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3D Bounding Box Proposal for on-Street Parking Space Status 
Sensing in Real World Conditions 
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Abstract: Vision-based technologies have been extensively applied for on-street parking 
space sensing, aiming at providing timely and accurate information for drivers and 
improving daily travel convenience. However, it faces great challenges as a partial 
visualization regularly occurs owing to occlusion from static or dynamic objects or a 
limited perspective of camera. This paper presents an imagery-based framework to infer 
parking space status by generating 3D bounding box of the vehicle. A specially designed 
convolutional neural network based on ResNet and feature pyramid network is proposed 
to overcome challenges from partial visualization and occlusion. It predicts 3D box 
candidates on multi-scale feature maps with five different 3D anchors, which generated 
by clustering diverse scales of ground truth box according to different vehicle templates 
in the source data set. Subsequently, vehicle distribution map is constructed jointly from 
the coordinates of vehicle box and artificially segmented parking spaces, where the 
normative degree of parked vehicle is calculated by computing the intersection over 
union between vehicle’s box and parking space edge. In space status inference, to further 
eliminate mutual vehicle interference, three adjacent spaces are combined into one unit 
and then a multinomial logistic regression model is trained to refine the status of the unit. 
Experiments on KITTI benchmark and Shanghai road show that the proposed method 
outperforms most monocular approaches in 3D box regression and achieves satisfactory 
accuracy in space status inference. 

Keywords: 3D object proposal, image processing and analysis, parking space detection, 
fully convolutional network, multinomial logistic regression model. 

1 Introduction 
Nowadays video surveillance gains a wide application in Intelligent Transportation 
System (ITS) thanks to the notable progress in machine vision techniques. Follow this 
tendency, a multitude of vision-based vehicle detection algorithms have been extensively 
exploited for on-street parking lot management, providing vehicle location, space 
information and vacant space guidance for drivers. Unfortunately, accurate and robust 
vehicle detection is intensely challenging due to the difficulties from illumination 
condition, various size, different viewpoints, truncation and occlusion. Especially in 
scenes such as on-street parking lot, vehicles are always linearly aligned and easily 
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occluded each other, posing high demands on the mounting height and angle of cameras. 
Furthermore, adjacent vehicles show severe overlap on the image plane due to a limited 
perspective of camera, thus the detection algorithm must be able to extract robust features 
to accurately distinguish their boundaries. 
Recently impressive CNN-based works in 2D object detection [Liu, Anguelov, Erhan et 
al. (2015); Redmon and Farhadi (2018); Ren, He, Girshick et al. (2017)] are able to 
provide significant information and generate 2D box related to scenes content but does 
not allow to describe objects in 3D real world scene [Chabot, Chaouch, Rabarisoa et al. 
(2017)]. Additionally, typical vision-based methods achieve very low recall rate when 
objects are heavily occluded or truncated, presenting the bottleneck for state-of-the-art 
object detectors like Faster R-CNN [Ren, He, Girshick et al. (2017)] and SSD [Liu, 
Anguelov, Erhan et al. (2015)] on this benchmark. Hence, the representation of vehicle 
location should detailedly describe vehicle boundary and center. In this paper, we focus 
on 3D vehicle analysis from monocular images. For parking space sensing in the real 
world, vehicle localization and surrounding vehicles description jointly utilized with 
spatial interpretation are obviously indispensable. As an example, current location of 
vehicles on the road is required to infer the relationship between vehicles and spaces, 
which is used to determine whether vehicles are inside parking spaces or outside parking 
spaces. In another case, it can be empirically manifested that 2D vehicle detection is 
highly unreliable for space status inference because the exact location of vehicle is 
represented by the pixels in the image, thus determining the interaction between the 
vehicle and the specific space is arduous. Here we present an approach that, given a 
single image, provides exact vehicle localization, vehicle distribution map, parking space 
status and non-standard parking recognition, as illustrated in Fig. 1.  
We proposed a novel parking space status inference scheme based on cascaded net, 
camera inverse projection matrix, and multinomial logistic regression model (MLRM). 
Composed of ResNet [Wu, Zhong and Liu (2016)] and Feature Pyramid Networks (FPN) 
[Lin, Dollár and Girshick (2017)], the cascaded net is utilized to extract multi-scale stereo 
features of vehicles and predict a set of high-quality 3D candidate boxes, dealing with 
truncation or occlusion adaptively. Here we introduce the 3D anchor to enforce the 
cascaded net to learn an excellent representation for different vehicle shapes with various 
length, width and height ratio. Inspired by the 3D templates in Chabot et al. [Chabot, 
Chaouch, Rabarisoa et al. (2017)], 3D anchors are clustered from the ground truth box in 
the source dataset according to diverse geometrical templates. In our method, proposals 
are generated at multi-scale feature maps based on five different types of 3D anchors. In 
the procedure of space status inference, MLRM is trained to model this process and 
complete inference by combining three adjacent parking spaces into one unit. This 
guarantees that the outputs will not be interfered by adjacent parked vehicles. Extensive 
experiments are conducted on two data sets, KITTI benchmark and a surveillance data set 
collected in Shanghai. Our data set is developed containing more than 7 thousands of 
labeled ground truth of both fully and partially observed vehicles on four distinctive 
roads across the scenes of various parking space. 
The contributions of our work can be summarized as follows: 
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 First, we introduced 3D vehicle detection for a more distinct description of vehicle 
location on roadside parking lot, providing an intuitive way to infer pace status and 
non-standard parking. 

