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Abstract: With the development of various navigation systems (such as GLONASS, 

Galileo, BDS), there is a sharp increase in the number of visible satellites. Accordingly, 

the probability of multiply gross measurements will increase. However, the conventional 

RAIM methods are difficult to meet the demands of the navigation system. In order to 

solve the problem of checking and identify multiple gross errors of receiver autonomous 

integrity monitoring (RAIM), this paper designed full matrix of single point positioning by 

QR decomposition, and proposed a new RAIM algorithm based on fuzzy clustering 

analysis with fuzzy c-means (FCM). And on the condition of single or two gross errors, 

the performance of hard or fuzzy clustering analysis were compared. As the results of the 

experiments, the fuzzy clustering method based on FCM principle could detect multiple 

gross error effectively, also achieved the quality control of single point positioning and 

ensured better reliability results. 
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1 Introduction 

Surveying and navigation industries have been revolutionized over the past three decades 

by the global navigation satellite system (GNSS). The integrity of GNSS is a major 

limitation for many existing and potential applications. GNSS integrity refers to the ability 

of the system to alert users when the navigation system fails or the positioning cannot be 

used for navigation and positioning [Bei (2010)]. As a measure of the user's availability of 

information provided by the system and an important parameter, receiver autonomous 

integrity monitoring (RAIM) refers to monitoring the completeness of user positioning 

results based on redundant observations from the user receiver. RAIM is a key part in the 

integrity monitoring system and the last link to ensure the security of user positioning 

[Parkinson, Spilker, Axelrad et al. (1996)]. 

The RAIM algorithms have always become research focuses in the GNSS field.  RAIM is 

the ability to detect and identify the failures in GNSS by using measurements from receiver 
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which needs more than 4 visible satellites to detect failures and more than 5 to identify.  

The current RAIM algorithms, mainly including the parity vector method [Wang, Zhang, 

Xu et al. (2016); Li and Li (2012)], the least squares residual method [Li, Zhu, Yang et al. 

(2016)], and the approximate radial error protection method [Hunzinger, Morgren, 

Studenny et al. (1997)], use the residual comparison to perform fault detection, which has 

a better recognition effect for a single gross error, but has a poor effect under multiple gross 

errors. The overall least squares method [Juang (2000); Jeon and Lachapelle (2005); Yang, 

Liu and Zhang (2009)] can perform fault detection and fault identification, but because it 

takes into account the correspondence between the smallest singular value mutation and 

the satellite fault, the algorithm is complex, the calculation load is heavy, and the timeliness 

is not satisfied; In addition, the maximum de-separation method [Nowak (2015); Joerger, 

Chan and Pervan (2014)], the weighted RAIM method [Yu (2008)], the Bayesian method 

[Zhang and Gui (2015)] and the Kalman filter algorithm [Song, Hou and Xue (2017)] have 

not solved the fault identification problem well.  

With the development of various navigation systems (such as GLONASS, Galileo, BDS), 

there is a sharp increase in the number of visible satellites. Accordingly, the probability of 

multiply gross measurements will increase. However, the conventional RAIM methods are 

difficult to meet the demands of the navigation system. In order to solve this problem, this 

paper proposes a new RAIM algorithm based on fuzzy clustering analysis, which can 

effectively solve the problem of detection and recognition of multiple gross errors. 

2 Principle of fuzzy clustering analysis 

Fuzzy clustering analysis is a mathematical method that uses fuzzy mathematics to describe 

and classify things according to certain requirements. Fuzzy clustering analysis generally 

refers to constructing a fuzzy matrix according to the attributes of the concerned object 

itself. The clustering relationship is determined according to a certain degree of 

membership, that is, fuzzy mathematics is used to quantitatively determine the fuzzy 

relationship between samples to objectively and accurately cluster. There are many 

clustering methods, such as based on similarity relations and fuzzy relations, transitive 

closures based on fuzzy equivalence relations, maximum support trees based on fuzzy 

graph theory, and methods based on convex decomposition, dynamic programming and 

difficult identification of data. But the most widely used in practice is the fuzzy clustering 

method based on objective function. This paper selects the most complete and widely used 

fuzzy c-means (FCM) based on the objective function-based clustering algorithm.   

