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Abstract: Strain hardening and strain rate play an important role in dynamic deformation 

and failure problems such as high-velocity impact cases. In this paper, a non-ordinary 

state-based peridynamic model for failure and damage of concrete materials subjected to 

impacting condition is proposed, taking the advantages of both damage model and non-

local peridynamic method. The Holmquist-Johnson-Cook (HJC) model describing the 

mechanical character and damage of concrete materials under large strain, high strain rate 

and high hydrostatic pressure was reformulated in the framework of non-ordinary state-

based peridynamic theory, and the corresponding numerical approach was developed. 

The proposed model and numerical approach were validated through simulating typical 

impacting examples and comparing the results with available experimental observations 

and results in literature. 
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1 Introduction 

Concrete is a kind of widely used material in protective engineering and infrastructures, 

which attracts interest of researchers from nuclear industry and fortification installations 

[Corbett, Reid and Johnson (1996); Børvik, Langseth, Hopperstad et al. (2002)]. Since 

the progressive failure of internal defects will lead to the weakness of concrete structures 

and probably will bring a sudden destruction without visible damage, it has become a 

long-standing and rough challenge for researchers to study the mechanism of damage 

evolution, crack nucleation and propagation in concrete materials and structures. In order 

to ensure the structural safety, especially under impact and fatigue loadings, one should 

accurately describe the destruction mechanism of concrete materials and structures. 

Many researches on the mechanical behavior of concrete under dynamic condition have 

been conducted and some simplified analytical models are determined by experiments 

[Kennedy (1976); Ben-Dor, Dubinsky and Elperin (2005); Li, Reid, Wen et al. (2005)]. 

On the other hand, numerical simulations with different constitutive models of concrete 

were used in penetration and impact problems [Teng, Chu, Chang et al. (2005); Leppänen 

(2006); Tai and Tang (2006)]. In addition, different constitutive models for concrete 

under dynamic loadings were investigated in Bićanić et al. [Bićanić and Zienkiewicz 
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(2010); Liu and Ning (2008)]. However, the development of reliable and robust models 

describing the failure of concrete, especially in impacting cases, is still challenging. 

Various efforts have been made to study the failure in concrete, but the failure 

mechanism of concrete materials and structures has not been fully understood yet. To 

describe and simulate the discontinuous problem under the framework of classical 

continuous mechanics theory, the difficulty derives from the mathematical formulation 

consisting of partial differential equations. These equations cannot be applied directly 

across the discontinuities resulting from the material failure, since the partial derivatives do 

not exist there. To deal with this issue, various techniques have been presented. The 

expansion of finite element method (FEM) has made great progress in recent years [Kwon 

and Spacone (2002)]. The cohesive zone model (CZM) introduced by Barenblatt 

[Barenblatt (1959)] brought a significant breakthrough in the computational fracture 

mechanics. In addition, the concept of the extended finite element method (XFEM) has 

been introduced to model the crack evolution in the framework of finite element method 

without remeshing [Belytschko and Black (1999); Moës, Nicolas, Dolbow et al. (2015)]. 

The cracks could nucleate and propagate through the surface of a finite element, removing 

the limitations of the CZM that crack can only propagates along the element boundaries. 

Nevertheless, employing these techniques for complicated discontinuous problem still face 

the unsastifactory simulation accuracy and efficiency. This motivates a reformulation of 

classical solid mechanics, which is referred to as Peridynamics [Silling (2000)]. 

As opposed to traditional approaches, the peridynamic theory reformulates the integral-

typed equations, instead of classical partial differential equations. In the peridynamic 

theory, material points included in a continuous body interact with each other in a 

neighboring field. The regular bond-based peridynamic models [Silling and Askari 

(2005)] were widely employed in early times but there are some limitations when using 

the bond-based peridyamic models [Silling, Epton, Weckner et al. (2007); Silling (2010); 

Warren, Silling, Askari et al. (2009)]. To avoid the limitations of bond-based 

peridynamic model, Gerstle et al. [Gerstle, Sau and Silling (2007); Gerstle, Sau and 

Sakhavand (2009)] proposed the so-called micro-polar peridynamic models by 

considering the moments of bond. Moreover, a generalized formulation of peridynamic 

theory was described by Silling et al. [Silling, Epton, Weckner et al. (2007)], which was 

referred to as state-based peridynamic theory, where individual material particle depends 

collectively on its interactions with neighboring particles through state variables within 

the horizon. There are two different types of state-based peridynamic models, ordinary 

state-based peridynamic model and non-ordinary state-based peridynamic model. The 

distinction of two state-based peridynamic models is the direction of bond forces. In 

ordinary state-based peridynamics, bond forces are parallel to the bond. While in non-

ordinary state-based peridynamics, there is optional direction of bond forces. Classical 

constitutive models can be incorporated into the non-ordinary state-based peridynamic 

model with an approximate nonlocal deformation gradient, which expands the scope of 

application of the non-ordinary state-based peridynamic model greatly.  

