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Multiscale Hybrid-Mixed Finite Element Method for Flow 
Simulation in Fractured Porous Media

Philippe Devloo1, Wenchao Teng2 and Chen-Song Zhang3,∗

Abstract: The multiscale hybrid-mixed (MHM) method is applied to the numerical
approximation of two-dimensional matrix fluid flow in porous media with fractures.
The two-dimensional fluid flow in the reservoir and the one-dimensional flow in the
discrete fractures are approximated using mixed finite elements. The coupling of the
two-dimensional matrix flow with the one-dimensional fracture flow is enforced using the
pressure of the one-dimensional flow as a Lagrange multiplier to express the conservation
of fluid transfer between the fracture flow and the divergence of the one-dimensional
fracture flux. A zero-dimensional pressure (point element) is used to express conservation
of mass where fractures intersect. The issuing simulation is then reduced using the MHM
method leading to accurate results with a very reduced number of global equations. A
general system was developed where fracture geometries and conductivities are specified
in an input file and meshes are generated using the public domain mesh generator GMsh.
Several test cases illustrate the effectiveness of the proposed approach by comparing the
multiscale results with direct simulations.

Keywords: Fracture simulation, discrete fracture model, multiscale hybrid finite element, 
mixed formulation.

1 Introduction
Modeling and simulation of fluid flow in naturally and hydraulically fractured subsurface
systems has been a popular research topic in petroleum engineering. According
to [Schlumberger (2017)], more than half of the world total oil reserves reside in fractured
carbonate reservoirs. Many such reservoirs have their main productivity channel from a
network of connected fractures. Oil recovery mechanism in fractured reservoirs, especially
shale or tight formations with hydraulically induced fractures, is strongly effected by the
accuracy of fracture description. Mathematical models for describing recovery process
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in complex multiscale fractured formation become more challenging, compared with
conventional flow models in homogeneous porous media. In general, there are three types
of approaches: (1) continuum models, (2) discrete fracture models, and (3) hybrid models
that combine explicit large features and equivalent effective continuum for small features.
Naturally each approach has its own advantages and disadvantages.
The Dual Porosity and Dual Permeability (DPDP) model [Barenblatt, Zheltov and Kochina
(1960); Warren and Root (1963)] is a well-known continuum model for representing well-
developed and well-connected small-scale fractures. In this model, besides the rock matrix
grid, a structured domain with a set of porosity and permeability is provided to describe
the fracture network. The dual porosity models only require small changes to classical
reservoir simulators for single media models and can sometimes obtain reasonably good
results in practice. To further improve accuracy for simulating oil-water imbibition process,
the Multiple INteracting Continua (MINC) model was proposed and applied [Pruess
(1985); Wu and Pruess (1988)]. Due to the upscaling processes involved in the modeling
process, these models will typically fail when fracture length is comparable to the grid size,
especially for the scattered fractures [Long, Remer, Wilson et al. (1982)].
Besides continuum representations, another widely studied approach in the reservoir
simulation community is the Discrete Fracture Model (DFM), where fractures are modeled
as lower dimensional entities [Noorishad and Mehran (1982); Dverstorp and Andersson
(1989); Hoteit and Firoozabadi (2005)]. The DFMs model the fractures as lower
dimensional geometric entities and represent each fracture explicitly with unstructured
grids. This approach avoids computing transfer functions between matrix and fracture
cells as in continuum models. The DFMs improve accuracy significantly by modeling long
fractures. On the other hand, as complexity of the fracture network increases, describing all
fractures of different sizes by a finite element or finite volume approximation becomes very
expensive. Furthermore, robust and automatic griding algorithms for field-scale simulation
of complex fracture networks are still very challenging to construct and it remains an
active topic of research; see [Si (2015)] and references therein. To allow independent grids
for fracture and matrix domains, many researchers devote efforts to develop and improve
the so-called Embedded Discrete Fracture Model (EDFM) or projection-based EDFM that
incorporates the effect of each fracture explicitly using non-conforming grids [Lee, Lough
