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Abstract: Based on the fractal theory, a normal contact stiffness model is established. In 
the model, the asperity is initially in elastic deformation under contact interference. As the 
interference is increased, a transition from elastic to elastoplastic to full plastic deformation 
occurs in this order. The critical elastic interference, the first elastoplastic critical 
interference and the second elastoplastic critical interference are scale-dependent. 
According to the truncated asperity size distribution function, the relations between the 
total normal contact stiffness and the total contact load are obtained. The results show the 
total normal contact stiffness depends on the range of frequency indexes of asperities. The 
normal contact stiffness in elastic deformation is major contribution to the total normal 
contact stiffness. When the first six frequency indexes are less than the critical elastic 

frequency index, the dimensionless load-stiffness relation approximately is  3* *
r rF K . 

When the initial frequency index is greater than the critical elastic frequency index, the 

dimensionless load-stiffness relation approximately is * *
r rF K . The comparison between 

the theoretical results and the experimental results indicates that the theoretical results are 
consistent with the experimental data; therefore, the present fractal model of contact 
stiffness is reasonable. 
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1 Introduction 

The joint surfaces exist widely in various engineering machines, such as machine tools, 
vehicles, hydraulic equipments, etc. In general, the joint surface is regarded as the smooth 
surface. In practice, the joint surface on which a large number of asperities can be 
observed at micro scale is not smooth, namely rough surface [Shroff, Ansari, Ashurst et al. 
(2014); Tian and Bhushan (1996)]. The mechanical properties of rough surface play 
important role on contact stiffness of joint surface. In order to obtain the mechanical 
properties of rough surface, many models of contact between rough surfaces are 
developed in the past decades, such as the statistical model, the fractal contact model, the 
finite element method, the multi-scale model, etc. The statistical contact model firstly 
was presented by Greenwood et al. [Greenwood and Williamson (1966)]. Subsequently, 
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the statistical model is extended to different fields, such as elastic contact between 
spherical rough surfaces [Greenwood and Tripp (1967)], elastohydro-dynamic lubrication 
[Johnson, Green and Bogy (1987)], contact stiffness [Wen (2009)]. In the statistical model, 
the radii of curvature of all asperities are considered to be identical and the height of the 
asperities follows the Gaussian distribution. And these parameters used to characterize the 
topography of rough surface, such as height, slope and curvature, mostly depend on 
resolutions of the instruments. Therefore, the predictions of the contact models based on 
these parameters may not be unique to a pair of rough surfaces. 

Mandelbrot found that the topography of rough surface appears to be fractal characteristic by 
experimental method [Mandelbrot (1983)]. Based on fractal properties, Majumdar, Bhushan 
(1990) simulated a two-dimensional profile of rough surface by Weierstrass-Mandelbrot 
function (WM function). Then, a fractal model of contact between rough surfaces was 
presented by them according WM function, called MB model [Majumdar and Bhushan 
(1991)]. In the MB model, the radii of curvature of all asperities are different, which satisfies 
actual rough surface. The MB model was extended to the three-dimensional rough surface by 
Yan et al. [Yan and Komvopoulos (1998)]. Because the analytic solutions of the MB model 
can be obtained conveniently, the MB model has been widely applied to various fields, such 
as microelectromechanical systems [Komvopoulos and Yan (1997)], the interface of spot 
welding between two materials [Han, Shan and Hu (2006)] and contact stiffness. Jiang et al. 
[Jiang, Zheng and Zhu (2010)] applied the MB model to calculate the contact stiffness of 
machined plane joint without friction. Based on the model of Liu et al. [Liu, Zhao, Huang 
et al. (2015)] presented a normal contact stiffness model considering friction. Then Chen et 
al. [Chen, Xu, Liu et al. (2016)] developed a fractal model of normal contact stiffness 
between two spherical joint surfaces considering friction factor. Wang et al. [Wang, Zhu 
and Zhu (2017)] extended the MB model to normal contact stiffness with asperity 
interaction. In these contact stiffness models, the plastic deformation initially takes place in 
the single asperity under contact load, and contact stiffness induced by inelastic 
deformation of asperities is ignored. The finite element method [Liu, Zhao, Huang et al. 
(2015); Amor, Belghith and Mezlini (2016)] and multi-scale method [Jackson and Jeffrey 
(2006); Ciavarella, Dibello and Demelio (2008)] have been applied to obtain mechanical 
properties of contact between rough surfaces. The models of finite element method and 
multi-scale method are close to real rough surfaces; however, they are difficult to directly 
calculate the contact stiffness. 

