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Abstract: A direct time integration scheme based on Gauss-Legendre quadrature is 
proposed to solve problems in linear structural dynamics. The proposed method is a one-
parameter non-dissipative scheme. Improved stability, accuracy, and dispersion 
characteristics are achieved using appropriate values of the parameter. The proposed 
scheme has second-order accuracy with and without physical damping. Moreover, its 
stability, accuracy, and dispersion are analyzed. In addition, its performance is 
demonstrated by the two-dimensional scalar wave problem, the single-degree-of-freedom 
problem, two degrees-of-freedom spring system, and beam with boundary constraints. 
The wave propagation problem is solved in the high frequency wave regime to 
demonstrate the advantage of the proposed scheme. When the proposed scheme is 
applied to solve the wave problem, more accurate solutions than those of other methods 
are obtained by using the appropriate value of the parameter. For the single-degree-of-
freedom system, two degrees-of-freedom system, and the time responses of beam, the 
proposed scheme can be used effectively owing to its high accuracy and lower 
computational cost. 
 
Keywords: Structural dynamics, finite elements, direct time integration, Gauss-Legendre 
quadrature, non-dissipative scheme.  

1 Introduction 
In the finite element method, there are various sources of errors [Bathe (1996)], such as 
discretization [Bohinc, Brank and Ibrahimbegovics (2014); Huang and Griffiths (2015); 
Lee and Cangellaris (1992); Mohite and Upadgyay (2015); Payen and Bathe (2012)], 
numerical integration in space [Ham and Bathe (2012); Idesman, Schmidt and Foley 
(2011); Jaśkowiec and Pluciński (2017); Lee and Cangellaris (1992)], evaluation of 
constitutive relations [Lee, Kim, Park et al. (2015); Lee, Chun, Kim et al. (2009); Lee, 
Kim, Park et al. (2016); Park, Lee, Chun et al. (2011); Yoo, Lee, Park et al. (2011)], 
solution of dynamic equilibrium equations [Bathe and Baig (2005); Idesman (2011); 
Kwon and Lee (2017); Newmark (1959); Noh and Bathe (2013); Noh, Ham and Bathe 
(2013); Rougier, Munjiza and John (2004); Wen, Duan, Yan et al. (2017)], solution of 
finite element equations by iteration [Bogaers, Kok, Reddy et al. (2016); Golub and van 
Loan (1996); Varga (1962); Xu and Prozzi (2014)], and round-off [Alvarez-Aramberri, 
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Pardo, Paszynski et al. (2012); Fried (1986); Vignes (1988)]. The finite element method 
can provide accurate solutions of dynamic equilibrium equations when an appropriate 
direct time integration method is used. Time integration schemes can be classified into 
two categories: explicit and implicit. 
Direct time integration is primarily used for solving wave propagation and structural 
dynamic problems. When a wave propagation problem is solved using the time 
integration scheme, a number of spurious oscillations occur. Dissipative schemes, 
filtering, or damping schemes are used in order to reduce these oscillations. By filtering 
specific time and space points, errors from numerical oscillations can be reduced 
[Holems and Belytschko (1976); Idesman, Samajder, Aulisa et al. (2009); Idesman, 
Schmidt and Foley (2011)]. However, these approaches are not suitable for analyses 
involving global solutions [Noh, Ham and Bathe (2013)]. Damping schemes are methods 
of adding a viscous pressure term to the dynamic equilibrium equation [Benson (1992); 
Johnson and Beissel (2001)]. Their disadvantage is that the artificial viscosity depends on 
the problem. In the case of dissipative schemes, as there are discarded frequency modes 
owing to the numerical dissipation property, there are few spurious oscillations in the 
solutions of wave propagation problems. However, numerical errors often occur due to 
numerical dissipations [Bathe (1996); Noh and Bathe (2013); Noh, Ham and Bathe 
(2013); Payen and Bathe (2012)]. Therefore, in structural dynamics, errors can be 
reduced using non-dissipative schemes. 
In non-dissipative schemes, the central difference method (CDM) and the trapezoidal rule 
(Newmark method with β = 0.25 and γ = 0.5) with second-order accuracy are still 
widely used in explicit and implicit schemes, respectively. In these schemes, dispersion 
errors occur in high-frequency modes due to non-dissipation. Therefore, in wave 
propagation problems, non-dissipative schemes result in spurious oscillations. However, 
in structural dynamics, CDM and trapezoidal rule are widely used owing to their 
computational simplicity and lower computational cost. 
In this study, a new time integration scheme is proposed based on Gauss-Legendre 
quadrature. Gauss-Legendre quadrature is a numerical integration formula. It is defined 
as follows: 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥1
−1 ≈ ∑ 𝑤𝑤𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=0                (1) 
To use this formula, the node point 𝑥𝑥𝑖𝑖 and the corresponding weight 𝑤𝑤𝑖𝑖 should be 
determined. The node points and weights for several values of 𝑛 have been obtained in 
previous research [Abramowitz and Stegun (1972); Cheney and Kincaid (2012); Stroud 
and Secrest (1996)]. The Gauss-Legendre quadrature formula yields reasonably accurate 
solutions with fewer function evaluations [Cheney and Kincaid (2012)]. The Gauss-
Legendre quadrature is commonly used to calculate integrals in isoparametric finite 
element analysis [Mizusawa and Takami (1992); Ray, Dong and Atluri (2016)]. The 
Gauss-Legendre quadrature is generally more efficient, for it provides more accurate 
integration results for the same number of evaluations [Bathe (1996)]. However, the 
domain of integration is taken as [-1, +1]; thus, the time integral should be transformed. 
After translation, the number of node points 𝑛 + 1 is determined according to the 
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required accuracy. Then, the Gauss-Legendre rule with 𝑛 + 1 node points is used for the 
time integration. 
As the form of the time integration scheme depends on 𝑛, the proposed scheme is 
considered to be a one-parameter scheme. The parameter controls stability, accuracy, and 
dispersion, and its effect is analyzed in the present study. Finally, solutions are provided 
for the wave propagation problem and some examples in structural dynamics. 