The non-ordinary state-based peridynamic theory has been applied successfully to several 

aspects for fracture and damage problems. For instance, the non-ordinary state-based 

peridynamic theory was employed by Warren et al. [Warren, Silling, Askari et al. (2009)] 
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to the solid mechanics problems under dynamic condition. The viscoplasticity model with 

non-ordinary state-based peridynamic theory was proposed by Foster et al. [Foster, 

Silling and Chen (2010); Foster, Silling and Chen (2011)]. The stress-based failure 

criterion was implemented into the non-ordinary state-based peridynamic theory by Zhou 

et al. [Zhou, Wang and Xu (2016)] to simulate the initiation, propagation and coalescence 

process of cracks under quasi-static and dynamic loads. Oterkus et al. [Oterkus, Madenci 

and Agwai (2014)] studied heat conduction problem using state-based peridynamic 

theory and employed the state-based peridynamics in the formulation for thermoplastic 

fracture [Amani, Oterkus, Areias et al. (2016)]. Lai et al. [Lai, Liu, Li et al. (2018)] 

formulated the fracture of quasi-brittle materials under dynamic condition. Fan et al. [Fan, 

Bergel and Li (2016); Fan and Li (2017)] performed soil fragmentation simulation under 

blast loads of buried explosive using hybrid PD-SPH method, and Yaghoob et al. 

[Yaghoobi and Mi (2017)] developed numerical methods in order to improve the stability 

of peridyamic calculation by suppressing zero-energy mode.  

For the damage of concrete materials and structures, Kilic et al. [Kilic and Madenci 

(2009)] analyzed the influence of interface size and boundary conditions on the critical 

destabilization load for concrete target. Huang et al. [Huang, Lu and Qiao (2015)] 

proposed a new method for force loading and a more accurate constitutive model by 

introducing a quasi-static solution algorithm for local damping and unbalanced force 

convergence criteria. Gerstle et al. [Gerstle, Sau and Silling (2005); Gerstle, Sau and 

Silling (2007)] simulated the progressive failure process of concrete and reinforced 

concrete structures under tension, compression, shear and combined loading conditions.  

As to dynamic deformation and simulation of concrete, the effects of strain hardening and 

strain rate play an important role. Nevertheless, these factors have seldom been taken into 

account in previous peridynamic simulations. In this paper, the specific purpose is to 

implement a traditional constitutive model into the non-ordinary state-based 

peridynamics framework, thus making use of its advantages in simulating impact 

problems of concrete, considering the effect of strain hardening and strain rate. To 

accurately characterize the damage progress of concrete, the Holmquist-Johnson-Cook 

(HJC) model [Holmquist, Johnson and Cook (1993); Johnson, Beissel, Holmquist et al. 

(1998)] was employed in the present work. The HJC model shows advantages on 

concrete damage description and large-scale computations, and has been successfully 

implemented into LS-DYNA, a general-purpose finite element program developed by 

LSTC (Livermore Software Technology Corporation), for penetration simulations before. 

The remainder of this paper is organized as following. In Section 2 the framework of HJC 

constitutive model is introduced. The brief concept of the peridynamics and the non-

ordinary state-based peridynamic theory are presented in Section 3. Section 4 presents the 

numerical approaches including the discretization of the equation of motion, short range 

force and the failure criterion. The proposed model and approach are validated in Section 

5 with two benchmark numerical examples. Finally, some concluding remarks are drawn 

in Section 6. 
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2 The HJC model 

In the HJC constitutive model, the normalized equivalent stress is determined by the 

constitutive relation, as shown in Fig. 1. 