In the paper, a normal contact stiffness model is presented. The critical interferences, such 
as the critical elastic interference, the first elastoplastic critical interference and the 
second elastoplastic critical interference, are scale-dependent. The mechanical properties 
of a single asperity are in accord with classical contact mechanics. The elastic, the first 
elastoplastic, the second elastoplastic and full plastic normal contact stiffness are 
obtained. An experiment of normal contact stiffness is devised to validate validity of 
theoretical model. 

2 Normal contact stiffness model 

2.1 Modeling and simulation of rough surface topography 

Two rough surfaces of joint surface contact each other, which can be regarded as an 
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equivalent rough surface in contact with a rigid flat surface [Greenwood and Tripp (1971)]. 
The rough surface is assumed to be isotropic. Asperities are far apart and their interaction is 
not considered. The three-dimensional topography of equivalent rough surface exhibit 
fractal feature, therefore it can be simulated by a modified two-variable 
Weierstrass-Mandelbrot function [Yan and Komvopoulos (1998)] which is expressed as 
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(1) 

where L is the sample length of surface topography, zdenotes height of profile at any 

point  ,x y . The parameter D  is the fractal dimension, which is between 2 and 3 for a 

three-dimensional rough surface.The parameter G  is a characteristic length scale of the 
surface. Normally the parameter   is chosen to be 1.5, which determines the frequencies 

density of the surface profile. The parameter M denotes the number of superposed ridges 
on the rough surface. The parameter n is the frequency index and its value is between nmin 
and nmax. The relation between maximum frequency index and minimum frequency index 

is  max min int ln lnsn n L L       and sL  is the cut-off length of the order of about six 

lattice distances. ,m n  is a random phase used to prevent the coincidence of different 

frequencies at any point of the surface profile.During the process of modeling and 
simulating the rough surface by W-M function, linspace()function can be used to generate 
linely spaced vector to avoid the deficiencies in the number of discrete points and it gives 
direct control over the number of points and always includes the endpoints. 
meshgrid(x,y)can be used to generate grid sampling points on the xOy plane Then the 
heights of rough surface z(x,y) at any point (x,y) can be evaluated in MATLAB and the 
simulated topography of the rough surface is shown in Fig. 1. 

 
Figure 1: The profile of a three-dimensional rough surface simulated by W-M function 
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2.2 The Mechanical properties of a single asperity 

Assuming only one ridge in the rough surface,the three-dimensional rough surface can be 
equivalent to the two-dimensional rough surface, therefore Eq. (1) can be reduced to Yan et 
al. [Yan and Komvopoulos (1998)] 
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In the equivalent rough surface, the profile of a single asperity with frequency index ncan 
be expressed as 
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And the height of single asperity n is 

 1 2( 2) (3 ) ( 3)2 lnD D n D
n G L                                                  (4) 

The curvature radius at the peak of the single asperity nR can be written as 
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(5) 

 

Figure 2: The contact between a single asperity and the rigid flat surface 

Fig. 2 shows that a single asperity with frequency index n is in contact with a rigid flat 

surface, where '2nr  denotes the asperity’s base length; 2 tnr  is the truncated length and  

2nr  is contact width; n  denotes the interference of asperity. As the asperity is in elastic 

deformation, the relations between contact area nea , truncated area nea  and contact load 

nef  can be written as 

' 2ne nea a                                                               (6) 

ne n na R 
                                                            (7) 
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The normal contact stiffness of a single asperity with frequency index n in elastic 
deformation is defined as 

 0.5
2 'ne ne n nek df d E a  

                                         
(9) 

When the interference n  equals the critical elastic interference nec , the inception of 

elastoplastic deformation appears in the asperity with frequency index n. The critical 
elastic interference can be written as Chang et al. [Chang, Etsion and Bogy (1987)] 
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where H denotes the hardness of material which is related to its yield strength by 
2.8 yH  . K is the hardness coefficient which satisfies the equation 0.454 0.41K   .