A given data set 𝑿 = {𝒙𝟏 , 𝒙𝟐 , ⋯ , 𝒙𝒏 } is a set of finite set of observation samples for n 

modes in the pattern space, 𝒙𝒌 = {𝑥𝑘1 , 𝑥𝑘2 ,⋯ , 𝑥𝑘𝑠 } is the eigenvector of the observed 

sample 𝒙𝑘, corresponding to a point of the feature space. 𝑥𝑘𝑗 is the assignment on the j-th 

dimension of the feature vector 𝒙𝑘. For a given sample 𝑿, if it is divided into class c, then 

corresponding to 𝑐  class centers. Each sample belongs to a class 𝑖  with a membership 

degree of 𝑢𝑖𝑗. Then define an FCM objective function and its constraints are as follows: 

𝑚𝑖𝑛{𝐽}                                                                                                                                                (1) 

where 

𝐽 = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑𝑖𝑗

2𝑛
𝑗=1

𝑐
𝑖=1                                                                                                                      ( 2 ) 
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∑ 𝑢𝑖𝑗 = 1, 𝑗 = 1,2,⋯ , 𝑛                                                                                                             𝑐
𝑖=1 (3) 

where, m is called a weighted exponent or smoothing parameter and is a membership factor; 

𝑑𝑖𝑗 represents the degree of distortion between the sample 𝑥𝑗 in the i-th class and the i-th 

cluster center 𝒄𝒊, measured by the distance between the two vectors. As shown in Eq. (4). 

𝑑𝑖𝑗
2 = ‖𝒙𝒋 − 𝒄𝒊‖

2
                                                                                                                              (4) 

The criterion for clustering is to take the minimum value of the objective function, that is: 

𝜕𝐽

𝜕𝑢𝑖𝑗
= 𝑚‖𝒙𝒋 − 𝒄𝒊‖

2
𝑢𝑖𝑗

𝑚−1 + 𝜆𝑗 = 0                                                                                             (5) 

𝜕𝐽

𝜕𝑐𝑖
= ∑ (−𝑢𝑖𝑗

𝑚 ∗ 2 ∗ (𝒙𝒋 − 𝒄𝒊))
𝑛
𝑗=1 = 0                                                                                        (6) 

We can obtain                             

𝑢𝑖𝑗
𝑚−1 =

−𝜆𝑗

𝑚‖𝒙𝒋−𝒄𝒊‖
2                                                                                                                            (7) 

𝒄𝒊 =
∑ (𝒙𝒋∗𝑢𝑖𝑗

𝑚)𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

                                                                                                                                (8) 

Furthermore, we have 

𝑢𝑖𝑗 = (
−𝜆𝑗

𝑚‖𝒙𝒋−𝒄𝒊‖
2)

1

𝑚−1

= (
−𝜆𝑗

𝑚
)

1

𝑚−1
(

1

‖𝒙𝒋−𝒄𝒊‖
2

𝑚−1

)                                                                      (9) 

It can be known from the constraint condition 2 expressed in Eq. (3) 

∑𝑢𝑖𝑗

𝑐

𝑖=1

= ∑(
−𝜆𝑗

𝑚
)

1
𝑚−1

(
1

‖𝒙𝒋 − 𝒄𝒊‖
2

𝑚−1

)

𝑐

𝑖=1

 

              = (
−𝜆𝑗

𝑚
)

1

𝑚−1
∑ (

1

‖𝒙𝒋−𝒄𝒊‖
2

𝑚−1

)𝑐
𝑖=1 = 1, 𝑗 = 1,2,⋯ , 𝑛                                                    (10) 

that 

𝑢𝑖𝑗 =
1

∑ (
‖𝒙𝒋−𝒄𝒊‖

‖𝒙𝒋−𝒄𝒌‖
)

2
𝑚−1

𝑐
𝑘=1

                                                                                                                   (11) 

𝒄𝒊 =
∑ (𝒙𝒋∗𝑢𝑖𝑗

𝑚)𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

= ∑
𝑢𝑖𝑗

𝑚

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

𝒙𝒋
𝑛
𝑗=1                                                                                              (12) 

As can be seen from the above, if the data set X, the clustering class number c, and the 

weight m are known, the best fuzzy classification matrix and cluster center can be 

determined from the above equation. 

