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Convergence Properties of Local Defect Correction Algorithm for
the Boundary Element Method

Godwin Kakuba1,∗, John M. Mango1 and Martijn J. H. Anthonissen2

Abstract: Sometimes boundary value problems have isolated regions where the solution
changes rapidly. Therefore, when solving numerically, one needs a fine grid to capture the
high activity. The fine grid can be implemented as a composite coarse-fine grid or as a
global fine grid. One cheaper way of obtaining the composite grid solution is the use of
the local defect correction technique. The technique is an algorithm that combines a global
coarse grid solution and a local fine grid solution in an iterative way to estimate the solution
on the corresponding composite grid. The algorithm is relatively new and its convergence
properties have not been studied for the boundary element method. In this paper the
objective is to determine convergence properties of the algorithm for the boundary element
method. First, we formulate the algorithm as a fixed point iterative scheme, which has also
not been done before for the boundary element method, and then study the properties of
the iteration matrix. Results show that we can always expect convergence. Therefore, the
algorithm opens up a real alternative for application in the boundary element method for
problems with localised regions of high activity.

Keywords: Local defect, defect correction, composite grids, integral equation methods,
boundary elements.

1 Introduction
Often boundary value problems have small localised regions of high activity where the
solution varies rapidly compared to the rest of the domain. This behaviour may be due to
boundary conditions or due to an irregular boundary. One therefore has to use relatively
fine meshes to capture the high activity. Since the activity is localised, one may also choose
to solve on a uniform structured grid. The size of each grid is chosen in agreement with
the activity of the solution in that part of the domain. The solution is thus approximated
on a composite grid, which is the union of the various uniform local grids. One way of
approximating this composite grid solution that is simple and less complex than directly
solving on the composite grid is by Local Defect Correction (LDC). This approach is
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well developed and extensively studied in methods like the finite difference methods
(FDM) [Anthonissen, Bennett and Smooke (2005); Ferket and Reusken (1996); Hackbusch
(1984)]. In Kakuba et al. [Kakuba and Anthonissen (2014)], a local defect correction
algorithm for the boundary element method (BEM) is presented. It was shown therein that
the algorithm is cheaper than solving directly on the composite grid. The BEM, being
a method with full matrices, would benefit much from such an algorithm when solving
problems with localised regions of high activity that occur at the boundary.
The LDC technique employs a uniform global coarse grid that covers the whole boundary
and then a uniform local fine grid in a small part of the boundary that contains the high
activity. In Ferket et al. [Ferket and Reusken (1996); Hackbusch (1984)] LDC has been
shown to be a useful way of approximating the composite grid solution in which a global
coarse grid solution is improved by a local fine grid solution, through a process whereby
the right hand side of the global coarse grid problem system of equations is corrected
by the defect of a local fine grid approximation. The properties for this method in FDM
have been well studied, see for instance [Anthonissen (2001); Ferket and Reusken (1996);
Hackbusch (1984); Minero, Anthonissen and Mattheij (2006)]. Literature is still scanty on
the LDC technique for BEM, but error studies, especially for direct multigrid applications,
are increasing [Qu and Cui (2014)]. A good overview is also given in Feischl et al.
[Feischl, Führer, Heuer et al. (2015)]. The LDC technique will be particularly useful
in applications for problems that exhibit multiscales in behaviour. An example is the
modelling of impressed current cathodic protection systems where the potential problem is
characterised by small regions of high activity, cathodes and anodes.
In this paper we study convergence properties of the LDC algorithm for BEM which, to
the best of our knowledge, has not been done. In Kakuba et al. [Kakuba and Anthonissen
(2014)], the algorithm is presented using integral formulations. In this paper we base on the
integral formulation to derive the corresponding fixed point iterative scheme in matrix form.
This formulation assumes the boundary and the discretisation are such that, on refinement,
the nodes of the global grid in the refinement area also belong to the fine grid. For the sake
of completeness, we first briefly outline the development of BEM in Section 2. To build
the discussion for the convergence properties, the important steps of the LDC technique
for BEM, as published in Kakuba et al. [Kakuba and Anthonissen (2014)] are presented in
Section 3, with an example. In Section 4, the LDC algorithm is formulated as a fixed point
iterative scheme on the basis of which convergence properties are tested using examples.
We conclude the study with a summary of the findings, in Section 5.