2 Time integration scheme based on Gauss-Legendre quadrature 
2.1 Proposed implicit time integration scheme 
The governing finite element equation for linear structures is as follows [Coppolino 
(2016)]: 
𝑴𝑴�̈�𝒖 + 𝑪𝑪�̇�𝒖 + 𝑲𝑲𝒖𝒖 = 𝑭𝑭               (2) 
where 𝒖𝒖, �̇�𝒖, and �̈�𝒖 are the nodal displacement, velocity, and acceleration vectors, 
respectively. 𝑴𝑴, 𝑪𝑪, 𝑲𝑲, and 𝑭𝑭 are the mass, damping, and stiffness matrices, and 
external nodal force vector, respectively. Using the direct time integration scheme, the 
solutions at time 𝑡𝑡 + Δ𝑡𝑡  are calculated with the displacements, velocities, and 
accelerations at time 𝑡𝑡. 
The displacement at time 𝑡𝑡 + Δ𝑡𝑡 is computed as follows: 

𝒖𝒖(𝑡𝑡 + Δ𝑡𝑡) = 𝒖𝒖(𝑡𝑡) + ∫ �̇�𝒖(𝑡𝑡)𝑡𝑡+Δ𝑡𝑡
𝑡𝑡 𝑑𝑑𝑡𝑡               (3) 

where the domain of integration is not [-1, 1] but [𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡]. Thus, in order to use 
Gauss-Legendre quadrature, the integral is transformed as follows: 

𝒖𝒖(𝑡𝑡 + Δ𝑡𝑡) = 𝒖𝒖(𝑡𝑡) + Δ𝑡𝑡
2 ∫ �̇�𝒖 �𝑡𝑡 + 𝑥𝑥+1

2
Δ𝑡𝑡�1

−1 𝑑𝑑𝑥𝑥               (4) 

Then, the integral in Eq. (4) is approximated by Gauss-Legendre quadrature, that is, 

𝒖𝒖(𝑡𝑡 + Δ𝑡𝑡) ≈ 𝒖𝒖(𝑡𝑡) + Δ𝑡𝑡
2
∑ 𝑤𝑤𝑖𝑖�̇�𝒖 �𝑡𝑡 + 𝑥𝑥𝑖𝑖+1

2
Δ𝑡𝑡�𝑛𝑛

𝑖𝑖=0                (5) 