and Jensen (2001); Li and Lee (2008); Moinfar, Varavei, Sepehrnoori et al. (2012, 2014);
Hajibeygi, Al Kobaisi, Bosma et al. (2017)].
Considering the distribution uncertainty and huge quantity of natural fractures
in formations, hybrid approaches have been developed to reduce the prohibitive
computational cost caused by direct simulation of small-size fractures [Lee, Lough and
Jensen (2001)]. These approaches simulate fractures of different scales with different
models, which combine continuum models and DFM/EDFM. The continuum approach is
employed to describe the dense small-scale fractures and DFM/EDFM is used to explicitly
model the large-scale fractures [Moinfar, Varavei, Sepehrnoori et al. (2012); Wu, Li, Ding
et al. (2014); Jiang and Younis (2016)]. Such a methodology has been proved effective
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by numerical studies; see Moinfar [Moinfar (2013)] and references therein for details.
It should be noted that the number of degrees of freedom is still beyond the scope of
classical computational methods with homogenizing natural fractures [Ţene, Al Kobaisi
and Hajibeygi (2016)]. This motivates the development of an efficient multiscale method
for heterogeneous fractured porous media.
The main idea of multiscale Galerkin methods goes back to the work by Babuška
et al. [Babuška and Osborn (1983); Babuška, Caloz and Osborn (1994)] and they
construct basis functions by solving local flow problems to incorporate fine-scale
effects into coarse-scale equations. Thereafter, this idea has been further developed
by many researchers and spawned a series of relevant methods, including multiscale
finite element method (MsFEM) [Hou and Wu (1997)], multiscale mixed finite element
method (MsMFEM) [Chen and Hou (2002); Aarnes (2004)], heterogeneous multiscale
method (HMM) [Weinan and Björn (2005)], generalized multiscale finite element
method (GMsFEM) [Efendiev, Galvis and Hou (2013)], and multiscale finite-volume
method (MsFVM) Jenny, Lee and Tchelepi (2003). During the past few years, multiscale
methods have been extended to simulate fluid flow in fractured media. For example, DFM
has been integrated into MsFEM by Zhang et al. [Zhang, Huang, Yao et al. (2017)] and
GMsFEM by Akkutlu et al. [Akkutlu, Efendiev and Vasilyeva (2016)].
One of the main contributions of this work is the combination of modeling discrete fracture
networks with the Multiscale Hybrid-Mixed (MHM) method. The MHM method was
originally developed by Valentin, Harder, and Paredes (see Harder et al. [Harder, Paredes
and Valentin (2013); Paredes, Valentin and Versieux (2017); Araya, Paredes, Valentin et al.
(2013)] for more details) and is a numerical approximation technique geared towards the
approximation of conservation laws that incorporate multiple scales. The MHM method
has been extended to mixed finite element approximations in Duran et al. [Duran, Devloo,
Gomes et al. (2018)], in which the MHM method is described and compared with other
multiscale methods such as the Hybrid Discontinuous Galerkin method [Cockburn (2016)]
and the Hybrid High-Order method [Di Pietro, Ern and Lemaire (2016)]. The extension of
the MHM method to the numerical simulation of discrete fracture networks is to extend the
boundary fluxes over each polygonal domain with fluxes associated with the fracture flow.
In this paper, we propose a multiscale hybrid-mixed finite element method for DFM and
describe its implementation in the NeoPZ finite element library [Devloo (1997)].
The rest of this paper is organized as follows. The basis of representing fluid flow through
the interfaces of the elements using mixed finite elements is a hybridized version of mixed
finite element approximations and is presented in Section 2. The fluid flow in the fracture
is modeled using a lower dimensional flux is described in Section 3. Finally numerical
examples in Section 4 demonstrate the simulation of flow through porous medium where
volumetric flow is combined with fluid flow through fractures.
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2 A mixed finite element approximation
In this section, we describe a mathematical formulation for approximating discrete fracture
models coupled with the porous media flow. We propose a hybridized mixed finite element
formulation, which substantially decreases the size of the discrete linear system. In this
formulation, we use a hierarchal grid of two length scales: (1) a coarse-scale structured or
unstructured grid based on which global degrees of unknowns are defined, and (2) a fine-
scale unstructured grid is employed to describe long fractures. We note that such a method
can also be combined with continuum models in order to take short and medium fractures
into account.
Let Td ⊂ Rd be a polygonal computational domain. The mixed approximation of the
Laplace equation on Td can be formulated as : Find (~σd, pd) ∈ Hdiv(Td) × L2(Td) such
that∫
Td