2 The boundary element method
Consider a closed domain Ω ⊂ R2, with boundary Γ. Denote by n the outward unit normal
at Γ. We consider on Ω the two dimensional potential problem

∇2u(r) = 0, r ∈ Ω, (1)

for which Dirichlet, Neumann or mixed boundary conditions may be defined as illustrated
in Fig. 1.
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Figure 1: Illustration of the domain Ω, with boundary Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, where on 
Γ1 we have Neumann boundary conditions, and on Γ2 we have Dirichlet conditions 
[Kakuba and Anthonissen (2014)]

If Γ1 ≡ Γ, we have a Neumann problem, and if Γ2 ≡ Γ, we have a Dirichlet problem
otherwise we have a Mixed problem. In the solution of problem (1) using BEM, the problem
is formulated as an integral equation

c(s)u(s) =

∫
Γ

[
v(s; r(χ))

∂u

∂n
(r(χ))− u(r(χ))

∂v

∂n
(s; r(χ))

]
dχ, (2)

where the coefficient c(s) is given by,

c(s) :=



1, s ∈ Ω,

α(s)

2π
, s ∈ Γ,

0, s ∈ Ωc,

(3)

where r is the variable field point, s is a fixed point, χ a coordinate along the boundary,
Ωc is the complement of Ω in R2 and α(s) is the internal angle at s. The derivation of
this boundary integral equation (BIE) is readily available [Katsikadelis (2002); Paris and
Canas (1997); Pozrikidis (2002)]. The function v is the fundamental solution of the Laplace
equation in R2 given by:

v(s; r) =
1

2π
log

1

||r − s||
. (4)

According to Eq. (2), the solution u can be computed at any point in the domain if we know
u and its normal derivative everywhere at the boundary. The goal in BEM therefore is to
look for the missing data at the boundary, which is the function u at the Neumann boundary
or the normal derivative ∂u/∂n at the Dirichlet boundary. At the boundary, the discretised
BIE leads to the linear system of equations

Hu = Gq, (5)
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where

Hij := ciδij + Ĥij , (δij the Kronecker δ), (6)

Ĥij :=

∫
Γj

∂v

∂n
(ri; r(χ)) dχ, Gij :=

∫
Γj

v(ri; r(χ)) dχ (7)

i, j = 1, 2, . . . , N , Γj , j = 1, 2, . . . , N is a discretisation of Γ and N is the number of grid
elements Γj used in the discretisation. We have also introduced the vectors

u := (u1, u2, . . . , uN )T , q := (q1, q2, . . . , qN )T , (8)

where q is defined as

q(r) :=
∂u

∂n
(r).

Using boundary conditions in Eq. (5) leads to the square system

Ax = b. (9)

The vector x contains the unknown values of either u or q in the grid elements nodes at the
boundary. The solution of the system (9) gives a BEM approximation of the unknowns in x
in the grid nodes at the boundary. We denote by xL a BEM approximation on a grid of size
L. Thus, uLj (or qLj ) is a BEM approximation of uj (or qj), using a grid of size L. Solving
Eq. (9) gives the unknown boundary quantities of u and q. Therefore, all the boundary
quantities are available and the solution ui at any point ri ∈ Ω can then be computed using
the identity

ui =

N∑
j=1

Gijqj −
N∑
j=1

Ĥijuj . (10)

3 local defect correction
In this section we briefly present the local defect correction algorithm that was introduced
in Kakuba et al. [Kakuba and Anthonissen (2014)]. The presentation focusses on the
important steps of the algorithm that are necessary in the development of the same, as a
fixed point iterative scheme that is discussed in this paper. Consider the potential problem: ∇

2u(r) = 0, r ∈ Ω := [0, 1]× [0, 1],

q(r) = h(r), r ∈ Γ,
(11)

where

h(r) =
(r − rs) · n(r)

||r − rs||2
, rs = (0.5,−0.02)T . (12)

The exact solution of this problem, shown in Fig. 2, has a small area close to the boundary
where it changes rapidly. As a result, the solution u(r) at the boundary has a region of
high activity in a small part of the boundary. The LDC algorithm distinguishes a small
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(a) Solution in Ω with a small region
of high activity
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(b) The solution u(r) in part of ∂Ω
that borders the high activity

Figure 2: Solution in the domain, in 2(a), and solution at the boundary
0 ≤ x ≤ 1, y = 0, in 2(b), for problem (11) [Kakuba and Anthonissen (2014)]

region of high activity in Ω and defines a local problem on it. We denote this region by
Ωlocal. Part of the boundary of Ωlocal intersects with the global boundary Γ, Fig. 3. We call
this intersecting part of the boundaries of Ω and Ωlocal, the local active boundary, Γactive,
because it captures the high activity of the problem at the boundary.