3 Construction of full design matrix 

3.1 Definition of full design matrix 

In the single-point positioning based on the least squares, the observational equation reads, 
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𝑉 = 𝐵𝛿𝑥 − 𝑙     𝑃  (𝑤𝑒𝑖𝑔ℎ𝑡)                                                                                           (13) 

where “𝑙 ” represents the pseudo-range residuals, 𝑙 = 𝜌 − 𝐷𝑖𝑠 − 𝛿0 

𝐵𝑛×4 =

[
 
 
 
 
 
𝑥𝑆1−𝑥

𝑅1

𝑦𝑆1−𝑦

𝑅1
𝑥𝑆2−𝑥

𝑅2

𝑦𝑆2−𝑦

𝑅2

𝑧𝑆1−𝑧

𝑅1
−1

𝑧𝑆2−𝑧

𝑅2
−1

⋮ ⋮ 
𝑥𝑆𝑛−𝑥

𝑅𝑛

𝑦𝑆𝑛−𝑦

𝑅𝑛

⋮ ⋮ 
𝑧𝑆𝑛−𝑧

𝑅𝑛
−1]

 
 
 
 
 

                                                                        (14) 

 

Dis𝑖 = √(𝑥𝑆𝑖 − 𝑥)2 + (𝑦𝑆𝑖 − 𝑦)2 + (𝑧𝑆𝑖 − 𝑧)2                                                              (15) 

𝐵 is the coefficient matrix, 𝑋𝑆𝑖 = (𝑥𝑠𝑖 , 𝑦𝑠𝑖 , 𝑧𝑠𝑖) represents the position of satellite 𝑖, X =
(𝑥, 𝑦, 𝑧) represents the position of user, 𝛿𝑥 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝑑𝑡) is the user’s position and 

time bias, 𝜌 is the pseudo-range, 𝛿0 is the sum of various error including troposphere and 

ionosphere error, which is calculated by model, Dis𝑖 is the distance of user and the satellite 

𝑖,  𝑛 is the number of satellite. 

Then the user location can be given by the LS estimation  

𝛿𝑥 = (𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃𝑙                                                                                                     (16) 

At the same time, we can obtain the reliability matrix R, it is expressed an equation (17). 

𝑅𝑛×𝑛 = 𝐼𝑛×𝑛 − 𝐵(𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃                                                                                   (17) 

Where 𝐼 is the n-dimensional unit matrix 

The properties of the reliability matrix R include  

(1) The reliability matrix R is an idempotent matrix, it means 𝑅2 = 𝑅. 

(2) The reliability matrix R is not full rank matrix, its rank is 𝑛 − 𝑡, 𝑛 is the number of 

satellite and 𝑡 is necessary observation number, in here 𝑡 = 4. 

Suppose there is a linear transformation, it is expressed as equation (18)  

 

[
𝛿𝑥
𝑡

] = [(𝐵
𝑇𝑃𝐵)−1𝐵𝑇𝑃

𝑇
] 𝑙                                                                                               (18) 

Then, we can obtain the definition of QR parity check vector 𝑡, 

𝑡 = 𝑇𝑙                                                                                                                              (19) 

The properties of the QR parity check vector  𝑡 are as follows 

𝐸[𝑡]=0                                                                                                                             (20) 

𝐸[𝑡𝑡𝑇] = 𝐶𝑜𝑣(𝑡) = 𝜎2𝐼                                                                                                  (21) 

QR parity check vector conversion matrix 𝑇 is a special transformation that transforms n-

dimensional observation space into 𝑛 − 4 dimensional parity space. 𝑇 has the following 

special properties:  

(1) Each row of 𝑇 is orthogonal to the columns of 𝐵; 

(2) The rows of 𝑇 are orthogonal to each other; 
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(3) The rows of 𝑇 are normalized, and the size of each row is unity; 

In the QR parity method, it is proved that: 

𝑡𝑡𝑇 = 𝑉𝑉𝑇                                                                                                                       (22) 

Eq.  (19) is defined by the QR parity check vector, and 𝑙 is replaced by its equivalent 𝐵𝛿𝑥 −
𝑉. Since the orthogonal property𝑇𝐵 = 0, and we have: 

𝐸[𝑡] =  𝐸[−𝑇𝑉] = −𝑇 𝐸[𝑉] = 𝑇휀                                                                                 (23) 

Where: 𝑡 is the QR parity detection vector; 𝑇 is the QR parity detection generation matrix; 

휀 is the negative residual. 