~ψd ·K−1
d ~σd dΩ−

∫
Td

div(~ψd) pd dΩ = −
∫
∂Td

(~ψd · n) pD dω, (1)

−
∫
Td
ϕddiv(~σd) dΩ =

∫
Td
fϕd dΩ. (2)

for any (~ψd, ϕd) ∈ Hdiv(Td)× L2(Td). Here n is the outer unit normal vector on element
boundaries.

2.1 Hybridized mixed finite element approximations

Mixed finite element approximations have the distinct feature that the numerical results
of the hybridized formulation are identical to the original formulation. Moreover, when
statically condensing the internal fluxes and pressures onto the pressure on the interfaces,
the issuing global matrix is symmetric positive definite (SPD).
For simplicity, we restrict our discussion in two-dimensional (d = 2) matrix domain with
one-dimensional fractures in this paper. We denote the partition of macro elements as
T2 := {T2 : T2 ⊂ Ω} and the interfaces between macro elements as T1 in this case. A
hybrid mixed finite element approximation of a flow through porous medium is described
as: Find (~σ2, p2, p1) ∈ Hdiv(T2)× L2(T2)×H1/2(T1) such that∫
T2

~ψ2 ·K−1
2 ~σ2 dΩ−

∫
T2

div(~ψ2) p2 dΩ +

∫
T1

(~ψ2 · n)p1 dω = −
∫
∂ΩD

pD ~ψ2 · ndω, (3)

−
∫
T2

div(~σ2)ϕ2 dΩ =

∫
T2
fϕ2 dΩ, (4)∫

T1
ϕ1Σ(~σ2 · n) dω = 0, (5)

for any (~ψ2, ϕ, ϕ1) ∈ Hdiv(T2)× L2(T2)×H1/2(T1).
The meaning of ~σ2 · n and p1 is illustrated graphically in Fig. 1: the pressure p1 acts as a
Lagrange multiplier to enforce the continuity of ~σ2 · n. Eq. (3) represents the Darcy’s
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constitutive law of the fluid flow in porous media. The third term corresponds to the
pressure at the interfaces of the macro fluxes that acts as a (weak) Dirichlet condition for
the macro domain. Eq. (4) represents the two dimensional conservation law. Eq. (5)
establishes that the sum of all normal fluxes at the interface between macro elements has to
be weakly zero. Furthermore, the Hdiv(Td) approximations can be hybridized one side at a
time.

Figure 1: Hybridizing an interface between two H(div)-elements

2.2 The multiscale hybrid-mixed method

The multiscale hybrid mixed (MHM) method is a technique developed towards the
numerical approximation of partial differential equations whose solution exhibit multiscale
features. Within the MHM framework the normal component of the flux over the macro
elements is approximated by piecewise continuous functions. The extension of these flux
functions in the interior of the macro domains constitute the MHM basis functions.
To illustrate the concept of the extension of boundary fluxes in conjunction with discrete
fracture networks, a square macro domain is used with a fracture as illustrated in Fig. 2.
The permeability of the matrix is unitary and the permeability of the fracture times fracture
width is 100.