(a) Identify local high activity area
Ωlocal.

(b) A local domain Ωlocal

Figure 3: An example of a multiscaled solution with localised high activity, in 3(a) and,
in 3(b), an illustration of a local problem domain. The boundary of Ωlocal is Γlocal :=
Γactive ∪ Γinside [Kakuba and Anthonissen (2014)]

In the application of BEM to solve this Neumann problem, a Dirichlet condition is
prescribed in one node, for uniqueness of results, which also enables us to compare the
numerical results with the exact solution. In the LDC algorithm, a local problem on Ωlocal
is solved on a fine mesh whose size is chosen in agreement with the local activity. The
solution on the local fine grid is combined with the solution on the global coarse grid,
through defect correction, to obtain a composite grid solution on Γ. The global problem
is solved on a uniform global coarse grid ΓL of N elements each of size L, covering the
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whole of Γ, that is,

ΓL := {ΓL
1 ,Γ

L
2 , . . . ,Γ

L
N}, (13)

where |ΓL
j | = L for all j = 1, 2, . . . , N . The number of elements of the local problem is

denoted Nlocal, and the individual elements of the local grid are denoted Γl
local. Thus, the

local problem is solved on Ωlocal, using a uniform local fine grid Γl
local, of Nlocal elements

each of size l covering Γlocal. That is,

Γl
local := {Γl

local,1,Γ
l
local,2, . . . ,Γ

l
local,Nlocal

}, (14)

where |Γl
local,i| = l for all i = 1, 2, . . . , Nlocal. This discretisation is illustrated in Fig. (4). In
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Figure 4: Global coarse and local fine grids. The dots are the nodes rllocal of the local fine 
grid Γl

local and the big open circles are the nodes rL of the global coarse grid ΓL. Node 2 
belongs to rL ∩ rlactive [Kakuba and Anthonissen (2014)]

constant elements that we use here, the collocation nodes are the midpoints of the elements.
Let

rL := {rL1 , rL2 , . . . , rLN} (15)

denote the set of coarse grid nodes. Let

rllocal := {rllocal,1, r
l
local,2, . . . , r

l
local,Nlocal

} (16)

be the set of the local fine grid nodes. Then we denote the nodes of the local problem that
belong to the active part of the boundary as rlactive. We assume that all the grid nodes of
rL∩rlactive belong to rlactive, Fig. 4. The composite grid nodes rl,L are the union rL∪rlactive
of the global coarse grid nodes rL and the active local fine grid nodes rlactive. First, we have
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the following discretised integral equation on ΓL

1

2
uLi +

N∑
j=1

uLj

∫
ΓL

j

∂v

∂n
(ri; r(χ)) dχ =

N∑
j=1

∫
ΓL

j

q(r(χ))v(ri; r(χ)) dχ, (17)

which leads to the initial global coarse grid system of equations

ALuL
0 = bL. (18)

Note that on the right hand side of Eq. (17), the function q(r) is given and, therefore, to
make sure we are only measuring the errors due to the discretisation of u, we minimise the
interpolation error [Kita and Kamiya (2001)] by evaluating that integral without discretising
q, but by using an appropriate integration rule to evaluate that integral of the product of q
and v. Once Eq. (18) is solved, the solution is used to complete the formulation of the local
problem by computing u on Γinside to be used as the Dirichlet boundary condition. The local
problem on Ωlocal satisfies the same operator as in the global problem. Since Γactive ⊂ Γ,
the boundary conditions on Γactive are the same as those in the global problem. The local
problem is solved on a finer grid and the solution is used to estimate the defect as by the
following explanation.
Consider the coarse grid discretisation Eq. (17). If we knew the exact solution uj := u(rj)
in the nodes, then using it in Eq. (17) would give:

1

2
ui +

N∑
j=1

uj

∫
ΓL

j

∂v

∂n
(ri; r(χ)) dχ =

N∑
j=1

∫
ΓL

j

q(r(χ))v(ri; r(χ)) dχ+ dLi , (19)

where dLi is the local defect for the i-th equation. We also have the exact BIE obtained by
using the undiscretised exact function u on the elements, as

1

2
ui +

N∑
j=1

∫
Γj

u(r(χ))
∂v

∂n
(ri; r(χ)) dχ =

N∑
j=1

∫
Γj

q(r(χ))v(ri; r(χ)) dχ. (20)

Subtracting Eq. (20) from Eq. (19) gives

N∑
j=1

uj

∫
ΓL

j

∂v

∂n
(ri; r(χ)) dχ−

N∑
j=1

∫
Γj

u(r(χ))
∂v

∂n
(ri; r(χ)) dχ = dLi , (21)

where dLi is the defect of the i−th equation. If we had this defect, we would add it to the
system Eq. (18) and solve to obtain the exact solution at the nodes. The contribution to the
defect dLi , from element j, is given by:

dLij := uj

∫
ΓL

j

∂v

∂n
(ri; r(χ)) dχ−

∫
Γj

u(r(χ))
∂v

∂n
(ri; r(χ)) dχ, (22)

so that the defect for the i−th equation is given by:

dLi :=
∑
j

dLij , i = 1, 2, . . . , N. (23)
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The contributions to this defect are significant in the active region, and are assumed
negligible elsewhere. However, the exact function u is not known and we cannot therefore
use Eq. (21) to compute the defect dLi . What we can instead do is to formulate and solve a
local problem using a fine grid in the active region. The solution to this problem is better
than the coarse grid solution because of the fine grid used. At this point, the best solution
available is

uLbest,j =


uLj , ΓL

j ⊂ Γc,

ulactive,j , ΓL
j ⊂ Γactive,

(24)

and the best approximations to the integrals in Eq. (22) are

uj

∫
ΓL

j

∂v

∂n
(ri; r(χ)) dχ ≈ ulactive,j

∫
ΓL

j

∂v

∂n
(ri; r(χ)) dχ, (25a)

∫
Γj

u(r(χ))
∂v

∂n
(ri; r(χ)) dχ ≈

∑
k

ulactive,jk

∫
Γactive,jk

∂v

∂n
(ri; r(χ)) dχ. (25b)

In Eq. (25), we assume that in the local fine grid Γl
active, a global coarse grid element ΓL

j is
divided intoK fine elements Γl

active,jk , k = 1, 2, . . . ,K, such that ΓL
j = ∪

k
Γl

active,jk . Fig. (5)

gives an illustration for K = 3.

ΓL
j

rLj

(a) A coarse element ΓL
j

replacemen

Γl
active,j1 Γl

active,j2
Γl
active,j3

rlactive, j1 rlactive, j2 rlactive, j3

(b) A refinement of the coarse element ΓL
j in (a)

above

Figure 5: A coarse element that is refined into three elements in the local fine grid, such

that ΓL
j =

3
∪

k=1
Γl

active,jk [Kakuba and Anthonissen (2014)]

Therefore, using the initial fine grid solution, the initial best approximation of the defect
per element is

dL0 ij ≈ u
l
0active,j

∫
Γj

∂v

∂n
(ri; r(χ)) dχ−

∑
k

ul0active,jk

∫
Γactive,jk

∂v

∂n
(ri; r(χ)) dχ, (26)
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for elements in the active region of the boundary, whereas it is assumed zero for elements
outside the active region. We can then compute the defect

dL0 i ≈
∑
j

dL0 ij , ΓL
j ⊂ Γactive, for all i = 1, 2, . . . , N. (27)

The formulation described above can be summarised in matrix form as follows. On the
local domain Ωlocal we have the local fine grid problem

Al
localx

l
0local = bl

0local (28)

where

xl
0local =

[
ul

0active
ql

0inside

]
and the vectors on Γl

local have been partitioned as

ul
local =

[
ul

active
ul

inside

]
, ql

local =

[
ql

active
ql

inside

]
. (29)

The solution ul
0active, on the fine grid, which is expected to be more accurate than the coarse

grid solution, is then used to approximate the defect for the global coarse grid problem

dL
0 := (dL0 1, d

L
0 2, . . . , d

L
0 N )T . (30)