( ) ( )* * *= 1 1 lnNσ A D BP C ε − + +     (1) 

in which *σ is the normalized equivalent stress, *= / cσ σ f .  and cf  is the actual 

equivalent stress and the uniaxial compressive strength respectively. *P  is the normalized 

pressure, and P  is the hydrostatic pressure, * / cP P f= . *

0/ε ε ε=  is the dimensionless 

strain rate, in which ε  is the actual strain rate and -5 1

0 =10 sε −  is the reference strain rate. In 

addition,  A , B , C  and N  are material parameters, which  are determined by test data. A  is 

the cohesive parameter, B  is the pressure hardening coefficient, C is the strain-rate 

sensitivity coefficient and N is the pressure hardening exponent. Material degradation is 

described by the damage variable D , leading to reduction of the cohesive strength. 

 

Figure 1: The pressure strength response of the HJC model 

Fig. 2 shows the damage response of HJC model, which is defined as the accumulation of 

equivalent plastic strain increment (caused by plastic shear deformation) and equivalent 

plastic volumetric strain increment (resulting from plastic crushing of the air voids in the 

concrete), and is expressed as: 

( ) 2* *

1=

P P

f f

p p

D
f f

p p

ε μ
D

ε μ

ε μ D P T EFMIN

 + 
=

+

+ + 


   (2) 

where 
Pε and Pμ are the effective plastic strain increment and plastic volumetric strain 

during a cycle of integration, respectively. 
f f

p pε μ+ is the plastic strain until concrete 

fractures under a constant pressure, and EFMIN is a value of the minimum plastic strain 

causing the fracture of the material, which the value of 0.01 is chosen in our work. 1D and 

2D  represent the damage constants. 1D  is the date from unconfined compression test, 

file:///F:/YoudaoDict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///F:/YoudaoDict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///F:/YoudaoDict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///F:/YoudaoDict/6.3.69.8341/resultui/frame/javascript:void(0);
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while 2D  is chosen to be 1.0, which assumes that plastic fracture strain increases linearly 

with increasing pressure. 

 

Figure 2: The damage response of the HJC model 

The pressure-volume relation of the HJC model is separated into three different phases, 

as shown in Fig. 3. The first phase (OA) is linear elastic from the negative pressure 

( )1T D−  to the crush pressure crushP , where the material undergoes reversible, elastic 

deformation, and can be expressed as 

,e crushP K μ P P=     (3) 

 

Figure 3: Pressure-volume response of the HJC model 

where μ is the volumetric strain, calculated by 0/μ ρ ρ=
. 
ρ  and 0ρ  are the current and 

initial densities respectively. /crush crushK P c=  is the elastic bulk modulus.  

The second phase (AB) is a transitional region, where the air voids in concrete are 

gradually compressed and the plastic volumetric strain increases. The fracture occurs 

until the plastic volumetric strain reaches the point ( lockμ , lockP ).  

( )( )
,

lock crush lock

lock crush lock

lock crush

P P μ μ
P P P P P

μ μ

− −
= +  

−
  (4) 



 

 

566  Copyright © 2019 Tech Science Press           CMES, vol.118, no.3, pp.561-581, 2019 

where lockP  is the compacting pressure, and lockμ  is the locking volumetric strain. 

In the third phase (BC), all air voids in concrete are crushed out of it. Concrete is locked 

and cannot be compressed any further in either plastic deformation or void collapse. 

Therefore, this region can be assumed completely non-linear elastic. 

2 3

1 2 3 , lockP k μ k μ k μ P P= + +     (5) 

where ( ) ( )/ 1lock lockμ μ μ μ= − +  is the modified volumetric strain, 
1k  , 2k  and 3k  are the 

material constants. 

3 Framework of peridynamic theory 

3.1 Basic theory 

A brief description of peridynamics by Silling [Silling (2000)] is presented below. The 

peridynamics describes the dynamics process of a body from its reference configuration 

to the current configuration. A schematic of the body is shown in Fig. 4. In the 

peridynamics, the motion equation for any material point x  in the reference configuration 

at time t  ( 0t  ) is given as 

( ) ( ) ( ), , ,t t t = +
u

u x L x b x    (6)  

where  and b  are the mass density and external applied body force density respectively, 

( ),tu x   is the displacement field, the initial conditions ( ) ( )0,0 =u x u x , ( ) ( )0,0 =u x u x . 