Figure 2: A representative MHM domain with fracture
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• Fig. 3 shows the pressure extension functions associated with constant fluxes
associated with front and back sides of the domain. The impact of the embedded
fracture is easily noted. The tip of the fracture, where the fluid convected by the
fracture is injected in the domain, generates a singularity.

Figure 3: Pressure extension associated with constant fluxes injected in S1, S2, and S-Top

• Fig. 4 shows the pressure for a lateral flux and for a unitary flux injected at the
point of the fracture. This is an innovation contributed by this work. The piecewise
polynomial fluxes associated with the sides of the macro domain are augmented with
a point flux at the intersection of the fracture with the boundary of the MHM macro
domain.

Figure 4: Pressure extension associated with constant fluxes injected in S-Lateral and Frac

Observing the function extensions for this domain with one fracture, the capability of the
MHM method for simulating multiscale problems is apparent-the singularity caused by the
fracture point is isolated in the interior of the domain. The fine mesh used to capture the
details of the flow pattern is confined in the interior of the domain. The size of global system
of equations is determined uniquely by the number of boundary fluxes and is, therefore, not
affected by the resolution of the interior mesh.

2.3 MHM and H(div) approximations

In MHM approximations the computational domain is discretized in two levels: a coarse
polygonal mesh which is referred to as macro domains and a fine discretization on micro



Multiscale Hybrid-Mixed Finite Element Method for Flow Simulation 151

elements meshing the interior of each macro domain. This two-level discretization is
illustrated in Fig. 5. The macroscopic fluxes between the macro elements represent the
coarse-grained response of the fluid flow problem. The approximations using fine meshes
at the interior of each macro element capture the detailed behaviour of the fluid flow.

Figure 5: Macro and micro elements for partitioning of Ω

When applying the MHM method using H(div) approximations at the interior of each
macro domain [Duran, Devloo, Gomes et al. (2018)], the MHM method amounts to
applying shape function restraints of the fine scale approximations to the space of the macro
fluxes (see [Díaz Calle, Devloo and Gomes (2015)] for example). As such the formulation
of the MHM method is identical to the mixed finite element formulation. The difference is
that in MHM the flux approximation space is partitioned between macro fluxes associated
with the boundary of the macro domaines and internal fluxes and pressures associated with
the interior.

3 Coupling fractures with surrounding porous media
Our work is based on the DFM formulation, which represents fractures as simplified (n−
1)-dimensional entities in an n-dimensional domain. As a result, fractures distributed in
2D space will be discretized in 1D form. Fig. 6 shows a porous rock with one fracture
to illustrate the idea of DFM. The matrix domain is represented by Ωm, and the fracture
domain by Ωf . The assumption of DFM is that all variables remain constant in the cross
direction of the fractures. Therefore, the only difference between the single-porosity model
and DFM is the integral computation for the fracture domain. In DFM, the fracture aperture
can be taken as a factor in front of the 1D integral to simplify the problem considerably.

3.1 Modeling fluid flow in a discrete fracture network

The fluid flow in the fractures is modeled using a mixed approximation. This formulation
is based on previous work of the authors published in [Castro, Devloo, Farias et al. (2016)].
The fluid flow in a single fracture can be modeled as: Find (~σ1, p1) ∈ Hdiv(T1) × L2(T1)
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Figure 6: Schematic representation of DFM (modified from Karimi-Fard et al. [Karimi-
Fard and Firoozabadi (2001)])

such that∫
T1

~ψ1 ·K−1
1 ~σ1dΩ−

∫
T1

div(~ψ1) p1dΩ = 0, (6)

−
∫
T1

ϕ1div(~σ1)dΩ = 0. (7)

When fractures intersect, the conservation of mass states that the sum of the normal fluxes at
the intersection should sum to zero. The conservation at the intersection is imposed by the
introduction of a Lagrange multiplier which has the physical quantity of the pressure at the
intersection. The statement then becomes: Find (~σ1, p1, p0) ∈ Hdiv(T1)×L2(T1)×L2(T0)
such that∫
T1