In the proposed scheme, �̇�𝒖 �𝑡𝑡 + 𝑥𝑥𝑖𝑖+1
2
Δ𝑡𝑡� = �̇�𝒖(𝑡𝑡) + 𝑥𝑥𝑖𝑖+1

2
Δ𝑡𝑡�̈�𝒖(𝑡𝑡 + Δ𝑡𝑡) when 𝑥𝑥𝑖𝑖  is not 

zero, whereas �̇�𝒖(𝑡𝑡 + Δ𝑡𝑡/2) = �̇�𝒖(𝑡𝑡 − Δ𝑡𝑡/2) + Δ𝑡𝑡�̈�𝒖(𝑡𝑡) using the half-step CDM [Park 
and Underwood (1980)]. Since the sum of the weights 𝑤𝑤𝑖𝑖 is 2.0 and the distribution of 
the points 𝑥𝑥𝑖𝑖 is symmetric about 0.0, Eq. (5) is expressed as follows:  
𝒖𝒖(𝑡𝑡 + Δ𝑡𝑡) = 𝒖𝒖(𝑡𝑡) + Δ𝑡𝑡[𝑝𝑝�̇�𝒖(𝑡𝑡 + Δ𝑡𝑡/2) + (1 − 𝑝𝑝)�̇�𝒖(𝑡𝑡)] + 𝑞𝑞(Δ𝑡𝑡)2�̈�𝒖(𝑡𝑡 + Δ𝑡𝑡)          (6) 
where 𝑝𝑝 and 𝑞𝑞 are parameters to be determined. Difficulty arises in the computation of 
�̇�𝒖(𝑡𝑡 + Δ𝑡𝑡) because the velocity vectors are calculated at half-step points. The best known 
solution to this problem is to linearly interpolate �̇�𝒖(𝑡𝑡) as follows [Park and Underwood 
(1980)]: 

�̇�𝒖(𝑡𝑡) = 1
2

[�̇�𝒖(𝑡𝑡 + Δ𝑡𝑡/2) + �̇�𝒖(𝑡𝑡 − Δ𝑡𝑡/2)]               (7) 

In order for the proposed scheme to have second-order accuracy with and without 
damping, the following relation holds: 

𝑞𝑞 = 1−𝑝
2

                   (8) 

To demonstrate second-order accuracy in time for the proposed scheme when Eq. (8) 
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holds, local truncation error analyses are explained in Appendix A. 
In the proposed method, the implicit and explicit schemes are considered for the 
displacement vector 𝒖𝒖 and the velocity vector �̇�𝒖, respectively. The proposed method for 
𝑝𝑝 ≠ 1 is an implicit time integration scheme as a matrix system is solved when the 
proposed method is used, whereas the proposed method (𝑝𝑝 = 1) is an explicit scheme as 
the effective stiffness matrix can be seen as the effective mass matrix owing 𝑎4 = 0 (see 
Tab. 1). 

Table 1: Computation procedure of the proposed scheme 

A. Initial calculations 
1. Form mass matrix 𝑴𝑴, stiffness matrix 𝑲𝑲, and damping matrix 𝑪𝑪 
2. Initialize 𝒖𝒖(0), �̇�𝒖(0), and �̈�𝒖(0)  
3. Select time step Δ𝑡𝑡, Δ𝑡𝑡 < 𝛥𝛥𝑡𝑡𝑐𝑟, and parameter 𝑝𝑝, and calculate the 
integration constants: 

𝑎0 =
Δ𝑡𝑡
2

;     𝑎1 = 2𝑎0;     𝑎2 =
1 + 𝑝𝑝

2
𝑎1;      𝑎3 =

1 − 𝑝𝑝
2

𝑎1;      𝑎4 = 𝑎3𝑎1 

4. Calculate �̇�𝒖(Δ𝑡𝑡/2) = �̇�𝒖(0) + 𝑎0�̈�𝒖(0) 
5. Form effective stiffness matrix 𝑲𝑲� = 𝑴𝑴 + 𝑎0𝑪𝑪 + 𝑎4𝑲𝑲 
6. Triangularize 𝑲𝑲�: 𝑲𝑲� = 𝑳𝑫𝑳𝑇 

B. For each time step 
1. Calculate velocities at time 𝑡𝑡 + Δ𝑡𝑡/2: 

�̇�𝒖(𝑡𝑡 + Δ𝑡𝑡/2) = �̇�𝒖(𝑡𝑡 − Δ𝑡𝑡/2) + 𝑎1�̈�𝒖(𝑡𝑡) 
2. Calculate effective loads at time 𝑡𝑡 + Δ𝑡𝑡: 