The term ( ),tuL x is a function of displacement, which represents the internal force 

density (per unit volume) that is exerted on x by other body-points [Silling and Lehoucq 

(2008)]. In the peridynamic theory, the motion of the body is presented by considering 

the interaction of any material point, x  , with the other material points, x , within a 

horizon 
xH . The size of horizon of a given point  x  is finite, defined as 

 0xH =  − x x , where  0  . The relative position vector  between points x  and 

x  is referred to as the bond, which is denoted by ξ , and is defined as = −ξ x x . The 

bond vector ξ  gets deformed under the deformation and the position of point in the 

deformed configuration is denoted by ( ) ( ), ,t t= +y x x u x . 

 

Figure 4:  Schematic representation of material particles in the reference and current 

configuration 
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In the bond-based peridynamic theory, a pair-wise force function f is used to describe the 

interaction of material points within a finite distance  . ( ),tuL x in Eq. (6) can be 

expressed as: 

( ) ( ) ( )( )

( )

, , , , , ,

,

x

x

H

H

t t t dV

dV





 =

=





u x

x

L x f x x u x u x

f ξ

   (7) 

where   is the relative displacement of two interacting material points x and x ,  which is 

defined as: 

( ) ( ), ,t t = −u x u x    (8) 

However, in the state-based peridynamic theory, the deformation of the bond is described 

by the deformation vector state Y . 

  ( ) ( ), , ,t t t= + −Y x ξ y x ξ y x    (9) 

The equation of motion in state-based peridynamics can be written as: 

( )      ( ), , , ,
xH

t t t dV t
  = − − − + xu x T x x x T x x x b x   (10) 

Where  ,tT x is the force vector state representing the relationship between material 

points at time t . To make the notation more concise, (6) will be abbreviated as:  

 
xH

dV 
  = − − − + xu T x x T x x b    (11) 

where 

   , ,t t = =T T x T T x，    (12) 

3.2 Constitutive model of non-ordinary state-based peridynamics 

To calculate the force-vector state T  mentioned above, the non-local deformation gradient 

tensor F of point x  is calculated firstly as the following expression 

1

x[ , ] ( )( > )
xH

t ω dV −

=  F Y Kx ξ ξ ξ    (13) 

Where ( )ω ξ  is the influence function of the bond and K  is the non-local shape tensor 

defined by  

x[ , ] ( )( )
xH

t ω dV = K x ξ ξ ξ    (14) 

It should be noted that the nonlocal shape tensor K  is a symmetric and positive definite 

second order tensor [Silling, Epton, Weckner et al. (2007)]. 

The time derivative of F  is defined by 
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1( )( )
xH

v dV −

= F Kxξ ξ    (15) 

And then, the velocity gradient tensor is given by 

1−=L FF    (16) 

which can be decomposed into symmetric and skew-symmetric parts. The further one is 

referred to as the rate of deformation tensor D  and is shown as follows: 

1
( )

2

T=D L L+    (17) 

If the polar decomposition theory is applied to F , it can be expressed by 

F = VR = RU    (18) 

where R  is an orthogonal tensor proposed by Flanagan et al. [Flanagan and Taylor 

(1987)], representing a rigid-body rotation. And then, V  and U  are the left and right 

stretch tensors respectively. The velocity gradient tensor can be defined in another way 

by substituting the right polar decomposition from Eq. (18) into Eq. (16)  

T -1 T=L RR + RUU R    (19) 

The term T
RR  in Eq. (19) is skew symmetric and describes a rate of rotation. And for 

completeness, the unrotated rate of deformation tensor d  will be employed. 

1
=

2
  

-1 -1 T
d UU + U U R DRt t=

   (20) 

where 
tR describes the rigid-body rotation at current time t , calculated by the 

incremental formulation as follow: 

( ) ( ) 2

2

sin 1 cos
t t t

t t
−

  −   
= + − 

  
R I R    (21) 

where 2 = i iωω  and ij ikj ke ω = . ikje  is the permutation tensor, and the axial vector ω  is 

given as 

( )
1

tr V V
−

= + −  w I zω    (22) 

where 
1

w
2

i ijk jke W= − , i ikj jm mkz e D V= , and 
t t t tt− = +V V V  is the left stretch tensor. 

The material is firstly assumed to be elastic, then elastic strain increment tensor and 

deviatoric strain increment tensor are calculated as 

1
,

3

devt =   =  − d Ie e e e    (23) 

The trial unrotated Cauchy stress at time t is defined as 

( )trial dev2t t t κtr μ−= +  + I eτ τ e    (24) 
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where κ  and μ  are the Lame constants.  