 Second, we discovered that the key for improving 3D box generation by optimizing 
conventional 2D anchor to 3D anchor. This procedure can be efficiently 
implemented with the proposed cascaded network. 

The rest of the article is organized as follows. Section 2 summarizes relevant research of 
parking space monitoring system. The architecture of the roadside monitoring system and 
the procedure of space status inference are presented in Section 3, including some details 
to address occlusion and other issues. Then, Section 4 evaluates our system through an 
experiment on a dedicated dataset and compares the system performance with other 
similar detection systems. Section 5 concludes our research of this paper. 

2 Related work 
2.1 Parking space sensing 
Currently numerous vision-based approaches gradually introduced for on-street parking 
space status inference. For instance, Yang et al. [Yang, Ju, Hsieh et al. (2017)] proposed 
a real-time parking space monitoring and guiding system based on image analysis, 
collecting information of space through event recorders embedded in cars on the roads. 
Sevillano et al. [Sevillano, Marmol and Fernandez-Arguedas (2014)] proposed a vacant 
on-street parking space detection system by combining the widely-deployed video 
surveillance camera networks and parking sensor networks together. Some other methods 
try to determine the vacant parking space by extracting the foreground and background 
information of the parking space [Pazos, Müller, Favre-Bulle et al. (2016); Almeida, 
Oliveira, Silva et al. (2013)]. However, false detection usually occurs in these methods 
due to challenges e.g. lighting variations and occlusion. 
Huang et al. [Huang, Tai and Wang (2013)] proposed a plane-based 3D scene model 
composed of plentiful planar surfaces, which contribute to handling inter-object 
occlusion and perspective distortion. By means of scene layer, label layer, and 
observation layer, the plane-based Bayesian hierarchical framework is presented to 
address challenges of status inference and performance improvement. Meanwhile, 
Masaki [Masaki (1998)] identify parking space status by tracking and recording the 
trajectory of vehicle. Recently, a decentralized parking lot occupancy detection approach 
was proposed by Amato et al. [Amato, Carrara, Falchi et al. (2016)]. Based on a 
specifically designed deep Convolutional Neural Network (CNN), they integrated the 
entire system on a smart camera and obtained real-time parking space information 
subsequently. Similar to the method in Huang et al. [Huang, Tai and Wang (2013)], A 
Multilayer Inference Framework based on Bayesian network for vacant parking lot 
detection was presented in Huang et al. [Huang and VU (2017)]. The framework consists 
of four component layers: an image layer, a patch layer, a space layer, and a lot layer. It is 
able to extract high-level features from different patches of space and well address visual 
challenges such as lighting variations, casting shadows, and perspective distortion. 
All of the above methods were designed to identify parking space status through vehicle 
detection algorithms. By extracting detailed properties from vehicles, such as edge, 
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texture and color, these methods are capable of successfully sensing vacant spaces to a 
certain degree. Whereas, none of them has mentioned precise localization of vehicles and 
the recognition of non-standard parking. Based on this, the proposed system aims to 
address the aforementioned problems by exploiting 3D vehicle detection. 