𝑭𝑭�(𝑡𝑡 + 𝛥𝛥𝑡𝑡)
= 𝑭𝑭(𝑡𝑡 + 𝛥𝛥𝑡𝑡) −𝑲𝑲𝒖𝒖(𝑡𝑡) − (𝑪𝑪 + 𝑎2𝑲𝑲)�̇�𝒖(𝑡𝑡 + 𝛥𝛥𝑡𝑡/2)
− 𝑎3𝑲𝑲�̇�𝒖(𝑡𝑡 − 𝛥𝛥𝑡𝑡/2) 

3. Solve for accelerations at time 𝑡𝑡 + Δ𝑡𝑡: 
𝑳𝑫𝑳𝑇�̈�𝒖(𝑡𝑡 + Δ𝑡𝑡) = 𝑭𝑭�(𝑡𝑡 + 𝛥𝛥𝑡𝑡) 

4. Calculate displacements at time 𝑡𝑡 + Δ𝑡𝑡: 
𝒖𝒖(𝑡𝑡 + Δ𝑡𝑡) = 𝒖𝒖(𝑡𝑡) + 𝑎2�̇�𝒖(𝑡𝑡 + Δ𝑡𝑡/2) + 𝑎3�̇�𝒖(𝑡𝑡 − Δ𝑡𝑡/2) + 𝑎4�̈�𝒖(𝑡𝑡 + Δ𝑡𝑡) 

5. If required, evaluate velocities at time 𝑡𝑡: 

�̇�𝒖(𝑡𝑡) =
1
2

[�̇�𝒖(𝑡𝑡 + Δ𝑡𝑡/2) + �̇�𝒖(𝑡𝑡 − Δ𝑡𝑡/2)] 

2.2 Stability analysis 
Using the equations in Tab. 1, in the modal equations the recursive relationship of the 
proposed scheme is expressed as follows: 

�
�̇�𝑥(𝑡𝑡 + Δ𝑡𝑡/2)
𝑥𝑥(𝑡𝑡 + Δ𝑡𝑡) � = 𝐀�

�̇�𝑥(𝑡𝑡 − Δ𝑡𝑡/2)
𝑥𝑥(𝑡𝑡) � + 𝐋𝐚𝑟(𝑡𝑡) + 𝐋𝐛𝑟(𝑡𝑡 + Δ𝑡𝑡)                    (9) 

where 𝐀 and 𝐋 are the integration approximation and load operators, respectively, 
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which are given in Appendix B. These operators depend on the direct time integration 
scheme. Eq. (9) can be used to provide the solution at any time 𝑡𝑡 + 𝑛Δ𝑡𝑡, thereby 
providing stability and accuracy characteristics.  
In the undamped case, the characteristic polynomial of 𝐀 becomes as follows: 
𝑝𝑝(𝜆) = 𝜆2 + 𝐴1𝜆 + 𝐴2                 (10) 
where 

𝐴1 = 2𝑝Ω02−4
2+(1−𝑝)Ω02

                    (11) 

𝐴2 = 1                   (12) 
and Ω0 = 𝜔0Δ𝑡𝑡. Here, 𝜔0 is the modal natural frequency. Therefore, the eigenvalues of 
𝐀 are as follows: 

𝜆1,2 =
−𝐴1±�𝐴12−4𝐴2

2
                 (13) 

When the spectral radius of the approximation operator is smaller than or equal to 1, the 
direct time integration is stable. If the stability criterion is met, 𝐀𝑛𝑛 is bounded for 
𝑛 → ∞. Moreover, if 𝜌(𝐀) < 1, 𝐀𝑛𝑛 is getting closer to 0, decreasing more rapidly when 
𝜌(𝐀) is small [Bathe (1996)]. The spectral radius of 𝐀 is defined as follows: 
𝜌(𝐀) = max (|λ1|, |λ2|)                  (14) 
The bifurcation point Ω𝑏, where the eigenvalues change from complex to real, i.e., 
𝐴12 − 𝐴2 = 0, is given by following equation: 

Ω𝑏 = 2
�2𝑝−1

                  (15) 

When Ω0 < Ω𝑏, the eigenvalues become complex and the spectral radius of 𝐀 is always 
1, whereas when the eigenvalues become real, the spectral radius of 𝐀 is always lager 
than 1 (obtained with some arithmetic). Therefore, for the proposed scheme, the stability 
limit Ω𝑠 is the same as the bifurcation point Ω𝑏 and is expressed as follows:  

Ω𝑠 = 2
�2𝑝−1

                  (16) 