The parameter  is the Poisson’s ratio of material and E is the elastic modulus. 

When the height of asperity n  do not exceed the its own critical elastic interference 

nec , namely n nec  , the asperity is only in elastic deformation in complete contact 

process. T herefore the critical elastic frequency index can be obtained as 
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where  int is the integer function that obtains the integer part of a numerical value. 

Therefore, only elastic deformation takes place in these asperities whose frequency 
indexes are between nmin and nec. 

When the interference n  is between nec  and 110 nec , the asperity with frequency 

index n is in elastoplastic deformation. This process can be divided into two stages [Kogut 
and Etsion (2002)]. In the first stage which the interference is between nec and 6 nec ,the 

relation between contact area 1nepa , truncated area 1nepa  and contact load 1nepf  can be 

written as 
0.136 1.136

1 10.4650 ' 'nep nec nepa a a                                                           (12)  

0.4250 1.4250
1 1

2
0.5150 ' '

3nep nec nepf KH a a                                                   (13) 

where the critical elastic contacts truncated area ' 2nec n neca R  , the first critical 

elastoplastic contact truncated area 1' 2nep n na R  . 

The normal contact stiffness of a single asperity in the first elastoplastic deformation is 
defined as 
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 0.4250.425
1 10.7288 'nep n nec nepk KHR a a                                          (14) 

In the second stage which the interference n  is between 6 nec and 110 nec , the relations 

between contact area 2nepa , truncated area 2nepa  and contact load 2nepf  can be written as 

0.146 1.146
2 20.4700 ' 'nep nec nepa a a                                                          (15) 
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2 2

2
0.7000 ' '

3nep nec nepf KH a a                                                  (16) 

where the second critical elastoplastic contact truncated area 2' 2nep n na R  . 

The normal contact stiffness of a single asperity in the second elastoplastic deformation is 
defined as 

 0.2630.263
2 20.9824 'nep n nec nepk KHR a a                                         (17) 

According to 6nec n nec    and 6 110nec n nec    , we can obtain the expressions of 

the first critical elastoplastic frequency index epcn  and the second critical elastoplastic 

frequency index pcn . They are respectively 
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When the interference n  is greater than 110 nec , the full plastic deformation takes place 

in the asperity with frequency index n.The relations between contact area npa , truncated 

area npa  and contact load npf  can be written as 

2np np n na a R                                                                     (20) 

'np npf Ha                                                              (21) 

The normal contact stiffness of a single asperity in the full plastic deformation is defined 
as 

2np nk HR                                                            (22) 

2.3 Normal contact stiffness 

The truncated asperity size distribution function for these asperities with frequency index 
nis defined as follows [Yuan (2017)] 
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where nla  is the largest contact truncated area for these asperities with frequency index n. 

The total normal contact stiffness rK  can be expressed as 

1 2r e ep ep pK K K K K                                                  (24) 

Where Ke, Kep1, Kep2 and Kp are portions of normal stiffness in elastic, the first 
elastoplastic, the second elastoplastic and full plastic deformation. Their expressions can 
be evaluated as 
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Similarly, the total contact load Fr can be expressed as 

1 2r e ep ep pF F F F F                                                       (29) 

where Fe, Fep1, Fep2 and Fp are portions of the total contact load in elastic, the first 
elastoplastic, the second elastoplastic and full plastic deformation. Their expressions can 
be evaluated as 
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where 'nepca is the first elastoplastic critical truncated area, 'npca is the second elastoplastic 

critical truncated area.  