2.2 Vision-based approaches 
Accurate 3D object detection means considerable significance for ITS, and an ocean of 
vision or stereo or/and Lidar-based approaches were presented recently. The PointNet  
[Qi, Liu, Wu et al. (2017)] and RoarNet [Shin, Kwon and Tomizuka (2018)] conduct 
object proposals directly on the point clouds themselves, considering a series of points 
which lie within a frustum defined by a 2D object proposal through images. Whereas, 
Chen et al. [Chen, Kundu, Zhu et al. (2018)] introduced a novel 3D object proposal 
method by formulating the whole problem as minimizing an energy function that 
received detailed properties obtained from image and point cloud densities. Under the 
combination of image captured by the camera and point cloud data generated by the radar, 
these works enhance the sensing ability of the algorithm, and locate object accurately on 
the premise that the input is abundant enough although more computational cost. 
Without stereo information, it is relatively difficult to generate accurate 3D boxes with 
monocular image only. Hence, numerous works dedicate to refine candidate boxes 
through deep features extracted from real world scene. Given a monocular image, they 
encode contextual information, ground plane, object size, location and semantic 
segmentation [Chen, Kundu, Zhang et al. (2016)]. In Xiang et al. [Xiang, Choi, Lin et al. 
(2015)], Xiang et al. proposed an original object description, 3DVP, that simultaneously 
transfers the key properties of vehicles such as 3D shape, orientation, and truncation. 
After that, SubCNN [Xiang, Choi, Lin et al. (2017)] is proposed through a novel CNN-
based 3D bounding box proposal network that using subcategory information to guide the 
candidates generating process. Other work such as Mousavian et al. [Mousavian, 
Anguelov, Košecká (2017)] combined 2D bounding box with geometric constraints on 
translation and regress relatively stable 3D object properties. Recently Roddick et al. 
[Roddick, Kendall and Cipolla (2018)] introduced the orthographic feature transform, 
which provides a totally different view for the CNN to holistically reason about the 
spatial configuration of the scene. 

3 Parking space status inference 
In this paper, a prominent change by generating 3D bounding box with monocular image 
to infer space status and estimate vehicle pose (e.g., non-standard parking) through an 
elegant and effective solution with minimal computing overhead is proposed. As depicted 
in Fig. 1, the system is composed of two modules, i.e., 3D bounding box generation and 
space status inference. Firstly, the monocular image is passed through the cascaded net 
that output a series of 3D boxes, associated with 3D anchors (vehicle templates). The 
cascaded net architecture is detailed in Section 3.1. The second procedure is the space 
status inference which uses coordinates of box and artificially segmented space. This 
procedure creates the vehicle distribution map and completes inference with MLRM. 
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Figure 1: The pipeline of the proposed framework. The entire system captures 
monocular image and outputs space status. Given a single image, the 3D bounding box 
generation network regresses a set 3D box. Then, the parking spaces are segmented 
manually and the distribution map is reconstructed, and three adjacent parking spaces are 
combined into one unit to infer status of the unit 

3.1 Network architecture 
3D bounding box describes the location of vehicle as well as their parking pose in spatial. 
Instead of exhaustive searching on traditional object proposal network, an end-to-end 
network based on Darknet-53 [Redmon and Farhadi (2018)] backbone is designed. In 
experiments, for a feature map with size of N×N, Darknet predicts 2D boxes at three 
scales so the tensor is N×N×[(4+1+B)×3] for the 4 bounding box offsets, 1 objectness 
prediction, B class predictions and 3 sampling anchors. In our method, the cascaded net 
predicts 5 candidates box according to five different 3D anchors, so the tensor is 
extended to N×N×[(4+1+1)×5] for the 4 3D box representation (will be elaborated next), 
1 class predictions for vehicle. 
The whole cascaded network architecture is thus a kind of fully convolutional network 
(FCN) [Shelhamer, Long and Darrell (2017)], as depicted in Fig. 2. The advantages of 
this approach is that it provides an opportunity to localize diverse scale vehicles more 
accurately by relocating the box on higher resolution map, as an end-to-end trainable 
approach it is also extremely faster than other two-stage approaches due to feature 
extraction and bounding box prediction are accomplished by one net. All the scale of 
input images is normalized as 448×448. The feed-forward convolutional net contains five 
different types of residual blocks and the last three blocks generate various size feature 
maps, which is transferred to the FPN. Reaping huge fruits from multi-scale feature map 
fusion of FPN, the network completes prediction on the feature maps of three different 
scales. For the prediction stage in the FPN with a size N×N feature map, it generates a 
confidence score of vehicle and shape offset relative to the anchor box coordinates. The 
loss function of the net is a sum of bounding box regression loss and corresponding 
confidence loss: 
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where i  is the index of 3D anchor in a mini-batch, ip  and it  are the predicted confidence 
of the thi  anchor being a vehicle and the predicted coordinates of the vehicle. *