So we solve the updated system

ALuL
1 = bL + dL

0 . (31)

Solving the system in Eq. (31) gives the updated coarse grid solution uL
1 . At this stage we

use the fine grid solution on Γl
active and the global coarse grid solution to form a composite

grid solution ul,L as

ul,L0,1(r) =

 ul0active(r), r ∈ Γactive,

uL1 (r), r ∈ Γc.
(32)

The composite grid solution in Eq. (32) can now be used to compute better boundary
conditions bl

1local on Γinside, and then form and solve the updated fine grid problem

Al
localx

l
1local = bl

1local. (33)

Then we obtain the updated composite grid solution given by:

ul,L1,1(r) =

 ul1active(r), r ∈ Γactive,

uL1 (r), r ∈ Γc.
(34)

This step marks the end of one complete cycle of the LDC algorithm. The iteration process
is summarised in Algorithm 1, whose more detailed presentation is discussed in Kakuba et
al. [Kakuba and Anthonissen (2014)], and results on an example are shown in Fig. 6 and
Fig. 7, where functions are plotted only for the side of the square boundary with the active
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region. The authors in Kita et al. [Kita and Kamiya (2001)] present a broader review of
adaptive error refinement techniques. In this paper, we compare the numerical solution with
the exact solution to make conclusions on the error, a kind of error measurement similar to
the one attributed to Mullen et al. [Mullen and Rencis (1985)].

Algorithm 3.1.

(i) Initialisation

– Solve the global coarse grid system

ALuL
0 = bL

0

– Solve the initial fine grid system

Alxl
0local = bl

0

– Compute the initial defect

dL
0

(ii) For i = 1, 2, . . .

– Solve for the updated coarse grid solution uL
i in

ALuL
i = bL

0 + dL
i−1.

– Solve for the updated fine grid solution xl
iactive in

Al
localx

l
ilocal = bl

ilocal.

– Form the updated composite grid solution ul,Li,i and compute the new defect
dL
i .

4 Properties of the LDC for BEM algorithm as a fixed point iterative scheme
We consider the following Neumann problem ∇

2u(r) = 0, r ∈ Ω,

q(r) = h(r), r ∈ ∂Ω.
(35)

To formulate the LDC algorithm as a fixed point iteration, we need a vector formulation for
the steps in Algorithm 3.1. The first step of the algorithm is to solve a global coarse grid
problem

ALxL
0 = bL

0 , (36)

for an initial solution xL
0 . The solution xL

0 is a vector of u’s except in one node, the
last node, where a Diriclet boundary condition is prescribed to ensure uniqueness of the
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(a) Initial coarse grid solution uL0
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(b) Initial fine grid solution ul0active

Figure 6: Results of a typical LDC process for a Neumann problem in
one iteration (The solid line is the exact solution [Kakuba and Anthonissen
(2014)])
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(a) Updated coarse grid solution uL1
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(b) Updated fine grid solution ul1active

Figure 7: Results of a typical LDC process for a Neumann problem in
one iteration (The solid line is the exact solution [Kakuba and Anthonissen
(2014)])
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solution. Using uL
0 , the boundary conditions and the boundary integral relation Eq. (2) for

interior points, we compute the potential u(r) on Γinside. That is,

uinside(ri) =

∫
Γ

v(ri; r(χ))q(r(χ))dχ−
∑
j

uL0 j

∫
Γj

∂v

∂n
(ri; r(χ))dχ, ri ∈ rlinside. (37)

Introducing a vector g and a matrix H̃
L

such that

gi :=

∫
Γ
q(r(χ))v(ri; r(χ)) dχ, ri ∈ Γinside, (38)

H̃L
ij :=

∫
ΓL

j

∂v

∂n
(ri; r(χ)) dχ, ri ∈ Γinside, (39)

then we can write Eq. (37) as

u0inside = g − H̃
L
uL

0 . (40)