According to the von-Mises plasticity theory, we can get the trial deviatoric stress tensor 

and the von-Mises yield stress as follows: 

( )dev rial trial1

3

t

t ttr= − IS τ τ    (25) 

dev dev dev dev3
, =

2
VM ij ijS S S= S S    (26) 

If *VM cS σ f  , the material is elastic and the unrotated Cauchy stress tensor is equal to 

the trial unrotated Cauchy stress tensor. Otherwise, the stress state of the material is 

beyond the yield surface, indicating that the von-Mises yield stress needs to be updated 

from the HJC model. For the HJC model, the equivalent plastic strain increment tensor 

can be required by Eq. (27): 

( )/2 /2

1 2
, 0

2 3
t t t t t te λ f σ ε S

μ
− − −

 
 −  − − = 

 
  (27) 

Then, the rotated Cauchy stress tensor σ  is based on the unrotated Cauchy stress as follow 

T= R Rσ τ    (28) 

And the first Piola-Kirchhoff stress tensor P is calculated as 

( ) TJ −=P Fσ    

Then, the force vector state of the bond ξ  can be expressed as 

1ξ ω ξ ξ−=T PK    (29) 

4 Numerical implementation  

4.1 Discretization 

To solve the integral equation of peridynamics, the governing equations of motion Eq. 

(10) can be numerically discretized as follows: 

  ( )i , , ,n n n n n n n n n n n

i p i p i p p i

p

t t V t    = − − − +   u T x x x T x x x b x   (30) 

where n  is the number of time steps, 
3

=pV x  stands for the involved volume of particle 

px , i

n
u  and  1n+

u  are the acceleration of point ix  at time 
nt  and 

1nt +
 respectively.  

The displacement of point ix at time 
1nt +
 can be obtained from the equation in Eqs. (31)-

(32), which is based on an explicit Verlet-Velocity difference formula [Parks, Seleson, 

Plimpton et al. (2011)]. 

( ) ( )
11

2 2

nn n

i i

t t
u u

ρ ρ

++  
= + +u uL + b L + b    (31) 
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( )
( )

2

1

2

nn n n

i i i

t
u u u t

ρ

+


= +  + uL + b    (32) 

where t  is the time step, and in order to obtain a stable numerical result, the time step 

t  should be satisfied the following inequation [Warren, Silling, Askari et al. (2009)]. 

δ
t

c
 


   (33) 

where δ  denotes the size of horizon, ( )2 /c    = +  represents the dilatational wave 

speed,   and   are the Lame’s elastic constants of the material.  

4.2 Short range force 

When simulating the movement of the material point in the target substance, a short-

range force model [Silling and Askari (2005)] is employed to prevent target material 

points from penetrating each other, as shown in Fig. 5. 

   

Figure 5: Contact model with short range force 

The short-range force between material points can be expressed by 

( ), min{0, ( )}
p ish

p i p i pi

p i

c
d

δ
= −

s

y - y
f y y y - y

y - y
  (34) 

where y  is the position of different material point.  1.5shc c= , c   is the micro-modulus of 

the material, ( ) ( )412E /c πδ= . pid  is the distance between material point p  and i , and it 

can be defined by 

 min 0.9 , 1.35d = − x x x    (35) 

4.3 Failure criterion 

In this paper, damage is given as the ratio shown in Eq. (36), which is relevant to the 

amount of broken bonds and the total amount of bonds in the horizon as: 
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( )
( ), ,

, 1 x

x

x
H

x
H

μ x ξ t dV
D x t

dV





= −



   (36) 

where ( ), ,μ x ξ t  is a breakage factor of the bond 

( )
( ) 01 , , 0

, ,
0

s t ξ s t t
μ x ξ t

else

   
= 


   (37) 

where s  denotes the stretch of a bond, 
η ξ ξ

s
ξ

+ −
= , and 0s  stands for the critical stretch 

or failure of the bond, 0
0

5

9

G
s

kδ
= , where 0G  is energy release rate [Silling and Askari 

(2005)]. 

5 Numerical results 

In this section, two benchmark examples are considered to validate and demonstrate the 

proposed peridynamic model. In the first example, the fracture of a single-edge notched, 

three-point-bending concrete beam under impact loading is analyzed. The experimental 

results were reported by John et al. [John and Shah (1986)] and John [John (1988)]. In the 

second example, the penetration experiment conducted by Hanchak et al. [Hanchak, 

Forrestal, Young et al. (1992)] is conducted. The results of the proposed peridynamic 

model are compared with available experimental results. 