ip  and *
it  

are the associated ground truth class label and coordinates of the thi  anchor. 
In a feature map with size of N×N, each grid point will generate 5 proposal boxes (5 
different anchors), such a 26*26 feature map will generate approximately 30 thousands 
boxes. Obviously, most boxes are negative samples, so it is necessary to add some 
restrictions to decrease the computational complexity of the net. Particularly, the ground 
plane estimated from monocular camera is utilized by placing 3D candidate boxes on it. 
Vehicle candidates are scored on the plane ground by extracting adjacency constraint, 
contour features and location priors. After this procedure, there are about 5000 proposal 
boxes left in one feature map. 
When it comes to the way of 3D box representation, an inspiring work [Chen, Kundu, 
Zhu et al. (2018)] provides an outstanding method to represent each object proposal B, 
which is parametrized by a tuple (x, y, z, 𝜃𝜃, t), where (x, y, z) is the box center, 𝜃𝜃 denotes 
the azimuth angle and t represent which vehicle template the vehicle belongs to. 

 
Figure 2: 3D bounding box generation network. Composed of two backbone of ResNet 
and FPN, this network predicts the offsets to anchor boxes of different scales, confidence 
and aspect ratios. In addition, five 3D anchors clustered from the ground truth of vehicles 
in the dataset are utilized as the reference to generate candidate box 

3.2 World scene reconstruction 
With prior knowledge of real-world scene, it is possible to obtain a high-precision 
bounding box. Instead of using stereo information, a known ground plane assumption is 
considered. That, through the requirement that all bounding boxes lie on the ground plane, 
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aerial bird-view map of spaces is able to be constructed with camera inverse-projection 
matrix provided. 
Fortunately, the projection matrix is easy to deduce since the input is a monocular image 
and the angle between ground and image plane is known. According to the description of 

Hu et al. [Hu, Wu and Wang (2007)], camera parameters are estimated from just one 
view of five corresponding points based on geometric analysis. Then, the 3D world scene 
model needs to be reconstructed and each parking space is segmented artificially in real 
world scene subsequently. Camera projection matrix is derived from the combination of 
the intrinsic and extrinsic parameters finally. 
The central point of the camera is defined as the origin of the 3D coordinate system, 
hence the image projection matrix [ | - ]=P KR I C  is achievable, where C is the camera 
positon in the 3D world defined as 3×1 vectors, where I is the identity matrix and R is 
rotation, and K is calibration. A vertex X is assumed to lie on the ground and it is 

projected into the camera. ( ) [ ]|λ = − Χ = −
 
 
 

x KR X KR ΚΡΧ
X
1

                                     (3) 

where Rλ∈ . Further information is essential to determine the exact position of vertex X. 
Considering the inverse projection, it could be written as: 
λ = −x KRX KRC                                                                                                              (4) 

λ+ =KRC x KRX                                                                                                           (5) 

( )-1λ+ =C KR x X                                                                                                             (6) 

Then the camera center can be computed from the image projection [ | - ]=P KR I C . 