However, if 𝑝𝑝 ≤ 0.5, the denominator of right-hand side of Eq. (15) is zero or imaginary. 
When 𝑝𝑝 is smaller than or equal to 0.5, the eigenvalues become complex and then the 
spectral radius of 𝐀 is always 1. 
The spectral radius at the bifurcation point is denoted by 𝜌𝑏. For the proposed scheme, 
𝜌𝑏 is 1 for any parameter 𝑝𝑝. This implies that the proposed scheme is non-dissipative. 
As shown in Fig. 1, the parameter 𝑝𝑝 plays an important role in stabilization behavior. 
When 𝑝𝑝 ≤ 0.5, the proposed scheme has unconditional stability, as in the case of general 
implicit methods. However, when 𝑝𝑝 > 0.5, the parameter 𝑝𝑝 affects the stability limit. 
Therefore, the proposed scheme is not unconditionally stable when 𝑝𝑝 > 0.5. 
Fig. 2 shows the spectral radius of the proposed scheme for various values of  𝑝𝑝, and 
other schemes. As the equations of the proposed method (𝑝𝑝 = 1) and the half-step CDM 
are identical, the two methods yield the same results. When 𝑝𝑝 ≤ 0.5, the proposed 
scheme with non-dissipative properties has unconditional stability. Therefore, the 
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proposed scheme yields the same results as the trapezoidal rule. However, the Noh-Bathe 
explicit method, the Bathe implicit method, and three sub-step method [Wen, Wei, Lei et 
al. (2017)] have numerical dissipation. Therefore, these methods are non-dissipative 
(resp., dissipative) for low (resp., high) frequency modes. For the Noh-Bathe method, the 
spectral radius of the approximation operation rapidly decreases for Ω0 greater than, 
approximately, 1.25 (∆𝑡𝑡/𝑇0 ≈ 0.2) [Noh and Bathe (2013)], whereas for the Bathe 
method, ρ(𝐀) ≈ 1 for Ω0 less than, approximately, 1.88 (∆𝑡𝑡/𝑇0 ≈ 0.3) [Noh, Ham and 
Bathe (2013)].  

 
Figure 1: Stability limit line of the proposed scheme for various values of 𝑝𝑝 

 
Figure 2: Spectral radius of the proposed scheme for various values of 𝑝𝑝, and other 
schemes considering no damping. Results for the proposed scheme with  𝑝𝑝 = 1 and 
CDM are identical, whereas results for the proposed scheme with 𝑝𝑝 ≤ 0.5, trapezoidal 
rule, generalized composite scheme are identical. The generalized composite scheme is 
described in Kim et al. [Kim and Choi (2018)] and the three sub-step scheme is described 
in Wen et al. [Wen, Wei, Lei et al. (2017)] 

2.3 Accuracy analysis 
While the stability analysis is employed to find the stability limit and discarded wave 
modes caused by numerical damping, the accuracy of a time integration method is not 
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evaluated by conducting that same stability analysis. Therefore, an accuracy analysis is 
additionally carried out. 
The accuracy of the proposed scheme is investigated by solving the following simple 
initial value problem [Bathe (1996)]: 

� �̈�𝑥 + 𝜔2𝑥𝑥 = 0
𝑥𝑥(0) = 1.0; �̇�𝑥(0) = 0.0; �̈�𝑥(0) = −𝜔2               (17) 

The exact solution of Eq. (17) is 𝑥𝑥 = cos𝜔𝑡𝑡. Although the damping ratio 𝜉 should be 
considered, the significant characteristics of the solution can be investigated by solving 
the undamped problem [Bathe (1996)]. Figs. 3-4 show the period elongations (PE) and 
amplitude decays (AD) for the proposed and other schemes, respectively. PE and AD are 
defined as 𝑃𝐸 = (𝑇� − 𝑇)/𝑇 and 𝐴𝐷 = −2𝜋𝜉̅ (see Fig. 5), respectively. Here 𝑇, 𝑇� , 
and 𝜉̅  are the exact period, numerical period, and algorithmic damping ratio, 
respectively. Please see Bathe [Bathe (1996)] regarding details of the accuracy analysis. 
In terms of PE, the proposed scheme with 𝑝𝑝 = 1,  𝑝𝑝 = 5/6, 𝑝𝑝 = 4/6, and 𝑝𝑝 = 3/6 
has similar accuracy to that of CDM, the Noh-Bathe scheme, the Bathe implicit method, 
and the trapezoidal rule, respectively. However, in terms of AD, except for 𝑝𝑝 = 1, the 
proposed scheme has smaller solution errors as compared with those of CDM, Noh-Bathe 
method, and Bathe method. 

