The virtual control i  is selected as follows： 

1 = − +i i i ik e x                                                                                                                     (25) 

where  0ik  .                                                                                                                     

Substituting Eq. (25) into Eq. (24) yields: 
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The second-order Lyapunov function is selected as 

( )2 1 2 2

1

2

TV V= + xe M q e                                                                                                        (27) 

The derivative of 2V  is obtained as: 

( ) ( )2 1 2 2 2 2

1

2

T TV V= + +x xe M q e e M q e                                                                                 (28)  

Substituting Eq. (21) into Eq. (28), we can obtain: 
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Substituting Eq. (19) and Eq. (21) into Eq. (29) yields: 
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Based on the property 2 and Eq. (26), we can obtain: 
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x x x dis f x

x x x dis f x

e F C q,q α G q f F q M q α

e F C q,q α G q f F q M q α
                        (31)  

Since the ( ) ( ) ( ), ,x x xC q,q G q M q  cannot be accurately known, we adopt a fuzzy system 

to approximate the unknown dynamics related with system states. 

Define ( ) ( ) ( ) ( )= − − − −x x x ff C q,q α G q M q α F q . A single-valued fuzzy, product 

inference engine and average defuzzification of the center of gravity are used for the 

nonlinear approximation. Fuzzy rule is expressed as： 

If 1x is
1

jF and … and nx is j

nF ,Then y is jB . 1,2,...,=j N   

where j

iF and jB are fuzzy sets of membership functions ( )j
i

iA
x  and ( )jB

y respectively, N 

is the number of rules. 

Then, the output of the fuzzy system can be defined as 
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Based on the above method of the fuzzy system, the approximation of the unknown 

parameters can be designed as follows: 

( )T

fls=Φ ξ x θ                                                                                                                    (33) 

where ( ) ( ) ( )1 2 3

T

fls fls fls   =
 

Φ x x x , 1 2= , , ,
T

T T T T

fls
 
 x x x α α , 

( )

( )

( )

( )

1

2

3

0 0

0 0

0 0

T

fls

T T

fls fls

T

fls



 



 
 
 =
 
 
 

x

x x

x

, 
1

2

3

=

 
 
 
  

θ

θ θ

θ

, ( )
( )

( )
( )

7
12

1 1
1

1 1 17
12

1
1

i
j

i
j

i
j

i j jF
Ti

fls flsi
j

j jF
i

x

x

 

 



=
=

=
=

=
=

=
=



= =
 
  




x x θ , 

( )
( )

( )
( )

7
12

2 1
1

2 2 27
12

1
1

i
j

i
j

i
j

i j jF
Ti

fls flsi
j

j jF
i

x

x

 

 



=
=

=
=

=
=

=
=



= =
 
  




x x θ , ( )

( )

( )
( )

7
12

3 1
1

3 3 37
12

1
1

i
j

i
j

i
j

i j jF
Ti

fls flsi
j

j jF
i

x

x

 

 



=
=

=
=

=
=

=
=



= =
 
  




x x θ . 

The membership function is selected as  

( ) ( )
2

1.5 0.5*( 1)
exp 0.5 1,2,3,...,7, 1,2,3,...,12

0.6
i
j

j

jF

x i
x i j

 + − − 
 = − = = 
   

                          (34) 

Define the optimal approximation parameter 
θ  and the optimal approximation *

Φ  for a 

given arbitrarily small constant ( )0ε ε , we have  
* − f Φ . 

Then we design the controller as following 
3

1
2 2 22 2

1 1

i
i

i i i

e
l

b e

=

=

= − − − −
−

xF K e Φ e                                                                                         (35) 

where 2 0K is a diagonal matrix, 0l  is a constant. 

Substituting Eq. (35) into Eq. (31), we can obtain 

 ( )
23
1

2 2 2 2 2 2 2 22 2
1 1

i
T T T Ti i

i i i

k e
V K e l e

b e

=

=

= − − + − − −
−

 dise e e f Φ e f                                                     (36) 

Let = −θ θ θ , the corresponding adaptive parameter control law is designed: 

( )( )2 2
T

T T

fls a = −θ e x θ                                                          (37) 
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Lyapunov function is selected as： 

3 2

1

2

TV V


= + θ θ                                                                                                                (38) 

The derivative of 3V is written as: 

3 2

1 TV V


= − θ θ                                                            (39) 

Substituting Eq. (36) into Eq. (39), we can obtain: 

( )

( )( )

( )( ) ( )

23
1

3 2 2 2 2 2 2 22 2
1 1

23
21

2 2 2 2 2 2 2 22 2
1 1

23
* *1

2 2 2 2 22 2
1 1

1

1 1

4

i
T T T T Ti i

i i i

i
T T T T T Ti i

fls
i i i

i
T T T T T Ti i

fls fls
i i i

k e
V K e l e

b e

k e
K e l le

lb e

k e
K e

b e





=

=

=

=

=

=

= − − + − − − −
−

 − − + − − − + +
−

 − − + − + −
−







dis

dis

e e e f Φ θ θ e f

e e e f ξ x θ θ θ e e f

e e e f ξ x θ ξ x θ ξ x( )( )