For a given rough surface, the relation between the nominal area aA  and the sample 

length is written as 
2

aA L                                                               (34) 

Therefore, the total normal contact stiffness and the total contact load in a dimensionless 
form are given as 

* r
r

a

K
K

E A
 , * r

r
a

F
F

EA
                                                    (35) 
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2.4 Solution procedure of this present model 

Through the above deduction, we can get the expressions of the total contact load and 
contact stiffness of the interface. Substituting the relevant parameters into those 
expressions gives the numerical solution which can directly reflect the contact stiffness 
properties of interface. The flow chart of the solution procedures is shown in Fig. 3. 
Some crucial steps are summarized as follows: 

(1) Prepare the calculation parameters including fractal dimension and fractal roughness, 
material parameters. 

(2) Preset empty matrices to place some intermediate variables and the numerical results 
of contact load and stiffness for each deformation types. 

(3) Input values of interferences as initial variable  

(4) Compute the intermediate variables on which the calculation of final results depends. 

(5) Judging the deformation type of each asperity. 

(6) Compute contact load and stiffness of all asperities, namely the whole interface, for 
each deformation type. 

Begin

Parameters preparation(such as
fractal parameters         
material parameters 
input variable    )

,D G

, ,E H 


Contact load and stiffness 
for first elastioplastic 

deformation
1 1,ep epF K

Contact load and stiffness 
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Contact load and 
stiffness for elastic 
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,e eF K

Contact load and 
stiffness for plastic 

deformation
,p pF K

  If max ecn n   If max pcn nmaxec epcn n n   If   If maxepc pcn n n 

Total contact load and stiffness 

end

Critical frequency 
indexes nec, nepc, npc

The largest truncation 
area '

la
Critical interferences
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1 2, , ,ec epc epc pca a a a

 

Figure 3: Flow chart of solution procedure 
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3 Results and discussion 

3.1 The effects of frequency index on the normal contact stiffness 

Table 1: The calculation parameters 

Parameters Value 

Fractal dimension D  2.3~2.6 

Characteristic scale parameter G [m] 10-11~10-8 

Young’s modulus E [N/m2] 72×109 

Hardness [Pa] 5.5×109 

Poisson’s ratio υ 0.17 

Range of frequency index 5~55 

In order to obtain the relations between the total normal contact stiffness and the total 
contact load, these parameters for rough surface are shown in Tab. 1. When 2.4D  , 

111.36 10G   m, we can obtain the critical elastic frequency index 9ecn  , the first 

elastoplastic critical frequency index 16epcn  , and the second elastoplastic critical 

frequency index 24pcn  , respectively, according to Eqs. (11), (18) and (19). The Fig. 

4(a) shows the relation between the dimensionless total normal contact stiffness and the 
dimensionless total contact load when the range of frequency index is between 5 and 35 
in Cartesian coordinate (Fig. 4a(1)) and Double-logarithmic coordinate (Fig. 4a(2)), 
respectively. As the dimensionless total contact load is increased, the dimensionless total 
normal contact stiffness increases. Fig. 4(b) shows the ratios of normal contact stiffness 
in different deformations to the total normal contact stiffness. When the dimensionless 
total contact load is less than 0.19×10-4, the ratio of normal contact stiffness in elastic 
deformation is greater than 90%. With an increase in the dimensionless total contact load, 
the ratio of normal contact stiffness in elastic deformation is decreasing and approaches 
89.4% approximately. In the complete contact process, the value of ratio of normal 
contact stiffness in elastic deformation is maximum, the value of ratio of normal contact 
stiffness in full plastic deformation is minimum, and the value of ratio of normal contact 
stiffness in elastoplastic deformation is between them. Because the asperities of the first 
six frequency indexes are major contribution to rough surface [Yuan (2017)], the part of 

the total contact stiffness, namely  
35 10

1 2

5 5

2 1 (2 ) '
n n

nl nl
n n

E D a D a a
 

 

    
 