 
Figure 3: Percentage PE of the proposed scheme for various values of 𝑝𝑝 and other 
schemes. Results for the generalized composite scheme and three sub-step scheme are 
identical 

For the proposed scheme, PE decreases as 𝑝𝑝 increases. When 𝑝𝑝 < 5/6, PE is negative, 
whereas it is positive when 𝑝𝑝 ≥ 5/6. AD is negative if 𝑝𝑝 < 3/6, whereas it is positive 
elsewhere. When 3/6 ≤ 𝑝𝑝 < 4/6  and 𝑝𝑝 ≥ 5/6 , AD increases with 𝑝𝑝 , whereas it 
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increases as 𝑝𝑝  decreases when 4/6 ≤ 𝑝𝑝 < 5/6 . Therefore, the proposed scheme 
(𝑝𝑝 = 5/6) yields more accurate solutions. As shown in Fig. 3, the proposed scheme 
(𝑝𝑝 = 5/6) has similar PE to that of the Noh-Bathe method. However, since the Noh-
Bathe method consists of two sub-steps [Noh and Bathe (2013)], it is more time-
consuming than the proposed scheme (see Fig. 21). The proposed scheme yields highly 
accurate solutions and requires less time than the Noh-Bathe method.  

 
Figure 4: Percentage AD of the proposed scheme for various values of 𝑝𝑝 and other 
schemes. Results for the proposed scheme with  𝑝𝑝 = 5/6 and the generalized composite 
scheme are identical 

 
Figure 5: Definition of PE and AD 
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2.4 Dispersion analysis 
In this section, the dispersion errors are analyzed using the proposed scheme and other 
schemes for a two-dimensional wave propagation problem. A regular mesh of 4-node 
elements is used for spatial discretization. 
The scalar wave governing equation is  

∇2𝑢 = 1
𝑐02

∂2𝑢
∂𝑡𝑡2

                   

where 𝑢 is the field variable, ∇2 is the Laplace operator, and 𝑐0 is the exact wave 
velocity. The corresponding finite element discretization yields 
𝑴𝑴�̈�𝒖 = −𝑐02𝑲𝑲𝒖𝒖                                                         (19) 
where 𝑴𝑴 and 𝑲𝑲 are the global mass and stiffness matrices, respectively. The matrices 
𝑴𝑴 and 𝑲𝑲 can be obtained by summing the matrices 𝑴𝑴(𝑘) and 𝑲𝑲(𝑘) [Bathe (1996)], 
which are the local mass and stiffness matrices of the element (𝑘), respectively, with 
volume 𝑉(𝑘): 

𝑴𝑴(𝑘) = ∫ 𝑯(𝑘)𝑇𝑯(𝑘)𝑑𝑑𝑉 
𝑉(𝑘)                                                 (20) 

𝑲𝑲(𝑘) = ∫ �∇𝑯(𝑘)�𝑇�∇𝑯(𝑘)�𝑑𝑑𝑉 
𝑉(𝑘)                                           (21) 

where 𝑯(𝑘) is the displacement shape (or interpolation) matrix of the element (𝑘).  
Using the equations in Tab. 1, the linear multistep form of the proposed scheme is 
expressed as follows: 

�𝑴𝑴 +
1 − 𝑝𝑝

2
𝑐02(𝛥𝛥𝑡𝑡)2𝑲𝑲�𝒖𝒖(𝑡𝑡 + 𝛥𝛥𝑡𝑡) + (−2𝑴𝑴 + 𝑝𝑝𝑐02(𝛥𝛥𝑡𝑡)2𝑲𝑲)𝒖𝒖(𝑡𝑡) 

+ �𝑴𝑴 + 1−𝑝
2
𝑐02(𝛥𝛥𝑡𝑡)2𝑲𝑲�𝒖𝒖(𝑡𝑡 − 𝛥𝛥𝑡𝑡) = 𝟎𝟎                                     (22) 

or 

�𝑴𝑴 + 1−𝑝
2
𝛾𝛾𝑲𝑲�𝒖𝒖(𝑡𝑡 + 𝛥𝛥𝑡𝑡) + (−2𝑴𝑴 + 𝑝𝑝𝛾𝛾𝑲𝑲)𝒖𝒖(𝑡𝑡) + �𝑴𝑴 + 1−𝑝

2
𝛾𝛾𝑲𝑲�𝒖𝒖(𝑡𝑡 − 𝛥𝛥𝑡𝑡) = 𝟎𝟎    (23) 

where γ = CFL2ℎ2, CFL is the CFL number �= 𝑐0Δ𝑡𝑡
ℎ
�, and ℎ is the length of the side 

of the elements.  
In the two-dimensional analysis, the general and numerical solutions of Eq. (18) are 
𝑢𝑥𝑥,𝑦
𝑡𝑡 = 𝐴𝑒𝑖𝑖(𝑘0𝑥𝑥cos𝜃+𝑘0𝑦sin𝜃−𝜔0𝑡𝑡)  and 𝑢𝑥𝑥,𝑦