( ) ( )( )

( )( )

2

23
* 21

2 2 2 2 22 2
1 1

23
2 2 21

2 2 2 2 22 2
1 1

1 1

4

1 1

4

1 1 1 1

2 2 4

T

fls

i
T T T T T Ti i

fls fls
i i i

i T
T T T T Ti i

fls
i i i

D
l

k e
K D

lb e

k e
K D

lb e







=

=

=

=

− +

 − − + − + − +
−

 
 − − + + + − + 

−  





θ θ θ

e e e f ξ x θ e ξ x θ θ θ

e e e ε θ e ξ x θ

  

(40) 

Substituting the adaptive parameter control law Eq. (37) into Eq. (40), we can obtain: 

( )( ) ( )( )

( )

23
2 21

3 2 2 2 22 2
1 1

2

2 2

23
* 2 21

2 2 22 2
1 1

1 1

2 2

1 1
2

4

1 1 1
2 2

2 2 4

i
T Ti i

i i i

T T
T T T T T

fls fls

i
T T Ti i

i i i

k e
V K

b e

e a D
l

k e a
K I D

lb e






=

=

=

=

 − − + +
−

  + − − +    

 
= − − − + − + + 

−  





e e e ε

θ ξ x e ξ x θ

e e θ θ θ θ ε

                                     (41) 

Due to ( ) ( )* * * * *2 0
T

T T T− − = − + θ θ θ θ θ θ θ θ θ θ ,we can obtain: 

* * *2 2T T T T−  − +θ θ θ θ θ θ θ θ                                                  (42) 

Substituting the Eq. (42) into the Eq. (41) yields: 

( )

( )

23
* * 2 21

3 2 2 22 2
1 1

23
* * * * 2 21

2 2 22 2
1 1

1 1 1

2 2 4

1 2 1 1

2 2 4

i
T T Ti i

i i i

i
T T T Ti i

i i i

k e a
V K I D

lb e

k e a a
K I D

lb e



 

=

=

=

=

 
 − − − + − + + + 

−  

 
= − − − + − − + + + 

−  





e e θ θ θ θ ε

e e θ θ θ θ θ θ ε

           (43) 

Due to ( ) ( )* * 0
T

+ + θ θ θ θ , we can obtain: 

* * * *T T T T− −  +θ θ θ θ θ θ θ θ                                                          (44) 
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Due to ( ) ( )* * * * * *
T

T T T T T= − − = + − −θ θ θ θ θ θ θ θ θ θ θ θ θ θ , and using Eq. (44), we can 

obtain 

* * 1

2

T T T− −  −θ θ θ θ θ θ                                                    (45) 

Lemma 1 [Ren, Ge, Tee et al. (2010)]: For any positive constant vector nRb , the 

following inequality holds for any vector nRx in the interval x b : 

ln 
− −

T T

T T T T

b b x x

b b x x b b x x
. 

Substituting Eq. (45) into Eq. (43) and using Lemma1, we have: 

23
* * 2 21

3 2 2 22 2
1 1

3

1 2 1 1

2 2 2 4

i
T T Ti i

i i i

k e a a
V K I D

lb e

V C

 



=

=

 
 − − − − + + + 

−  

 − +

 e e θ θ θ θ ε
                                (46) 

where ( )
( )

min 2
* * 2 2

max

1
2

2 1 12
min 2 min , , ,

2 4

T

i

K I
a

k a C D
M l




 

  
−  

  
= = + + 

 
  

θ θ ε . 

In order to ensure 0  ，select min 2

1
min( ) 0, ( ) 0

2
ik K I −  ，where min  represents the 

minimum eigenvalue of the matrix, max  represents the maximum eigenvalue of the matrix. 

Multiplying the left and right sides of Eq. (46) by , 0te t  , we can obtain: 

( )3 3

t tV V e Ce +  , ( )3

t td
V e Ce

dt

                                        (47) 

Then take integrals on both sides： 

( ) ( )3 3 30 0tC C C
V V e V

  

− 
 − +  + 
 

                                                                                    (48) 

Define： 

( )32 0
C

Q V


 
= + 

 
                                                                                                                  (49) 

According to the definition of 3V and Eqs. (48)-(49),we can obtain： 

( ) ( )

( ) ( )
( )

( )

2
2

3 12 2

1

2 2 3 2

min

3

1
ln 0 , 1

2

1
0 ,

2

1
0 ,

2

Qi
i i

i i

T

i

T

b C
V e b e

b e

C Q
V e

C
V Q



 


 

− +  −
−

 + 

 + 

x

x

e M q e
M

θ θ θ

                                                                     (50) 
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Therefore, the errors of the closed-loop system 1ie ， 2ie ， θ  converge automatically to 

the compact sets 
1

Ωe  
2

Ωe  Ω
θ ， where ( ) 1

2

1 1Ω : , 1n Q

e i iR e b e−=   −e ，

( )2 2 2

min

Ω : ,n

e i

Q
R e



 
 

=   
  x

e
M

，  Ω : ,nR Q=  
θ

θ θ . 