  , is major 

contribution to the total contact stiffness. Hence the dimensionless load-stiffness relation 

approximately is * *1 3r rK F , which is in good agreement with classical result of Hertz. 
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Figure 4: The relation between dimensionless total normal contact stiffness and 
dimensionless total contact load (nmin=5, nmax=35) 

In the Fig. 5, the range of frequency indexes between 15 and 45. In the Fig. 5(b), in the 
complete contact process, the value of ratio of normal contact stiffness in elastic 
deformation is maximum. As the dimensionless total contact load is increased, the 
ratio of normal contact stiffness in elastic deformation decreases from 82.7% to 79.4%. 
In Fig. 5a(1), when these maximum contact truncated areas of asperities whose 
frequency indexes range from 15 to 20 are less than their the critical elastic contact 
truncated areas, namely the dimensionless total contact load less than 

1.79×10-3,  
45 20

1 2

15 15

2 1 (2 ) '
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major contribution to the total contact stiffness, the dimensionless load-stiffness relation 

is approximately * *r rK F . In the Fig. 6, the range of frequency index is between 25 and 

55. The Fig. 6(b) shows the ratios of normal contact stiffness in elastic and elastoplastic 



 

 

 

470   Copyright © 2019 Tech Science Press     CMES, vol.119, no.3, pp.459-480, 2019 

 

 

 

deformation equal approximately 69.4% and 30.5%, respectively, in complete contact 
process. In Fig. 6(a), when the dimensionless total contact load less than 2.15×10-3, the 

dimensionless load-stiffness relation is approximately * *1 3r rK F , else the dimensionless 

load-stiffness relation is approximately * *r rK F . From the power-law relations (Fig. 

4a(2)-Fig. 6a(2)) between contact stiffness and contact load, it can be seen that with the 
increase of inelastic deformation ratio of asperities, the exponent of power-law curve 
approaches 0.9 gradually, that is, the stiffness-load relation slowly moves towards 
linearity. The results are in consistent with the research by Roman et al. [Roman and 
Valentin (2013)]. 
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Figure 5: The relation between dimensionless total normal contact stiffness and 
dimensionless total contact load (nmin=15, nmax=45) 
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Figure 6: The relation between dimensionless total normal contact stiffness and 
dimensionless total contact load (nmin=25, nmax=55) 

3.2 The effects of fractal parameters on the normal contact stiffness 

When characteristic scale parameter 111.36 10G   m and range of frequency index is 
between 5 and 35, the relations between dimensionless contact stiffness and dimensionless 
normal contact load for different fractal dimensions are shown in Fig. 7(a). For a given 
dimensionless total contact load, the dimensionless total normal contact stiffness is 
proportional to the fractal dimension. As the value of fractal dimension is increased, the 
curvature radius at the peak of the asperity with frequency index n increases. For a given 
contact load, the normal contact stiffness of a single asperity with frequency index n is 
proportional to the fractal dimension. Therefore, the dimensionless total normal contact 
stiffness is proportional to the fractal dimension. Similarly, in Fig. 7(b), when fractal 
dimension D=2.3, the dimensionless total normal contact stiffness is inversely proportional 
to the characteristic scale parameter for given dimensionless total contact load. 
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Figure 7: The relations between dimensionless total normal contact stiffness and 
dimensionless normal contact load for different fractal parameters 

4 Experiments 

4.1 Experimental device 

In order to check the validity of present model, an experiment is applied to obtain the 
experimental data. Fig. 8 shows the schematic diagram of experimental device. The 
specimen 2 is fixed the base. The specimen 1 is located on the specimen 2. A loading screw 
is used for imposing normal load on the specimen 1. The normal interference of joint 
surface can be measured by displacement sensors which are symmetrically embedded in 
the specimen 1. The loading period is so long that the fluctuation of load can be avoided. 