~ψ1 ·K−1
1 ~σ1dΩ−

∫
T1

div(~ψ1) p1dΩ +

∫
T0

(~ψ1 · n) p0dω = 0, (8)

−
∫
T1

ϕ1 div(~σ1)dΩ = 0, (9)∫
T0

ϕ0 Σ(~σ1 · n)dω = 0. (10)

Eq. (8) expresses the constitutive law of one-dimensional fluid flow in the fracture. p0

represents the pressure at the fracture intersections. Eq. (10) expresses the conservation of
mass at the fracture intersection. The flow in intersecting fractures is illustrated in Fig. 7:
the red squares illustrate intersection points where 2, 3, or 4 fractures meet.

3.2 Coupling flow in porous media and discrete fracture network

If there is fluid exchange between the two dimensional fluid flow and the fracture, the
conservation of mass requires that the fluid flow that leaves the two dimensional domain
enters as a source term for the one dimensional conservation law. Reciprocally, the pressure
of the fluid in the fracture acts as a pressure boundary condition for the two dimensional
matrix fluid flow. The simulation spaces that will interact are listed as follows:
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Figure 7: Illustration of 1D fluxes in a two dimensional domain

• two dimensional fluxes ~σ2 and weight functions ~ψ2,

• two dimensional pressures p2 and weight functions ϕ2,

• one dimensional pressures p1 and weight, functions ϕ1,

• one dimensional fluxes ~σ1 and weight functions ~ψ1,

• zero dimensional pressures p0 and corresponding weight functions ϕ0.

In turn, we can now write down the issuing variational statement as∫
T2

~ψ2 ·K−1
2 ~σ2dT2 −

∫
T2

div(~ψ2) p2dT2 +

∫
T1

(~ψ2 · n)p1dT1 = −
∫
∂ΩD

(~ψ2 · n)pD dT1,

(11)

−
∫
T2
ϕ2 div(~σ2)dT2 =

∫
T2
ϕ2f dT2, (12)∫

T1

~ψ1 ·K−1
1 ~σ1dT1 −

∫
T2

div(~ψ1) p1dT1 +

∫
T0

(~ψ1 · n) p0 dT0 =

∫
∂ΩD0

~ψ1pD0
dT0, (13)

−
∫
T1
ϕ1div(~σ1)dT1 +

∫
T1
ϕ1Σ(~σ2 · n)dT1 = 0, (14)∫

T0
ϕ0 Σ(~σ1 · n)dT0 = 0. (15)

Each equation in the above system corresponds to either a physical conservation law or a
constitutive relation:

1. The first equation implements the constitutive law in two dimension indicating that
the pressures in the fractures act as pressure boundary conditions.

2. The second equation represents the mass conservation in two dimension.
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3. The third equation implements the constitutive law in the fractures where the
pressures at the end of the fractures (zero dimensional pressures) act as pressure
boundary conditions.

4. The fourth equation implements mass conservation in the fracture where the normal
fluxes of the two dimensional elements act as external sources.

5. The fifth equation represents mass conservation at the points where multiple
fractures intersect. More than two subdomains can be connected through an interface
(hence the generic Σ). This is the case when fluxes along one-dimensional manifolds
in the computational domain come together. For example, Fig. 7 shows seven line
segments linked together by three point-wise pressures.