The material parameters for concrete by using the HJC model are listed in Tab. 1. For the 

second benchmark example, the material parameters for steel bars in the concrete and 

steel projectiles are: Young’s modulus = 206 GpaE , density 3= 7856.3kg/mρ , Poisson's 

ratio 0.28ν = , and Yield Stress 345 Mpayσ = (the projectile is considered as a rigid body 

with an ultrahigh elastic modulus, and Yield Stress 1720 Mpayσ = ) [Hanchak, Forrestal, 

Young et al. (1992)].  

Table 1: Material parameters for concrete using HJC constitutive model 

( )3

0 kg/m  ( )MpaG    A  B  N  C  

2440 14.86 0.2 0.79 1.6 0.61 0.007 

maxS  ( )Mpacf  ( )Mpatf  ( )-1s  
1D  2D  ( )f

p min
  

7 48 4 1x10-5 0.04 1 0.01 

( )crush MpaP  crush  ( )lock MpaP  lock  ( )1 MpaK  ( )2 MpaK  ( )3 MpaK  

16 0.001 800 0.1 85 -171 208 
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5.1 Crack propagation in a three-point-bending specimen under dynamic condition 

In the three-point-bending impact test, the concrete specimen with an initial notch is 

subjected to impact loading (see Fig. 6). The experiment reported the crack propagation 

paths for several test specimens with the offset notch at different locations, and 

Belytschko et al. predicted the crack propagation angles and time data by element-free 

Galerkin (EFG) method [Belytschko, Organ and Gerlach (2000)]. The location of the 

notch in the concrete specimen is described by a normalized parameter γ , which is the 

ratio of the distance from the notch to the midspan to the distance from one support to the 

midspan. And the height of the notch is decided by a parameter β , which is the ratio 

between notch height and specimen height. 

The following parameters are same as the experiments: the distance from the midspan to 

the support is 101 mm, the distance from the support to the edge is 13 mm, the height of 

the specimen is 76 mm, and the thickness of the specimen is 25.4 mm. To effectively 

decrease the inertial oscillations, the impact velocity is increased linearly to the 

maximum value 1v and then held unchanged 

1 1 1

1 1

/
( )

v t t t t
v t

v t t
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l

γl

βh
v

h

13 mm 25.4 mm

 

Figure 6: Concrete specimen with offset notch under dynamic condition 

In the numerical model, the specimen is discretized to 139188 material points with a 

spacing of 1 mm. The time step is adopted as 6.0×10-7 s and the horizon size is =3 mm .  

Fig. 7 shows the crack propagation path of the three-point-bending specimen with  γ  = 

0.5. We can see that the crack firstly initiates from the notch tip, then curves gradually 

toward the vertical midline of the three-point-bending specimen (the loading point). 

Eventually, it intersects with the upper edge. The initial direction of the fracture is 21.84°

and the fracture starts propagating at 640 s .  
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(a) 640 s                                                  (b) 704 s  

         

(c) 736 s                                               (d) 768 s  

       

(e) 864 s                                               (f) 960 s  

Figure 7: Damage maps of the crack in the three-point-bending specimen 

Fig. 8 shows the crack paths of the specimen with γ = 0.0 and 0.72 respectively. To verify 

the proposed peridynamic model, experimental observations and results by using LEFM 

method are presented for comparison (see Fig. 9). It shows that the crack propagation 

paths and initial propagation directions (the angle θ ) predicted by the proposed model are 

in compared well with the experimental results and LEFM prediction. 

    

(a) =0.0γ                                            (b) =0.72γ  

Figure 8: Crack propagation paths of the three-point-bending specimen 
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Figure 9: Crack propagation paths of the three-point-bending specimen (experimental 

and LEFM results [Belytschko, Organ and Gerlach (2000)]) 

To determine the relationship between crack propagation path and different location of 

notch, the results of cracking angle and crack initiation time with different γ  are listed in 

Tab. 2. It shows that no matter where the pre-existed notch located, all the cracks 

propagate from the notch tip towards the loading point. As the γ increases, the initial 

angle and crack initiation time will increase.  