Box

Specimen 2

Specimen 1

Displacement sensor

Loading screw

Normal flange

Thrust bearing

Sensor for 
static force

Base

Joint surface
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Figure 8: The schematic diagram of experimental device 

4.2 Measurement of surface topography of specimens 

Specimen 1 and specimen 2 are shown in Fig. 7. The material is 40Cr and the material 
parameters of them are as follow: Young’s modulus 9210 10 E Pa , Poisson’s ratio 

0.3  , and hardness 92.058 10 H Pa . The contact surfaces of the specimen 1 and 
specimen 2 are manufactured by grinding method. Two pairs of specimens are adopted, 
which the values of surface roughness of each pair of specimens are different. Before 
measurement these surfaces have been cleaned by acetone. The surface topographies of 
specimens are measured by the Leica 3D Optical Surface Metrology System (Fig. 9(c)). 
In order to guarantee the accuracy of measuring results, three different locations are 
selected to measure surface topographies for specimen 1 and specimen 2, respectively 
(Fig. 9(a) and Fig. 9(b)). The arithmetic average of measured values for three different 
locations is regarded as the final result. The fractal dimension D  and characteristic 
scale parameter G  for each location can be obtained by the following equation 

       2 4 2 sDS z x z x C                                                
(36) 

where  S   denotes structure functions of the two-dimensional profile of the specimen. 

 is the interval along the x direction. Ds denotes fractal dimension for profile of 
two-dimensional rough surface. The relation between D and Ds can be written as D=Ds 
+1. z(x) denotes the height of any point on the profile of two-dimensional rough surface. 

denotes the ensemble average. The parameter C is a scaling coefficient, which can be 

expressed as 

     2 12 3 sin 2 3 2

2
ss s D

s

D D
C G

D

     


              (37) 

where  x  is gamma function. In the double logarithmic coordinate, Eq. (36) can be 

written as  
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   log 4 2 log logsS D C                                            (38) 

Therefore, the plot of  log S   as a function of log  is a straight line. The fractal 

dimension Ds (or D) can be obtained from the slope of the straight line. The characteristic 
scale parameter G can be obtained from the intercept on the ordinate. 

When the specimen 1 comes into contact with the specimen 2, the fractal parameters of 
the equivalent rough surface can be obtained from the following equation 

     1 2eS S S                                                     (39) 

where  1S  and  2S   denote structure functions of the two-dimensional profile of the 

specimen 1 and the specimen 2, respectively. The arithmetic average of measured values 
for three different locations is regarded as the final result of the equivalent rough surface. 

Similarly, the arithmetic average roughness of the equivalent rough surface aeR  can be 

written as  
2 2 2

1 2ae a aR R R                                                          (40) 

where 1aR  and 2aR  denote he arithmetic average roughness of the two-dimensional 

profile of the specimen 1 and the specimen 2, respectively. For the equivalent rough 
surface with asperities whose frequency indexes are between nmin and nmax, the relation 
between the arithmetic average roughness and frequency index is approximately 
expressed as Yuan [Yuan (2017)] 
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a. Specimen 1             b. Specimen 2           c. Leica DCM 3D 

Figure 9: The test specimens and measurement equipment 
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Figure 10: The profile of specimen 1       Figure 11: The profile of specimen 2     

The measured surface profiles of the first pair of specimens are shown in Fig. 10 and Fig. 
11. And the measured results of roughness and sample length of the two pairs of 

specimens are shown in Tab. 2. According to Eq. (39), the relations between  S  and 

 in the double logarithmic coordinate for specimen1, specimen 2 and the equivalent 
rough surface have been shown in Fig. 12. From the slopes and intercepts of these 
straights, fractal parameters are obtained and are shown in Tab. 3. 
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Table 2: Measured values of the surface profiles of the specimens 

 Location RoughnessRa 

[μm] 

The first pair 
of specimens 

Specimen 1 

1 0.301 

2 0.400 

3 0.348 

Specimen 2 

1 0.404 

2 0.345 

3 0.406 

The second 
pair of 

specimens 

Specimen 1 

1 0.889 

2 0.803 

3 0.806 

Specimen 2 

1 0.846 

2 0.792 

3 0.852 
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(a) The first pair of specimens 
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Figure 12: Structure functions of surfaces with grinding roughness  