The matrix expansion can be obtained from Eq. (23): 

 

𝑇휀 = [

𝑇11 𝑇12

𝑇21 𝑇22

⋯ 𝑇1𝑛

⋯ 𝑇2𝑛

⋮ ⋮
𝑇𝑚1 𝑇𝑚2

⋱ ⋮
⋯ 𝑇𝑚𝑛

] = [

𝑇11

𝑇21

⋮
𝑇𝑚1

] 휀1 + [

𝑇12

𝑇22

⋮
𝑇𝑚2

] 휀2 + ⋯+ [

𝑇1𝑛

𝑇2𝑛

⋮
𝑇𝑚𝑛

] 휀𝑛 = [

𝑡1
𝑡2
⋮

𝑡𝑚

]          (24) 

where: 𝑚 = 𝑛 − 4； 𝑛  is the number of satellites; 휀𝑖(𝑖 = 1,2,⋯ , 𝑛)  is the negative 

residual of observation 𝑖, which is a numerical variable.  

Let 𝑇𝑖 = [𝑇1𝑖 𝑇2𝑖 ⋯ 𝑇𝑚𝑖]
𝑇, (𝑖 = 1,2,⋯ , 𝑛),Then there are: 

 

휀1𝑇1 + 휀2𝑇2 + ⋯+ 휀𝑛𝑇𝑛 = 𝑡                                                                                         (25) 

Where 𝑇𝑖 is the columns 𝑖 of T determined by the geometric matrix of the satellite position, 

휀𝑖 is determined by the functional characteristics of the observation, so 휀𝑖𝑇𝑖 is determined 

by the observation error and the satellite geometry matrix. When there is a gross error in a 

certain measurement, it will be expressed that the ‖ 휀𝑖𝑇𝑖  ‖ value of the observation is larger, 

that is, the modulus of the vector  휀𝑖𝑇𝑖 is larger; and it has an advantage in the left half of 

the formula (25) medium, that is, the share is relatively large. Therefore, the formula (25) 

the right part of the middle part is mainly affected by the gross error  휀𝑖𝑇, so the QR parity 

check vector 𝑡 has a relatively strong correlation with the influence vector  휀𝑖𝑃𝑖 of the error 

observation. 

By converting the formula (25) into a matrix form, you can get: 

[

𝑇11휀1 𝑇12휀2

𝑇21휀1 𝑇22휀2

⋯ 𝑇1𝑛휀𝑛 𝑡1
⋯ 𝑇2𝑛휀𝑛 𝑡2

⋮ ⋮
𝑇𝑚1휀1 𝑇𝑚2휀2

⋱    ⋮       ⋮
⋯ 𝑇𝑚𝑛휀𝑛 𝑡𝑚

] = [𝑎1 𝑎2 ⋯ 𝑎𝑛 𝑎𝑛+1]                               (26) 

That is, the left part and the right part in the formula (26) are combined, and this formula 

is called a full design matrix. 

3.2 Calculation of full design matrix 

The full design matrix is calculated by coefficient matrix 𝐵𝑛×4 . Firstly, we take QR 

decomposition for matrix 𝐵𝑛×4. 

𝐵𝑛×4 = 𝑄𝑛×𝑛𝑆𝑛×4                                                                                                           (27) 
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The QR decomposition (also called the QR factorization) of a matrix is a decomposition of 

the matrix into an orthogonal matrix and a triangular matrix. A QR decomposition of a real 

square matrix B is a decomposition of B as B = QS, where Q is an orthogonal matrix and 

S is an upper triangular matrix. If A is nonsingular, then this factorization is unique. It 

means that 

𝑄T𝑄 = 𝐼, 𝑄T = 𝑄−1                                                                                                        (28) 

The upper triangular matrix can be express as 𝑆 = (
𝑆𝑥

𝑆𝑦
) , 𝑆𝑥 is 4×4 an upper triangular 

matrix, 𝑆𝑦 is a (𝑛 − 4) × 4 zero matrix. 

Similarly, we can take the transpose of orthogonal matrix Q as 𝑄𝑇 = (
𝑄𝑥

𝑄𝑦
), 𝑄𝑥 is 4 × 𝑛 

matrix, 𝑄𝑦 is a (𝑛 − 4) × 𝑛  matrix. 

Then, for the observational equation 𝑉 = 𝐵𝛿𝑥 − 𝑙, we can know 

𝑙 = 𝑉 − 𝐵𝛿𝑥                                                                                                                    (29) 

Eq. (29) are multiplied by the transpose of orthogonal matrix Q on both sides. 