Lemma 2 [Slotine and Li (1991)]: (Barbalat’s lemma) A Lyapunov function candidate 

( )V x  is bounded if the initial condition ( )0V  is bounded, ( )V x  is positive definite and 

continuous, and if ( ) ( )V x V x C − + ,where 0  and 0C  . 

From Lemma 2, we know that both the tracking errors of system states and estimation 

errors of uncertain parameters as well as unknown disturbance are bounded.  

According to ( )-T

xF = J q τ , we can calculate the actual control torque. In a similar way, 

we can derive the dynamic equation of the outer frame and design the position controller. 

5 Simulation 

In this section, the simulation was carried out to illustrate the effectiveness of the 

proposed control scheme for the inspection robot with double frame.  

In the simulation, the parameters of the inner frame for the robot are chosen as follows 

1 6m kg= , 1 0.05r m= , 0.2L m= , / 6 = , 1k = .  

The desired position trajectory in Cartesian space is set as 

( )

( )

1+0.5sin / 3*

1 0.5cos( / 3* )=

1 0.5sin / 3*

d

t

tx

t







 
 
+ 

 + 

m 

The parameters of the controller are chosen as  

210, [100,100,100], 0.005i ik K diag b= = = , 

 0.002, diag 150,150150 , 4i l = = =，Γ , =3 1.5a =, . 

The friction force and external disturbances are given by 

 ( ) ( )=0.3*sign NfF q q ,

( )

( )

( )

0.15*sin( ) 0.12*sin 1.15 / 3

0.2*sin( ) 0.14*sin 1.5 / 6 N

0.12*sin( ) 0.13*sin 1.5 / 4

t t

t t

t t







+ + 
 

+ +=  
 + + 

disf . 

The position tracking curves of the aircraft skin inspection robot are shown in Fig. 4. Fig. 

5 shows the tracking errors of position by using the sliding mode control and the 

backstepping control. As shown in Fig. 5, we know that there are lager errors by using 

sliding mode control, and it will cause the robot legs touch the surface of the aircraft skin. 

By using the backstepping control, there is a very small error in the system. Therefore, 

the latter is more suitable as a motion controller for the aircraft skin inspection robot. Fig. 

6 shows the motor driving torque with the sliding mode control and the backstepping 

control. In Fig. 6, we know that sliding mode controller has great shaking, this will 

further affect the stability of adsorption. But the backstepping control does not cause 
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shaking phenomenon. Therefore, the backstepping controller can ensure the control 

torque is relatively smooth during the movement of the robot. Fig. 7 shows the 

approximation of unknown dynamics related with system states. Tab. 1 shows the 

comparison of the position tracking errors between sliding mode control and 

Backstepping control with output constraint. 

      

(a) Tracking trajectory with sliding mode control           (b) Tracking trajectory with                   

backstepping control control 

Figure 4: Tracking trajectories of the inspection robot 

 

(a) Tracking errors of position with sliding           (b) Tracking errors of position with  

mode control                                                           backstepping control 

Figure 5: Tracking errors of position 
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(a) Motor driving torques with sliding                    (b) Motor driving torques with     

mode control                                                            backstepping control 

Figure 6: Motor driving torques 

 

Figure 7: Approximation of the fuzzy system  

Table 1: Position tracking errors  

Range of 

Errors 

Sliding mode control Backstepping control with output 

constraint 

Error of x1 (0,0.06) (m) (-0.002,0.002) (m) 

Error of y1 (-0.03,0) (m) (-0.002,0.005) (m) 

Error of z1 (0,0.04) (m) (-0.003,0.004) (m) 

6 Conclusion 

In this paper, an improved aircraft skin inspection robot was introduced. First, the 

mechanical structure of the robot was described in detail. Second, the dynamic model of 

robot in Cartesian space was established and the motion control scheme based on the 

backstepping method using the barrier Lyapunov function for the aircraft skin inspection 

robot was designed. Considering the robot movement is restricted by the work environment, 
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the backstepping control method with output constraint is presented. The fuzzy system is 

adopted to approximate the unknown dynamics related with system states. Finally, the 

effectiveness of the control method is verified by simulation. Due to using the backstepping 

control, there is a very small error of trajectory tracking for the robot, and the control torque 

is relatively smooth during the movement of the robot. Therefore, the smooth motion of the 

robot can ensure the stability of the adsorption on the surface of aircraft. 
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