Using Eq. (40), we obtain Dirichlet boundary conditions on Γinside. The boundary
conditions on Γactive are the same as the given boundary conditions in the global problem
since, Γactive ⊂ Γ. Using (5), we can then write the equations on Γl

local in vector form as

Hl
local

[
ul

0active
ul

0inside

]
= Gl

local

[
qactive
ql

0inside

]
, (41)

where Hl
local and Gl

local are the BEM H and G matrices on the fine grid of the local problem
boundary Γl

local, u
l
active and ql

active are vectors on the active part Γl
active of the local problem

boundary, and ul
0inside and ql

0inside are vectors on Γl
inside, the part of the local problem

boundary that is inside the global domain. The vector ul
0inside is known through Eq. (40)

and the vector qactive is known through the boundary conditions. So, we rearrange Eq. (41)
as

[Hl
active −Gl

inside]

[
ul

active
ql

0inside

]
= [Gl

active −Hl
inside]

[
qactive
ul

0inside

]
. (42)

The matrix Hl
active is a block of Hl for which the column index corresponds to nodes in

Γl
active. Similarly Hl

inside is a block of Hl for which the column index corresponds to nodes
in Γl

inside. The blocks Gl
active and Gl

inside are defined analogously. The quantities on the right
hand side of Eq. (42) are all known. Let

Bl
local := [Gl

active −Hl
inside], (43)
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Al
local := [Hl

active −Gl
inside], (44)

bl
0local := Bl

local

[
qactive
ul

0inside

]
, (45)

xl
0local :=

[
ul

0active
ql

0inside

]
. (46)

Then we have
Al

localx
l
0local = bl

0local. (47)
The solution of the system in Eq. (47) gives us another solution ul

0active in Γactive, which
should be a better approximation of u(r) than uL

0 in Γactive, because of the fine grid used.
We, then, use this solution to compute the defect and update the global coarse grid solution.
The defect on an element ΓL

j when the collocation node is i is given by:

d0ij ≈
∑
k

ul0active,jk

∫
Γl

active,jk

∂v

∂n
(ri; r(χ)) dχ− ul0active,j

∫
ΓL

j

∂v

∂n
(ri; r(χ)) dχ, (48)

where ∪
k

Γl
active,jk = ΓL

j as illustrated in Fig. (5). The integration in Eq. (48) is computed at

all the global elements that lie in Γactive, so that the total defect for the i-th collocation node
is
d0i =

∑
j,ΓL

j ⊂Γactive

d0ij . (49)

Since each node communicates with the local active region through integration, the defect
d0i is computed for all the nodes. Let us introduce a matrix H̄, defined as

H̄ik :=

∫
Γk

∂v

∂n
(ri; r(χ)) dχ, ri ∈ rL, Γk ∈ Γl

active.

Let PL,l be a restriction from the fine grid Γl
active, to the coarse grid ΓL

active in Γactive. Then
we can write the defect d0 as:

d0 = H̄ul
0active − Ĥ

L
PL,lul

0active = (H̄− Ĥ
L
PL,l)ul

0active, (50)

where the matrix Ĥ is as in Eq. (7) with the superscript L indicating a coarse grid of size
L. Now we have the defect for all the coarse grid nodes. We update the coarse grid system
in Eq. (36) to obtain the updated coarse grid solution xL

1 , that is,

ALxL
1 = bL − (H̄− Ĥ

L
PL,l)ul

0active. (51)
At this stage we can assemble a composite grid solution on Γl,L that consists of the initial
fine grid solution and the updated coarse grid solution. So,

ul,L
0,1 :=

[
ul

0active
uL

1 c

]
, (52)
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where uL
1 c is the updated coarse grid solution on Γc outside the active region Γactive. To

complete the updated composite grid solution, we need to solve a new local problem. To
this end, we use the solution in Eq. (52) to compute another approximation of u(r) on
Γinside. Thus, we have

u1inside = g − H̃
l,L

ul,L
0,1, (53)

where the matrix H̃
l,L

is as defined in Eq. (40) but on the composite grid, that is,

H̃ l,L
ij =



∫
ΓL

c,j

∂v

∂n
(ri; r(χ)) dχ, r(χ) ∈ Γc,

∫
Γl

active,j

∂v

∂n
(ri; r(χ)) dχ, r(χ) ∈ Γactive,

(54)

and ri ∈ Γinside. Then we formulate an updated system for the local problem

Al
localx

l
1local = bl

1local, (55a)

where

bl
1local = Bl

local

[
ql

active
u1inside

]
. (55b)

Solving the system in Eq. (55) gives an updated solution ul
1active of u(r) on Γactive. At this

stage we have a completely updated composite grid solution given by:

ul,L
1,1 =

[
ul

1active
uL

1 c

]
. (56)