Q𝑇𝑙 = Q𝑇(𝑉 − 𝐵𝛿𝑥)= Q𝑇𝑉 − Q𝑇𝑄𝑆𝛿𝑥) =  Q𝑇𝑉 − 𝑆𝛿𝑥                                                (30) 

then  

(
𝑄𝑥

𝑄𝑦
) 𝑙 = (

𝑄𝑥

𝑄𝑦
)𝑉 − (

𝑆𝑥

𝑆𝑦
) 𝛿𝑥                                                                                           (31) 

Because 𝑆𝑦 is a (𝑛 − 4) × 4 zero matrix, we can know 

𝑄𝑥𝑙 = 𝑄𝑥𝑉 − 𝑆𝑥𝛿𝑥                                                                                                         (32) 

𝑄𝑦𝑙 = 𝑄𝑦𝑉                                                                                                                      (33) 

If we take 𝑄𝑦𝑙 = 𝑄𝑦𝑉 = 𝑡, then 𝑄𝑦 is the full design matrix. 

4 Single-point positioning RAIM algorithm based on FCM 

The full design matrix in Section 3 of this paper is a sample of fuzzy clustering. Each 

column of the full design matrix represents a satellite. The specific clustering process is as 

follows: 

(1) Calculate the relative distance matrix D of the full design matrix. 

𝑫 = [

𝑑11 ⋯ 𝑑1,𝑛+1

⋮ ⋱ ⋮
𝑑𝑛+1,1 ⋯ 𝑑𝑛+1,𝑛+1

]                                                                                                (34) 

𝑑𝑖𝑗 = ∑ (𝑎𝑘𝑖 − 𝑎𝑘𝑖)
2𝑛+1

𝑘=1                                                                                                              (35) 

(2) The number of clustering categories is determined. This paper determines three 

categories, which are health observations, suspected outliers and outliers. The maximum, 

minimum and intermediate values are selected as cluster centers. 

(3) Calculating the membership function 
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                 𝑢𝑖𝑗 =
1

∑ (
‖𝒙𝒋−𝒄𝒊‖

‖𝒙𝒋−𝒄𝒌‖
)

2
𝑚−1

𝑐
𝑘=1

                                                                                                                           (36) 

(4) Update cluster center 

𝒄𝒊 = ∑
𝑢𝑖𝑗

𝑚

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

𝒙𝒋
𝑛
𝑗=1                                                                                                                       (37) 

(5) Calculating the variation of cluster centers 

                 ∆= ‖𝒄𝑖
𝑘 − 𝒄𝑖

𝑘+1‖                                                                                                                                    (38) 

(6) If ∆ is less than the threshold, stop the calculation, otherwise repeat Step 3 to Step 5. 

5 Experiments and analysis 

5.1 Data and experimental scheme 

Method availability analysis uses two options: 

(1) Introducing a single gross error (introducing a 4 m magnitude gross error on a single 

value of negative residual  휀), performing gross error detection and identification, and 

comparing it with hard cluster analysis. 

(2) Introducing two gross errors (introducing the 4 m magnitude gross error on the two 

values of the negative residual 휀), performing gross error detection and identification, and 

comparing with the hard cluster analysis. 

The data is based on the data in [Bei (2010)]. C001 station in the continuous operating 

reference stations (CORS) network in Hebei Province. The data time is UTC 0:00:00-

24:00:00 on August 1, 2017. The data sampling rate is 30 s. 

5.2 Introducing a single gross error 

This study selects an observation epoch of the C001 station. According to the single-point 

positioning model, there are 4 unknowns, including the coordinates XYZ of the position to 

be fixed and the receiver clock error 𝑡. The basic observation equation is 𝑛 × 4, then QR 

parity check method produces matrix 𝑇 is (𝑛 − 4) × 4. In this example, the number of 

satellites is 𝑛 = 9. This example starts with the matrix 𝑇 and matrix 휀 obtained after QR 

decomposition. 