The system of Eqs. (11)-(15) looks more complicated than it actually is. For simplicity, we
may write these equations in the following saddle-point form:

~σ2 p2 ~σ1 p1 p0 RHS
~ψ2 t11 t12 0 t14 0 r1

ϕ2 t21 0 0 0 0 r2

~ψ1 0 0 t33 t34 t35 r3

ϕ1 t41 0 t43 0 0 0
ϕ0 0 0 t53 0 0 0

Here we denote tij the j-th term of equation i (index starting from 1) then the
correspondence between the integrals and NeoPZ integrals are

• t11, t12, t21, r2 are computed by a regular two dimensional H(div) element;

• t33, t34, t43, r1 are computed by a one dimensional H(div) element;

• t14, t41 are computed by a one dimensional interface element which lies between the
two dimensional H(div) element and the one dimensional H(div) element;

• r3 is computed by a one dimensional element associated with a Dirichlet boundary
condition;

• t35, t53 are computed by an interface element between the one dimensional H(div)
elements and point elements at the intersection of fractures.

It is worthy to observe that static condensation can be applied at different levels to reduce
the size of the global system of equations:

• For each micro element, the internal fluxes and all but one pressure equation can be
condensed on the boundary fluxes of the element.
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• For each macro element, all internal fluxes and all but one pressure equation can be
condensed on the boundary fluxes of the macro domain. The flux in the fractures
where they intersect with boundaries of the macro domain can not be condensed.

Hence the global system of equations corresponds to the following variables:

• the macro fluxes,

• average pressure of each macro domain,

• zero dimensional fluxes at the intersections of the fractures with the macro domain
boundaries (one equation for each intersection).

This means that, after static condensation, we obtain a much smaller global linear system
to solve; see the numerical comparison in the next section. Comparing to the MHM
approximations without fracture flow, the global system of equations is incremented by
one equation for each intersecting fracture.

4 Numerical experiments
In this section, we perform a few preliminary numerical experiments in order to validate
the proposed numerical method, which shall be denoted as MHDFM for convenience.
Simulations are run on a personal computer. For comparison, we use a commercial
software to obtain DFM and full-resolution direct simulation results. We always set the
permeabilities of fractures and surrounding porous medium to be K1 = Kf = 105 and
K2 = Kp = 1, respectively.
The proposed algorithm is implemented using the object oriented framework for
development of finite element algorithms NeoPZ. The NeoPZ environment implements
one, two and three dimensional hp-adaptive finite element approximations. Modules are
dedicated to the geometric approximation, the definition of the approximation space and
the definition of the differential equation to be approximated. In this work we combine one
and two dimensional H(div) approximation spaces through the use of interface elements.

4.1 Orthogonal fractures

A homogeneous 2D problem with two orthogonal fractures is considered (see Fig. 8(a)),
where a “+”-shaped fracture network located at the center of the quadratic domain. No-flow
boundary conditions are applied at the top and bottom, while the pressure values are set to
p = 1 and p = 0 at the left and right boundaries. According to the length scales specified
in Fig. 8(a), the fractures with aperture a = 0.04 are fully resolved using at least 225× 225
grid cells (fully resolved direct simulation). For the DFM method, an unstructured grid
is employed; see Fig. 8(b). For the MHDFM method, a 13 × 13 coarse grid is used; see
Fig. 8(c).
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(a) Fracture configuration (b) DFM mesh (c) MHDFM mesh

(d) DFM solution (e) MHDFM solution

Figure 8: An example with two orthogonal fractures

Figs. 8(d) and 8(e) illustrate the solutions from the DFM and MHDFM approaches,
respectively. The colors in our simulation result look different than the DFM result
because we cannot match the color mapping used in the commercial software exactly.
But the numerical values are very close to each other. In order to make a quantitative
comparison, we give Fig. 9 that represents the pressure along the horizontal center line
of the domain. The seemingly horizontal line segment with little pressure loss in the plot
matches with the fracture domain from (2, 4.5) to (7, 4.5) due to the fracture permeability
is very large compared with the matrix permeability. The pressure obtained by MHDFM
shows excellent agreement with DFM and direct simulation results. Note that the role of
the vertical fracture is less important than that of the horizontal line one. The results from
MHDFM, DFM, and direct simulation are close; see Tab. 1. Compared to the fully resolved
fine-scale solution and conventional DFM result, the total flow rate computed by MHDFM
is almost identical with a discrepancy less than 2.56× 10−3.