( )-1
  = − 4C KR P                                                                                                                  (7) 

where  4P  is the fourth column of P . With the fore-mentioned ground plane equation, the 
bottom side of 3D box can be constructed. From the inverse projection of image point 
x the ray ( )X

-1I = C + KR  x   is obtained. As mentioned before that X lies in the ground, it 
has to hold 0d⋅ + =n X . Plugging in for X and solving for λ  gives us 

( ) d⋅ + + =Xn C λI 0                                                                                                           (8) 

dλ⋅ + ⋅ + =Xn C n I 0                                                                                                          (9) 
dλ ⋅

=
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Then the four bottom coordinates of bounding box could be constructed (only two points 
are calculated actually because the rest two points may be inferred from others). 

3.3 Parking space status inference and non-standard parking recognition 
Given output of the second module, the space status can be preliminarily inferred based 
on where the center of bounding box falls in. However, this approach is not able to 
guarantee a high recall due to inter-object occlusions and non-standard parking behavior. 
As shown in Fig. 3, it is obvious that neighboring spaces are correlative because of partial 



 
 
566  Copyright © 2019 Tech Science Press           CMES, vol.119, no.3, pp.559-576, 2019 

overlap always happens. Simply determining the parking space status according to the 
relationship between vehicle center and parking space boundary may cause ignorance of 
non-standard parking, e.g., pressing parking line and exceeding the parking space. As 
shown in Fig. 3, the space is responsible for the corresponding vehicle if the center of 
vehicle’s 3D bounding box falls into the space. Even though the status of single space 
may be incorrect, more robust feature can be achieved by combining detection result of 
three adjacent parking spaces. This model may infer the status appropriately but if the 
influence of adjacent space prior to the network is taken into account, it is easier to 
predict good inference. 
To model the inference process, three adjacent parking spaces are combined into one unit 
and an MLRM is trained, where each space is defined into two states: parked and no-
parked, which are denoted as P and N. Note that space is regard as a state of P if any part 
of one vehicle falls in. According to the description, there are two output nodes to 
indicate the possible status hypothesis h of one space, that is 1-2{ }i ih h =∈ . When it comes 
to three adjacent spaces, there is 8 output nodes to express one unit and these hypothesis 
is defined as 1-8{ }j jH H =∈ , where jH denotes the ith status in the set {(P,P,P), (P,P,N), 
(P,N,P), (P,N,N), (N,P,N), (N,N,P), (N,N,N), (N,P,P)}. The softmax function is used as 
the output function and 0 1,( ), ,f MM P P P=   is defined to represent the collection of all 
the features. Hence, (  )|j fP H H M= = , the probability of the status hypothesis jH  is 
given the input fM , could be calculated by 
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The weight set , 0 , 1 8{ }m j m M jw = − = −  , is trained by the standard back-propagation learning 
process. 
Non-standard parking usually brings numerous traffic safety hazards, especially in the 
scene of on-street parking. As illustrated in Fig. 4, an intuitive way could be provided to 
observe vehicle pose by projecting coordinates of 3D box. In order to cope with the 
location deviation of the vehicle box and simultaneously decrease the false detection rate, 
the actual space boundary is extended in a certain proportion (1.2 times longitudinally 
and 1.05 times transversely compared to the original scale) in the vehicle distribution 
map. Space is extended less in transverse direction for two reasons: (I) the vehicle is 
limited by the fence on the roadside; (II) it is more dangerous to go beyond the parking 
space transversely and occupy the road, there is no such concern in the longitudinal 
direction yet. When the vehicle exceeds the (region of interest) ROI area, it will be 
labeled as non-standard. 
The recognition of non-standard parking may be interfered if vehicle is parking or leaving 
the space. Even if this situation rarely happened, the system should still distinguish it. In 
order to solve the misdetection caused by this situation, the same space will be matched 
with two photos captured in two adjacent periods. If one vehicle is labeled in the previous 
period, the framework will compare the position of this vehicle in the next cycle. Vehicles 
will be regarded as non-standard pose when detected in two periods. 
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Figure 3: MLRM for parking space status inference. Three adjacent parking spaces are 
combined and then transferred to the MLRM. The final output of jH  determines the 
space status, where parked is denoted as P and vacant is denoted as N respectively. Note 
that each space may have different output nodes according to different units. In general, 
these output nodes should be the same, but if there are different results, the most 
distributed output node will be retained as the status of the parking space 

 
Figure 4: Parking space status inference and non-standard parking behavior recognition. 
The status of space depends on the output of MLRM. The scale of each space is extended 
1.2 times longitudinally and 1.05 times transversely (dotted line outside the parking 
space). By constructing an aerial bird-view map of parking spaces, non-standard parking 
behavior is easy to be deduced 

4 Experiments 
Three experiments are conducted in this paper. The first experiment evaluated the 
performance of 3D box generation and compared with other state-of-the-art approaches. 
The network was trained on both KITTI and our dataset. The strategy of joint training 
allows the network to achieve high average precision and wide range of application. The 
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second one is an assessment of non-standard parking detection and the final one 
examined the quality of parking space status inference on our data set. 