Table 2: Crack propagation angles and time data from peridynamic simulation 

γ 
The initial  

directions/° 

The initiation  

time/μs 

0 0 480 

0.34 17.21 544 

0.5 21.84 640 

0.67 26.81 736 

0.72 29.84 896 

5.2 Hanchak penetration experiment  

In the Hanchak penetration experiment, a rectangular block of reinforced concrete suffers 

from projectile impact. Fig. 10 and Fig. 11 show the geometry of the target and location 

of the reinforcement. The impact point is not the center of the specimen so as to avoid the 

collision between the projectile and steel bars. For the sake of numerical calculation, the 

models are discretized into particles with the uniform grid spacing 5 mmx = . In the 

numerical model, the specimen is discretized to 570972 material points. The stable time 

step is adopted of 8.0×10-7 s and the horizon size is three times of grid spacing,  

=15 mm . 
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Figure 10: Steel projectile and reinforced concrete target 

 

 

Figure 11: Geometry of the steel reinforced block (mm) 

Fig. 12 shows the post-test photographs of impact and exit surfaces for concrete under a 

nominal striking velocity of 750 m/s in experiment, reflecting the craters caused by 

spallation. The whole impact failure process of the concrete at striking velocity of 750 

m/s during perforation by using the proposed peridynamic method is plotted in Fig. 13 

and Fig. 14, with damage maps of the impact surface and damage maps of the exit 

surface respectively. It shows that the numerical results on the pattern of damage 

distribution agree well with the experimental observations.  
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(a) impact surface                 (b) exit surface 

Figure 12: Post-test surface of the reinforced concrete block at a nominal striking 

velocity of 749 m/s [Hanchak, Forrestal, Young et al. (1992)] 

  

(a) 110 s             (b) 210 s             (c) 340 s               (d) 450 s   

Figure 13: Damage maps on the impacting surface 

 

   

(a)170 s          (b) 220 s               (c) 380  s                                                    (d) 440 s  

Figure 14: Damage maps on the exit surface 

Fig. 15 shows the contours of the von-Mises stress observed from the exit surface of the 

specimen. In the early time, when the stress wave arrives the exit surface, it propagates to 

the edge uniformly, as shown in Figs. 15(a) and (b). As damage accumulates, the non-

uniform propagation of the stress wave can be found in the target (Figs. 15 (c) and 15(d)). 
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(a)70 s             (b)130 s                      (c)160 s           (d) 190 s  

Figure 15: Contour of the von-Mises stress on the exit surface 

Compared to the results with different impacting velocities between 300 m/s and 1100 

m/s in experiment, the failure of the target with six impacting velocities 301 m/s, 381 m/s, 

434 m/s, 606 m/s, 749 m/s, and 1058 m/s were analyzed by using the proposed 

peridynamic model, and the residual velocities are predicted. The residual velocities by 

using the proposed peridynamic approach and experiment results are listed in Fig. 16. It 

shows that the numerical results match well with experimental data, indicating that the 

proposed peridynamic approach is capable of analyzing this kind of impacting problems. 

 

 

Figure 16: Comparison of residual velocities of the projectile with various striking 

velocities between the numerical results and experimental results [Hanchak, Forrestal, 

Young et al. (1992)] 

6 Conclusions 

In this work, a non-ordinary state-based peridynamic model for concrete failure process 

simulation under impact loading is presented by reformulating the HJC constitutive 

model for concrete in continuum mechanics theory. In the proposed model, the strain 

hardening, strain-rate effects, and pressure-dependence is taken into account, to 

characterize the damage and dynamic fracture of concrete under impacting loads.  

Two benchmark problems have been studied to verify the proposed model and approach. 

In the dynamic fracture of a three-point-bending beam, the crack propagation paths of the 

specimen subjected to impact loading were investigated, and crack propagation, 
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orientation and cracking time with offset notches at different locations were analyzed. 

The results show that when the pre-existing notch is closer to edge of the specimen, the 

cracking angle and initiation time will increase. This agrees well with available 

experimental observations and results from other numerical methods. In the Hanchak 

penetration test, the evolution of damage and stress wave in the target at a nominal 

striking velocity of 749 m/s was investigated. The residual velocities of the projectile 

with different impacting velocities were predicted by using the proposed model, and 

which keeps good accordance with experimental results. This indicates the capability of 

the proposed non-ordinary state-based peridynamic model to simulate the deformation, 

damage and fracture of concrete structures subjected to dynamic loads such as impacting.  
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