𝑇5×9 = 

0.421 -0.047 -0.127 0.053 0.689 -0.297 -0.421 -0.248 -0.023 

0.224 0.353 0.175 0.226 0.026 0.649 0.169 0.369 0.396 

0.313 0.193 0.441 0.365 -0.313 -0.402 0.403 -0.291 0.174 

0.250 -0.410 -0.090 0.106 0.008 -0.296 0.185 0.670 -0.422 

0.304 -0.604 0.187 -0.390 -0.083 -0.031 0.193 -0.120 0.544 

Matrix 휀9×1  (the gross error is added to the fourth column here) 

0.774 -0.590 0.581 -3.303 -0.762 0.684 -0.842 0.223 -0.872 

Full design matrix 

0.326 0.028 -0.074 -0.175 -0.525 -0.203 0.354 -0.055 0.020 -0.304 
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0.173 0.208 -0.102 -0.746 -0.020 0.444 -0.142 -0.082 0.345 0.078 

0.242 -0.114 -0.256 -1.206 0.239 -0.275 -0.339 -0.065 -0.152 -1.926 

0.193 0.242 -0.052 -0.350 -0.006 -0.202 -0.156 0.149 0.368 0.186 

0.235 0.356 0.109 1.288 0.063 -0.021 -0.163 -0.027 -0.474 1.367 

5.2.1 Using hard clustering analysis 

Calculate the correlation distance matrix by using the Mahala Nobis distance calculation 

method according to the full design matrix: 

Correlation distance 𝑑10×10 

0.000 0.484 0.749 2.144 0.911 0.918 0.848 0.613 0.901 2.527 

0.484 0.000 0.524 1.834 0.793 0.689 0.841 0.499 0.852 2.106 

0.749 0.524 0.000 1.676 0.678 0.595 0.526 0.310 0.858 2.124 

2.144 1.834 1.676 0.000 2.087 2.005 1.881 1.933 2.442 1.229 

0.911 0.793 0.678 2.087 0.000 0.792 1.094 0.591 1.006 2.545 

0.918 0.689 0.595 2.005 0.792 0.000 0.825 0.683 0.778 2.224 

0.848 0.841 0.526 1.881 1.094 0.825 0.000 0.599 0.870 2.336 

0.613 0.499 0.310 1.933 0.591 0.683 0.599 0.000 0.666 2.344 

0.901 0.852 0.858 2.442 1.006 0.778 0.870 0.666 0.000 2.598 

2.527 2.106 2.124 1.229 2.545 2.224 2.336 2.344 2.598 0.000 

 

Further cluster analysis is shown in Fig. 1. 
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Figure 1: Cluster graph of one single gross error with hard cluster analysis methods 

As can be seen from Fig. 1, the class 10 and class 4 are finally synthesized into one class, 

because class 10 is a gross error class, it is classified as a gross error class; Other classes 

fall into one category, which is a random error class. Obviously, the gross error is separated. 

5.2.2 Using fuzzy class analysis 

According to the full design matrix, the Mahala nobis distance calculation method is used 

to calculate the correlation distance matrix, and three initial cluster centers are set. 
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According to the distance as the initial membership coefficient, and then iterative operation, 

and finally all the data into three categories, the clustering results shown in Fig. 2. 

  

Figure 2: Membership map of one single gross error with fuzzy cluster 

As can be seen from Fig. 2, all classes are finally divided into three categories: the first 

class contains class 1, class 2, and class 9; the second class contains class 10 and class 4; 

and the third class contains class 3, class 5, class 6 and class 7. Where class 10 is a known 

gross error class, so the second class is a gross error class; There are large correlations 

between multiple subclasses (class 5, class 6, class 7, class 9) in the first class and the third 

class, so they are grouped into one class called health class. 

It can be seen from Fig. 1 and Fig. 2 that the hard cluster analysis method and the fuzzy 

clustering analysis method can better realize the gross error recognition under the condition 

of single gross error. 

5.3 Introducing two gross errors 

This study selects the same observation epoch from the introduction of a single gross error. 

According to the single-point positioning model, there are 4 unknowns, including the 

coordinates XYZ of the position to be fixed and the receiver clock error 𝑡. The basic 

observation equation is 𝑛 × 4, then QR parity check method produces matrix 𝑇is (𝑛 −
4) × 4. In this example, the number of satellites is (𝑛 = 9. This example starts with the 

matrix 𝑇and matrix 휀 obtained after QR decomposition. 

Matrix 𝑇5×9 = 

0.421 -0.047 -0.127 0.053 0.689 -0.297 -0.421 -0.248 -0.023 

0.224 -0.353 -0.175 0.226 0.026 0.649 0.169 -0.369 -0.396 

0.313 0.193 -0.441 0.365 -0.313 -0.402 0.403 -0.291 0.174 

0.250 -0.410 -0.090 0.106 0.008 -0.296 0.185 0.670 -0.422 
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0.304 -0.604 0.187 -0.390 -0.083 -0.031 0.193 -0.120 0.544 

Matrix 휀9×1  (The fourth and seventh columns here have added gross errors.) 