This completes the first iteration that gives us the first updated composite grid solution. The
process can be repeated until there is no more change in the solution. In what follows, we
formulate the above process as a fixed point iterative process.
Let Ilactive be an identity of size Nactive, the number of local elements in Γactive. Then, the
part of the local solution in Γactive is given by,

ul
iactive = [Iactive O]xl

ilocal, (57)

for the i-th iteration. Consider the updated composite grid solution in Eq. (56) for iteration
i+ 1. Using Eq. (55) and Eq. (57), we have

ul,L
i+1,i+1 =

 ul
i+1active

uL
i+1c

 =

 [Iactive O]
(
Al

local

)−1
Bl

local

[
ql

active
ul
i+1inside

]
[O Ic]u

L
i+1

 . (58)

From the second block row of Eq. (58) we have

uL
i+1c = [O Ic]u

L
i+1.

This is the global coarse grid solution outside the active region. For a Neumann problem,
we prescribe Dirichlet boundary conditions in the last node, in order to obtain a unique
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solution. Thus, the last value of the solution vector will be a q value. So, in general, we
write

xL
i+1c = [O Ic]x

L
i+1. (59)

Using Eq. (51), we have

xL
i+1c = [O Ic]

(
AL
)−1

bL − (H̄− Ĥ
L
PL,l)ul

iactive

 ,

= xL
0 c − [O Ic]

(
AL
)−1

H̄− Ĥ
L
PL,l

ul
iactive, (60)

where

xL
0 =

(
AL
)−1

bL.

Let us consider again Eq. (58). If we introduce a matrix M, defined as

M := [Iactive O]
(
Al

local

)−1
Bl

local,

then, from the first block row of Eq. (58), we have

ul
i+1active = M

[
ql

active
ul
i+1inside

]
. (61)

Note that the matrix M is rectangular in size. Let us break it into two blocks, a square
block Mactive that operates on Γl

active and a block Minside that operates on Γl
inside. Then we

can write Eq. (61) as

ul
i+1active = [Mactive Minside]

[
ql

active
ul
i+1inside

]
= Mactiveq

l
active + Minsideu

l
i+1inside. (62)

From Eq. (53), we see that

ui+1inside = g − H̃
l,L

ul,L
i,i+1. (63)

To break down the operator H̃
l,L

in Eq. (63) into a part that operates on Γl
active and another

that operates on ΓL
c , we can write Eq. (63) as

ui+1inside = g − H̃
l,L
activeu

l
iactive − H̃

l,L
c uL

i+1c. (64)

Using Eq. (64) in Eq. (62), we have

ul
i+1active = Mactiveq

l
active + Minside

g − H̃
l,L
activeu

l
iactive − H̃

l,L
c uL

i+1c

 ,

= Mactiveq
l
active + Minsideg −MinsideH̃

l,L
activeu

l
iactive −MinsideH̃

l,L
c uL

i+1c. (65)

After introducing the following operators

R := −MinsideH̃
l,L
active, T := −MinsideH̃

l,L
c ,
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we can then write Eq. (65) as

ul
i+1active = Mactiveq

l
active + Minsideg + Rul

iactive + TuL
i+1c. (66)

In Eq. (66) the updated solution on the active grid Γl
active is expressed in terms of the

previous solution and the updated solution outside the active grid. To have an expression
for the iteration that takes place on the active region alone, we use Eq. (60) to replace
uL
i+1,c. Thus,

uL
i+1c = D1x

L
i+1c + D2bc, (67)

where bc is the vector of boundary conditions outside the active region. Since the last
entry of xL

i+1c is a q-value and that of bc is a u-value, then matrices D1 and D2 are the
projections

D1 :=

[
I 0
0T 0

]
, D2 :=

[
O 0
0T 1

]
, (68)

and we have

uL
i+1c = D1(xL

0 c − [O Ic]
(
AL
)−1

H̄− Ĥ
L
PL,l

ul
iactive) + D2bc. (69)

Introducing the notation

W := [O Ic]
(
AL
)−1

(H̄− Ĥ
L
PL,l), (70)

we can write Eq. (69) as

uL
i+1c = D1x

L
0 c −D1Wul

iactive + D2bc. (71)