𝑡𝑡 = 𝐴𝑘𝑒𝑖𝑖(𝑘𝑥𝑥cos𝜃+𝑘𝑦sin𝜃−𝜔𝑡𝑡) , respectively, 
where 𝜔0, 𝑘0 = 𝜔0/𝑐0, 𝜔, 𝑘 = 𝜔/𝑐, 𝑐, and 𝜃 are the frequency of the wave mode, 
corresponding wave number, numerical frequency, numerical wave number, numerical 
wave speed, and propagating angle measured from the  𝑥𝑥 -axis, respectively. The 
numerical wave speed 𝑐 and exact wave speed 𝑐0 are not the same. The dispersion error 
is observed by their difference. 
Using a regular mesh of 4-node elements with nodes equally spaced at a distance ℎ from 
each other along the x and y axes (∆𝑥𝑥 = ∆𝑦 = ℎ) for the spatial discretization, the 
solution of the wave equation at time 𝑛𝑡𝑡Δ𝑡𝑡 and location 𝑛𝑥𝑥ℎ,𝑛𝑦ℎ is obtained using the 
following equation [Noh and Bathe (2013); Noh, Ham and Bathe (2013)]: 
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𝑢𝑛𝑛𝑥ℎ,𝑛𝑛𝑦ℎ
𝑛𝑛𝑡Δ𝑡𝑡 = 𝐴𝑘𝑒𝑖𝑖�𝑘𝑛𝑛𝑥ℎcos𝜃+𝑘𝑛𝑛𝑦ℎsin𝜃−𝜔𝑛𝑛𝑡Δ𝑡𝑡� = 𝐴𝑘𝑒𝑖𝑖𝑘ℎ(𝑛𝑛𝑥cos𝜃+𝑛𝑛𝑦sin𝜃−𝑛𝑛𝑡(CFL)(𝑐/𝑐0))   (24) 

For a 4-node element, the rows of 𝑴𝑴𝑐, 𝑴𝑴𝑙, and 𝑲𝑲 are obtained as follows [Kwon and 
Lee (2017)]: 

Row(𝑴𝑴𝑐) = ℎ2

36
[0  ⋯   0   1   4   1   4   16   4   1   4   1   0  ⋯   0]                  (25) 

Row(𝑴𝑴𝑙) = ℎ2[0  ⋯   0   0   0   0   0   1   0   0   0   0   0  ⋯   0]                   (26) 

Row(𝑲𝑲) = 1
3

[0  ⋯   0  − 1  − 1   − 1  − 1   8  − 1  − 1  − 1  − 1   0  ⋯   0]     (27) 

where 𝑴𝑴𝑐 and 𝑴𝑴𝑙 are the consistent and lumped mass matrices, respectively. It is 
natural to use consistent and lumped mass matrices for an implicit and explicit method, 
respectively. In implicit time integration, when a lumped mass matrix is used, there are 
no computational and storage advantages because accelerations are computed as 𝑲𝑲�−1𝑭𝑭�. 
As 𝑲𝑲�  is not diagonal (see Tab. 1) even if 𝑴𝑴 is a lumped mass matrix, a system of 
equations must be solved. On the other hand, for explicit methods, a lumped mass matrix 
can offer significant computational advantages for calculations because effective mass 
matrix 𝑴𝑴�  is used instead of effective stiffness matrix 𝑲𝑲�  to calculate accelerations 
[Bathe (1996)]. However, if 𝑴𝑴 is a consistent mass matrix, accelerations are obtained by 
solving a system of equations. Moreover, for explicit methods, the decomposition of a 
consistent mass matrix is generally not affordable because an implicit scheme with a 
much larger time step may be used at the same computational cost [Huang, Kamenski 
and Lang (2016)]. Therefore, for the CDM and the Noh-Bathe method, the lumped mass 
matrix is considered, whereas for the proposed scheme, trapezoidal rule and Bathe 
method, the considered mass matrix is consistent. Although the proposed scheme 
(0.5 < 𝑝𝑝 < 1) has conditional stability, a matrix system needs to be solved. Therefore, it 
is natural to use the consistent mass matrix. However, as the proposed scheme (𝑝𝑝 = 1) is 
considered to be the explicit method, it is natural to use the lumped mass matrix. 
The error curves of the Noh-Bathe method [Noh and Bathe (2013)] and Bathe method 
[Noh, Ham and Bathe (2013)] are shown with the optimal CFL values in Figs. 6 and 7, 
respectively. Because the Noh-Bathe explicit method and the Bathe method are 
dissipative, there are discarded wave modes due to numerical damping in the numerical 
solutions. In the Noh-Bathe method and Bathe method, wave modes with Ω0 > 0.6π are 
discarded [Noh and Bathe (2013); Noh, Ham and Bathe (2013)]. Using the definition of 
CFL number, 𝛥𝛥𝑥𝑥/(𝜆/2) in terms of Ω0 is expressed as follows: 
𝛥𝑥𝑥
𝜆/2