Table 3: The fractal parameters of surface profiles for different specimens 

 Roughness Ra 

[μm] 
Fractal 

dimension D 

Characteristic scale 
parameter [m] 

Grinding 
Ra=0.4 

Specimen 1 0.35 2.6814 3.2257×10-8 

Specimen 2 0.385 2.6602 2.8767×10-8 

The equivalent 
rough surface 

0.52 2.5359 1.4506×10-8 

Grinding 
Ra=0.8 

Specimen 1 0.833 2.5615 1.2971×10-8 

Specimen 2 0.830 2.5947 2.5445×10-8 

The equivalent 
rough surface 

1.176 2.4565 1.2623×10-9 

The material parameters of 40Cr are as follow: Young’s modulus 9210 10 E Pa, 

Poisson’s ratio 0.3  , and hardness 92.058 10 H Pa. According to the material 
parameters and the fractal parameters in Tab. 3, we can obtain different critical frequency 
indexes, the minimum and maximum frequency indexes for different surface profiles. 
The results are shown in Tab. 4. 

Table 4: The critical, minimum and maximum frequency indexes for different surface 
profiles 

 Specimen nmin nmax nec nepc npc 

Grinding 
Ra=0.4 

1 14 26 22 25 30 
2 13 26 21 25 30 

equivalent 11 23 17 21 27 

Grinding 
Ra=0.8 

1 12 24 18 22 29 
2 13 24 19 22 28 

equivalent 10 21 17 22 30 
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Fig. 13 shows the comparisons between theoretical and experimental results. The fractal 
dimensions and characteristic scale parameter are inversely proportional to the arithmetic 
average roughness for rough surface. For given contact pressure, the normal contact 
stiffness is inversely proportional to the arithmetic average roughness. The trends of the 
present fractal model are in agreement with that of experimental results. In Fig. 13(a), 
when contact pressure is between 1 MPa and 3.5 MPa, the present fractal model is in 
agreement with experimental data. In Fig. 13(b), when contact pressure is between 1.13 
MPa and 3.5 MPa, the present fractal model is in agreement with experimental data. For 
the two equivalent rough surfaces, the first six frequency indexes are less than their 
critical elastic frequency indexes, respectively, the relation between contact pressure and 

normal contact stiffness is approximately 1 3
r rK F . 
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Figure 13: Comparisons between theoretical and experimental results (a. Ra=0.4 and b. 
Ra=0.8) 

5 Conclusions 

Based on the revised fractal contact model, a model of normal contact stiffness is 
presented. In the model, a single asperity is initially in elastic deformation under contact 
interference. As the interference is increased, a transition from elastic to elastoplastic to 
full plastic deformation occurs in this order. The critical elastic interference, the first 
elastoplastic critical interference and the second elastoplastic critical interference are 
scale-dependent. The mechanical properties of a single asperity are in accord with 
classical contact mechanics. The relations between the total normal contact stiffness and 
the total contact load are given. And the elastic, the first elastoplastic, the second 
elastoplastic and full plastic normal contact stiffness are obtained. 

The total normal contact stiffness depends on range of frequency indexes of asperities. 
Whatever the range, the elastic normal contact stiffness is major contribution to the total 
contact stiffness. When the first six frequency indexes are less than the critical elastic 
frequency index, the relation between the total contact load and the total normal contact 

stiffness is approximately 1 3
r rK F . When the minimum frequency is greater than the 
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critical elastic frequency index and these maximum contacts truncated areas of asperities 
whose frequency indexes range from nmin to nmin+5 are less than their the critical elastic 
contact truncated areas, the relation between the total contact load and the total normal 

contact stiffness is approximately 1 3
r rK F . Else the relation between the total contact 

load and the total normal contact stiffness is approximately r rK F .Finally; an 

experiment of normal contact stiffness is devised to validate validity of theoretical model. 
The comparison between the theoretical results and the experimental results indicates that 
the theoretical results are consistent with the experimental data; therefore, the present 
fractal model of contact stiffness is reasonable. 
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