Using Eq. (71) in Eq. (66), we obtain

ul
i+1active = Mactiveq

l
active + Minsideg + Rul

iactive + T(D1x
L
0 c −D1Wul

iactive + D2bc)

which can be written as

ul
i+1active = (R−TD1W)ul

iactive + TD1x
L
0 c + Mactiveq

l
active + Minsideg + TD2bc. (72)

With a vector v defined as

v := TD1x
L
0 c + Mactiveq

l
active + Minsideg + TD2bc,

Eq. (72) can be written as

ul
i+1active = (R−TD1W)ul

iactive + v. (73)

The vector v remains fixed throughout the iteration, since ql
active, g, bc, remain fixed, and

xL
0 c = [O Ic]

(
AL
)−1

bL remains the same throughout the iteration. Eq. (73) expresses
the iteration that takes place on the fine grid Γl

active as a fixed point iteration with iteration
matrix Q defined as

Q := R−TD1W. (74)

Thus, we have

ul
i+1active = Qul

iactive + v, i = 0, 1, 2, . . . . (75)
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Table 1: Spectral radius of the iteration matrix Q for a Neumann problem for different
combinations of fine and coarse grid sizes l and L respectively when local problem domain
is the rectangle [0.2, 0.8]× [0, 0.4] and Ω = [0, 1]× [0, 1]

l

L 0.2/3 0.2/9 0.2/27 0.2/81
0.2 2.308E-01 2.402E-01 2.457E-01 2.492E-01
0.2/3 2.342E-01 2.399E-01 2.436E-01
0.2/9 2.367E-01 2.401E-01
0.2/27 2.388E-01

Table 2: Spectral radius of the iteration matrix Q for a Neumann problem for different
combinations of grid sizes L and l, and a smaller local problem on [0.4, 0.6]× [0, 0.2] with
still Ω = [0, 1]× [0, 1]

l

L 0.2/3 0.2/9 0.2/27 0.2/81
0.2 2.165E-01 2.338E-01 2.426E-01 2.476E-01
0.2/3 2.255E-01 2.349E-01 2.405E-01
0.2/9 2.306E-01 2.361E-01

This iteration will converge if the spectral radius of the iteration matrix Q is less than unity.
In Tab. 1 and Tab. 2, we have the spectral radii of Q for different combinations of L and l.
All the values are less than unity implying convergence of the fixed point algorithm.
Consider the problem in Eq. (11). We identify Ωlocal as Ωlocal := [0.2, 0.8] × [0, 0.4], as
illustrated in Fig. 2. The LDC is then used with various sizes of coarse grid size L and fine
grid size l. We expect the ratios

γi = ||ul
i+1 − ul

i||2/||ul
i − ul

i−1||2 (76)

to be less than unity as well. In Tab. 3, we have computed these ratios for five iterations and
different combinations of grid sizes. The results fit our expectations, to further illustrate
guaranteed convergence of the algorithm.

5 Conclusions
The boundary element method is a relatively new method, whose development started in
the late 1970’s although the underlying theory of integral equations could be traced to
earlier decades. Its biggest computational disadvantage is that the resulting matrices are full
matrices, making the method expensive. In the present study, we have successfully opened
a new direction in the implementation of the method, by formulating a fixed point iterative
scheme for the LDC technique and showing numerically that the algorithm converges.
This approach will be very useful in the implementation of the method in problems with
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Table 3: The ratios γi defined in Eq. (76) when we use LDC to solve the problem in Eq. (11)
L l i γi

0.2 0.2/3 1 0.1574
2 0.1848
3 0.1883
4 0.1886
5 0.1886

L l i γi
0.2 0.2/9 1 0.2024

2 0.2228
3 0.2295
4 0.2312
5 0.2316

L l i γi
0.2 0.2/27 1 0.2177

2 0.2334
3 0.2393
4 0.2416
5 0.2425

L l i γi
0.2 0.2/81 1 0.2226

2 0.2372
3 0.2428
4 0.2452
5 0.2463

localised regions of high activity in the boundary that demand localised regions of high
resolution grids. We have shown, by numerical experiments, that the resulting algorithm
converges and thus provides a real alternative to composite grid solutions. There is still
need to theoretically establish the convergence results, but given the complexity of the
matrices involved, this paper presents a good opening to that line of research work.
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