Table 1: Computational flow rate comparison
Method MHDFM DFM Fine-Scale

Flow Rate 1.2843 1.2876 1.2892
Number of DOFs 841 2501 50625

4.2 Rotated orthogonal fractures

This example also contains two orthogonal fractures, which are located at (2, 7; 7, 2) and
(7, 7; 2, 2) respectively. The numerical total flow rates computed by DFM and MHDFM
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Figure 9: Comparison of pressure on the horizontal center line (y = 4.5)

Table 2: Fracture (end-points) distribution
Fracture (x1, y1) (x2, y2)

1 (1, 2) (4.5, 2)
2 (3, 3.5) (3, 0.5)
3 (4.5, 7.5) (4.5, 4.5)
4 (1.5, 6) (6, 6)
5 (7.5, 7.5) (7.5, 4.5)
6 (5.5, 1) (7.5, 3)

are 1.6122 and 1.6081, respectively. The relative difference is 2.54× 10−3.

4.3 Nonorthogonal fractures

Another homogeneous 2D case with two nonorthogonal intersecting fractures (see Fig. 11)
is also tested. The boundary condition and other parameters are the same as in the first
case and the only difference is the fracture distribution. The two fractures are respectively
located at (3, 8; 6, 2) and (5, 7; 2, 3). The total flow rates computed by DFM and MHDFM
are 1.2724 and 1.2661, respectively. The relative difference is 4.95× 10−3.

4.4 Disjoint fracture networks

We summarize the size of global linear systems in different methods in Tab. 3. Except the
first example, it is difficult for us to obtain computational meshes for the direct simulation
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(a) Fracture configuration (b) DFM mesh (c) MHDFM mesh

(d) DFM solution (e) MHDFM solution

Figure 10: Another example with two orthogonal fractures

(a) Fracture configuration (b) DFM mesh (c) MHDFM mesh

(d) DFM solution (e) MHDFM solution

Figure 11: A DFM example with two nonorthogonal fractures

method in order to resolve the fracture fully. We can see that we are able to reduce the
size of global systems to solve by using the proposed multiscale hybrid-mixed method.
Moreover, we make a few comments on the method:
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(a) Fracture configuration (b) DFM mesh (c) MHDFM mesh

(d) DFM solution (e) MHDFM solution

Figure 12: A more complicated example of fracture network

• In MHDFM, we use H(div) approximation for the flux and pressure variables. This
requires more degree of freedom on each element, but gives better accuracy;

• For convenience and load balance, we use uniform finer meshes in the MHDFM
simulation. This can be replaced by locally refined meshes to reduce computational
cost;

• In this section, we focus on validation of the method and did not pay attention to the
actual computational efficiency or parallelization of MHDFM. These aspects are the
potential advantages of MHDFM and deserve further studies in the future.

Table 3: Numbers of degrees of freedom for MHDFM, DFM, and direct method
Test Example 4.1 4.2 4.3 4.4
MHDFM before condensation 48065 47577 55057 55794
MHDFM after condensation 841 809 865 883
DFM 2501 2585 2517 2933
Direct Method 50625 — — —

5 Conclusions
In this paper, a discrete fracture model is approximated using mixed finite elements.
The fluid flow in the fracture is modeled using lower dimensional elements applied to a
Laplace-Beltrami operator. Fracture intersections are modeled using a Lagrange multiplier
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enforcing local conservation. The pressure in the fracture acts as a boundary condition
for the two dimensional flow. The Multiscale Hybrid Method is applied to separate the
local features of the fracture-reservoir coupling from the global features of fluid flow.
The resulting numerical model leads to a very reduced global system of equations. In
turn we are able to reduce computational cost to an acceptable level. Results of the
proposed numerical model are compared with the standard DFM simulation and the fine-
scale simulations using finite volume techniques. In all cases the difference in flow rate are
less than 1%.
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