4.1 Datasets 
The KITTI detection benchmark [Urtasun, Lenz and Geiger (2012)] contains 7481 
training and 7518 test images, including three classes: Car, Pedestrian, and Cyclist. These 
images are convenient to initialize our network, however, experiments on the test set in 
Shanghai show that the performance of our system is not exceptional enough if only 
training on KITTI benchmark, since the application scenario is totally different. Hence 
collecting a new dataset is essential. 
The original data were collected from the spherical camera mounted on roadside. Totally, 
12 cameras are equipped and deployed at the same height. Detection often requires fine-
grained visual information so the resolution is reached 1920*1080 pixels. Each camera 
rotates 360 degrees each minute and captures four images in a period. Obviously, there is 
no need to store each frame of the surveillance camera because parking cars will not 
change typically in several minutes. In order to get different types of pictures and reduce 
the amount of data, a group of photos was down-sampled every 20 minutes. Then, a 
dataset contains 8600 pictures was collected, among them 5,672 images were captured in 
day and 2928 images at night. All the images were labeled as the standard of KITTI and 
the occluded part of vehicle still need to be labeled. 

4.2 Performance of 3D bounding box regression 
To demonstrate the robustness of 3D box generation net, the cascaded net was evaluated 
on the KITTI 3D vehicle detection benchmark and our dataset. The KITTI test set has not 
labeled cars, 2200 images were split from the training set as a validation set, containing 
6450 labeled cars. The network was trained on the remaining images and then evaluated 
on the validation set. 
3D bounding box regression was assessed using two metrics as in Chen et al. [Chen, 
Kundu, Zhu et al. (2017)]: Average Precision (AP 3D), using 3D bounding box overlap 
measure, and Average Localization Precision (ALP). Similar to calculating the IoU 
between 2D box and ground truth, AL3D calculates the IoU between ground rectangle of 
3D box and ground truth counterpart. The ALP threshold is set as 0.7, means that 
detected 3D box location is correct if its overlap value is larger than the ALP threshold. 
The calculation of the ALP is computing the deviation of the predicted 3D location from 
the ground truth 3D location. Note that better performance of ALP is obviously more 
paramount than higher AP because the accurate calculation of the vehicle deviation is 
essential to eliminate detection error of space status. 
The numerical comparison result of the two metrics is shown in Tab. 1 and Tab. 2. 
Obviously our method is capable of outperform most comparable monocular only method 
(i.e., AVOD [Ku, Mozifian, Lee et al. (2017)]) by a considerable margin on both metrics. 
The performance of our method on AP3D and ALP is very close to Mono3D [Chen, 
Kundu, Zhang et al. (2016)], the most accurate monocular approach across the board in 
3D IOU. Note that the comparison of our method and 3DOP is unfair as the proposed 
method just use monocular image without additional depth information. Nevertheless, 
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thanks to the computing power of the cascaded net and the computational advantages of 
monocular images, our approach has achieved great advantages in terms of speed. As is 
known to all, single-stage method such as SSD always suffers from the inherited problem 
that struggles to get the boxes perfectly aligned with the object. An important factor is the 
anchors generated from dimension clusters is not able to match all object geometry well, 
whereas, Fig. 5 shows that the framework optimizes this problem well by substituting 
clustered anchors with 3D anchors specifically clustered for specific object. This is a 
promising achievement, because it suggests that performance will be significantly 
improved with more reliable prediction template. 
In Tab. 1, the computing time of 3D box generation frameworks is summarized, 3DOP 
[Chen, Kundu, Zhu et al. (2018)] takes about 1.2 s, MV3D takes 0.36 s on average and 
PointNet takes about 0.17 s to perform 3D bounding box regression on TITAN X. The 
proposed network with Darknet-53 takes in total 0.1 s on KITTI benchmark. Compared 
with previous works, the proposed approach exceeds in accuracy and advances in 
computing efficiency. Fig. 5 reports the detection performance of MV3D and the 
proposed network. It is robust enough to handle scale diversity, exhibiting the advantages 
in 3D bounding box prediction. 