0.774 -0.590 0.581 -3.303 -0.762 0.684 -4.842 0.223 -0.872 

Full design matrix 

0.326 0.028 -0.074 -0.175 -0.525 -0.203 2.038 -0.055 0.020 1.380 

0.173 0.208 -0.102 -0.746 -0.020 0.444 -0.818 -0.082 0.345 -0.598 

0.242 -0.114 -0.256 -1.206 0.239 -0.275 -1.951 -0.065 -0.152 -3.538 

0.193 0.242 -0.052 -0.350 -0.006 -0.202 -0.896 0.149 0.368 -0.554 

0.235 0.356 0.109 1.288 0.063 -0.021 -0.935 -0.027 -0.474 0.595 

5.3.1 Using hard clustering analysis 

Calculate the correlation distance matrix by using the Mahala nobis distance calculation 

method according to the full design matrix: 

Correlation distance 𝑑10×10 

0.000 0.484 0.749 2.144 0.911 0.918 3.359 0.613 0.901 4.084 

0.484 0.000 0.524 1.834 0.793 0.689 3.381 0.499 0.852 3.859 

0.749 0.524 0.000 1.676 0.678 0.595 3.106 0.310 0.858 3.690 

2.144 1.834 1.676 0.000 2.087 2.005 3.271 1.933 2.442 2.898 

0.911 0.793 0.678 2.087 0.000 0.792 3.714 0.591 1.006 4.337 

0.918 0.689 0.595 2.005 0.792 0.000 3.278 0.683 0.778 3.839 

3.359 3.381 3.106 3.271 3.714 3.278 0.000 3.225 3.237 2.336 

0.613 0.499 0.310 1.933 0.591 0.683 3.225 0.000 0.666 3.907 

0.901 0.852 0.858 2.442 1.006 0.778 3.237 0.666 0.000 4.025 

4.084 3.859 3.690 2.898 4.337 3.839 2.336 3.907 4.025 0.000 

Cluster analysis is shown in Fig. 3. 

 

K03

K08

K02

K01

K05

K06

K09

K04

K07

K10

K11

K12

K13

K14

K15

K16

K17

K18

K19

 

Figure 3: Cluster graph of two gross errors with hard cluster analysis methods 
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As can be seen from Fig. 3, class 10 and class 7 are finally synthesized into one class, 

which is classified as a gross error class; Other classes fall into one category, which is a 

random error class. Obviously, the largest gross error that existed was first separated, but 

the gross error class 4 was not identified. 

5.3.2 Using fuzzy class analysis 

According to the full design matrix, the Mahala nobis distance calculation method is used 

to calculate the correlation distance matrix, and three initial cluster centers are set. 

According to the distance as the initial membership coefficient, and then iterative operation, 

and finally all the data into three categories, the clustering results shown in Fig. 4. 

 

Figure 4: Membership Map of Two Gross Errors with Fuzzy Cluster 

As can be seen from Fig. 4, all classes are finally divided into three categories: the first 

class contains class 4; the second class contains class 10 and class 7; and the third class 

contains class 1, class 2, class 3, class 5, class 6, class 7 and class 9. Where class 10 is a 

known gross error class, so the second class is a gross error class. As can be seen from Fig. 

4, the first class has only one single sample, which is the isolated data, which can be judged 

as gross error data, which is classified as gross error class; the remaining the third class is 

classified as health class. 

It can be seen from Fig. 3 and Fig. 4 that the fuzzy clustering analysis method effectively 

realizes the gross error recognition under the condition of two gross errors, but the hard 

cluster analysis method recognizes at one time. 

5 Citations 

With the development of various navigation systems (such as GLONASS, Galileo, BDS), 

there is a sharp increase in the number of visible satellites. Accordingly, the probability of 

multiply gross measurements will increase. However, the conventional RAIM methods are 

difficult to meet the demands of the navigation system. Aiming at the identification 

problem of multiple gross errors in GNSS RAIM, this paper introduces the fuzzy clustering 
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analysis method of FCM, and then the full design matrix of single point positioning 

constructed by QR parity check method is taken as the initial sample. and studies the RAIM 

method based on fuzzy clustering analysis method. Combined with the actual observation 

data, it is compared with the traditional cluster analysis method. It can be seen from the 

results that the method can effectively realize the identification of multiple gross errors, 

and has certain application value for gross error recognition in practical engineering. 
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