Table 1: 3D box regression performance on KITTI: Average Precision (AP 3D) and 
Average Localization Precision (ALP). Paper of methods: SubCNN [Xiang, Choi, Lin et 
al. (2017)]; 3DVP [Xiang, Choi, Lin et al. (2015)]; 3DOP [Chen, Kundu, Zhu et al. 
(2018)]; Mono3D [Chen, Kundu, Zhang et al. (2016)]; MV3D [Chen, Ma, Wan et al. 
(2017)]; VoxNet [Maturana and Scherer (2015)]; PointNet [Qi, Liu, Wu et al. (2017)]; 
AVOD [Ku, Mozifian, Lee et al. (2017)]; RoarNet [Shin, Kwon and Tomizuka (2018)] 

Proposals Runtime Type 

 KITTI  
Easy Moderate Hard 

AP 
3D 

ALP 
(<1 m) 

AP 
3D 

ALP 
(<1 m) 

AP 
3D 

ALP 
(<1 m) 

SubCNN - Mono - 39.28 - 31.04 - 25.96 
3DVP - Voxel 80.48 45.61 68.05 34.28 57.20 27.72 
3DOP 1.2 Stereo 77.50 64.89 56.79 47.34 50.84 42.20 
3DOP 1.2 Hybrid 89.49 82.16 81.21 75.44 74.32 69.27 
Mono3D - Mono 86.54 79.31 72.45 70.48 45.68 54.67 
MV3D 0.36 Hybrid 71.29 72.14 62.68 66.48 56.56 46.92 
VoxNet 0.23  71.09 - 62.35 - 55.12 - 
PointNet 0.17  81.20 - 70.39 - 62.19 - 
AVOD 0.1 Mono 81.94 - 71.88 - 66.38 - 
RoarNet 0.1 Lidar 83.71 78.86 73.04 69.84 59.61 65.14 
Ours 0.11 Mono 87.26 80.75 73.46 73.45 54.31 66.06 

 

 



 
 
570  Copyright © 2019 Tech Science Press           CMES, vol.119, no.3, pp.559-576, 2019 

Table 2: 3D box regression performance on our data set: average precision (AP 3D) and 
average localization precision (ALP) 

Method Runtime Type AP 3D ALP (<1 m) 

RoarNet 0.1 Lidar 87.89 79.56 
Ours 0.11 Mono 88..53 82.74 

 

(a) 

(b) 

(c) 

Figure 5: Comparative performance of MV3D and our method on 3D box generation. (a) 
The original images; (b)MV3D; (c) The proposed method. Notice that MV3D manages 
small vehicles well since the application of point cloud information. Although the 
proposed network slightly inferior to MV3D is small object, it achieves higher precision 
of bounding box location 

4.3 Recognition of non-standard parking behavior 
To assess the detection accuracy of non-standard parking behavior recognition, the 
ground truth of 2474 parking cars was built manually, with 1862 standard vehicles and 
612 non-standard vehicles. As shown in Fig. 7, vehicle pose is visualized by creating the 
vehicle distribution map of parking lot. For numerical comparison, the result is assessed 
by using false-negative rate (FNR), false-positive rate (FPR) and relative accuracy (ACC), 
the definition are follows: 

number of vacant spaces that are detected as occupiedFPR=
total number of occupied spaces

                                        (12) 

number of occupied spaces that are detected as vacantFNR=
total number of occupied spaces

                                        (13) 

number of correct detectionACC=
total number of occupied spaces

                                                                         (14) 
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Tab. 3 reports the performance of non-standard parking behavior recognition on the testing 
dataset the proposed system is capable of obtaining 83.41% accuracy during the day and 
71.54% at night when one camera monitors 32 parking spaces. Reasonably, the accuracy 
decreases with the increase of detection distance as depicted in Fig. 6, and since the far 
distance has a great influence on the accuracy of 3D detection, when the monitoring range 
is increased, the monitoring of irregular parking becomes increasing difficult. 

Table 3: Performance of non-standard parking pose recognition 

Environment Number of tested vehicles Our method performance 
Standard Non-standard Total FPR FNR ACC 

Day 1244 210 1454 7.89 8.94 83.41 
Night 745 149 894 11.52 13.74 71.54 

 
Figure 6: Accuracy curve of non-standard parking recognition 

4.4 Assessment of space status inference 
For evaluating performance on on-street parking space status inference, five methods 
were compared in this domain: (i) Our method; (ii) Lixia’s method [Wang and Jiang 
(2012)]; (iii) Huang’s method [Huang and VU (2017)]; (iv) Wu’s method [Wu, Huang, 
Wang et al. (2007)]; (v) Amato’s method [Amato, Carrara, Falchi et al. (2016)]. All of 
these methods only use vision equipment and were presented in recent years. 
Experiments were performed using the two data set, one is our dataset collected from 
another two roads and another one is an open access dataset called CNRPark. 
Comparison was implemented using manually labeled dataset, on which spaces are 
labeled with two situations: parked and no-parked.  
Fig. 8 shows the comparison result with the Receiver Operating Characteristic (ROC) 
curves on two datasets and Tab. 4 gives the statistical results on our dataset. It is obvious 
that the MLRM means a lot to the proposed method especially in complicated 
environment of the night. Even though the complicated environment makes the status 
inference challenging, our method is capable of achieving considerable performance. 
Considering the previous approach only utilize 2D intensity information and ignore the 
stereo information, it is sensitive to occluded, perspective distortion and camera view. 
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The reason why the proposed system achieves so high recall is that 3D box provides a 
large fault tolerance for parking space detection. Even if there is a slice of error in the 
vehicle localization, it won’t affect the output of the entire system. In the long-distance 
vehicle detection, due to the lack of point cloud and deep information, the 3D box of the 
vehicle will have a large deviation, but within the specified monitoring range, the entire 
system is capable of maintaining high accuracy. From the experiments implemented in 
real road, one camera can maintain 98.50% accuracy while monitoring 36 parking spaces 
(18 spaces in each side). 

Table 4: Detection result on our dataset of different environments 

Environment 
Proposed method 
(with the MLRM) 

Proposed method 
(without the MLRM) 

FPR FNR ACC FPR FNR ACC 
Night 3.46 1.84 96.48 5.26 2.84 92.26 
Day 2.16 0.59 98.50 3.45 1.74 96.24 

 

 
(a)                              (b)                               (c) 

Figure 7: Visualization of parking space status inference and vehicle pose estimation. (a) 
3D bounding box; (b) Space segmentation; (c) vehicle distribution map. Through the 
generation of high-quality 3D bounding box, the exact position of vehicles can be located. 
Then vehicles will be labeled as non-standard parking behavior and marked red if 
exceeding the ROI area 
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  (a)    (b) 
Figure 8: Comparison of five different approaches. (a) ROC curve on our dataset; (b) 
ROC curve on CNRPark 

5 Conclusion 
In this paper, a novel on-street parking space detection system, based on 3D bounding 
box regression and 3D scene model reconstruction, is proposed to handle common 
challenges that come across in roadside parking space, especially inter-object occlusion. 
For vehicle 3D bounding box regression, an effective solution is developed that optimizes 
2D anchor of Darknet to 3D anchor. The net is jointly trained on two datasets to conquer 
localization deviation. Then, high-quality 3D box is obtained and three adjacent spaces 
are combined into one unit on the aerial bird-view map to determine its status. 
Furthermore, the proposed method calculates the IoU between space edge and ground 
coordinates of 3D box to perform recognition of non-standard parking behavior, a 
dangerous pose in roadside that may cause accidents. 
Several experiments in real environments were performed with this system demonstrate their 
functionality compliance and relatively good performance, comparable to that of the most 
recent works in the field. As a result, the proposed approach is worth to be widely used due 
to its efficiency, convenience, and capacity to relieve traffic congestion and save fuel. 
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