= 𝑘𝛥𝑥𝑥
𝜋

= 1
𝜋
𝑐0
𝑐

Ω0
𝐶𝐹𝐿

                                                    (28) 

When we assume that the numerical and exact wave speeds are approximately the same, 
the discarded wave modes of the Noh-Bathe method with CFL = 1.85  and Bathe 
method with CFL = 1 are the wave modes with 𝛥𝛥𝑥𝑥/(𝜆/2) > 0.32 and 𝛥𝛥𝑥𝑥/(𝜆/2) >
0.6 using Eq. (28), respectively. As the high wave modes with larger dispersion errors 
are discarded in dissipative schemes, the dispersion errors of the Noh-Bathe method and 
Bathe method are smaller than those of the non-dissipative schemes (see Figs. 6 and 7). 
However, this property is not desirable for the high frequency wave modes as high wave 
modes do not participate in the total solution. 
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Figure 6: Relative wave speed errors of the Noh-Bathe method (CFL = 1.85) for various 
values of the propagation angle with lumped mass matrix (dotted lines: discarded wave 
modes) 
In the proposed method, CDM, and the trapezoidal rule, all wave modes participate in the 
total solution as these schemes do not have numerical damping characteristics (these 
schemes are non-dissipative schemes). When the high frequency wave propagation 
problems are solved, it is necessary to calculate all the wave modes. Therefore, non-
dissipative time integration methods might produce an accurate solution of high 
frequency wave propagation problem. 
For the proposed scheme, the important point to note here is that as the linear multistep 
forms of the proposed scheme with 𝑝𝑝 = 1 and 𝑝𝑝 = 3/6 are the same as in CDM [Noh 
and Bathe (2013)] and the trapezoidal rule [Noh, Ham and Bathe (2013)], respectively, 
the relative wave speed errors are the same (see Figs. 8 and 9). The proposed scheme 
with 𝑝𝑝 = 1 provides no dispersion error in the one-dimensional case (θ = 0). However, 
in actual analyses, the waves will propagate in all directions, and then the relative wave 
speeds are important considering the propagation angles. The maximum dispersion error 
of the proposed scheme with 𝑝𝑝 = 3/6 is ca. 17 %, whereas when 𝑝𝑝 = 1 it is ca. 33 %. 
For the proposed scheme with 𝑝𝑝 = 1 (resp., 𝑝𝑝 = 3/6), the maximum value of the 
dispersion error increases (resp., decreases) as θ increases. When the propagation angles 
are considered, the proposed scheme with 𝑝𝑝 = 3/6 has smaller dispersion errors than 
one with 𝑝𝑝 = 1.  
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Figure 7: Relative wave speed errors of the Bathe method (CFL = 1) for various values 
of the propagation angle with consistent mass matrix (dotted lines: discarded wave modes) 

 
Figure 8: Relative wave speed errors of the proposed scheme (𝑝𝑝 = 1 and CFL = 1) and 
CDM (CFL = 1) for various values of the propagation angle with lumped mass matrix; 
the results for the proposed scheme (𝑝𝑝 = 1) and CDM are identical 
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Figure 9: Relative wave speed errors of the proposed scheme (𝑝𝑝 = 3/6 and CFL = 0.65) 
and trapezoidal rule (CFL = 0.65) for various values of the propagation angle with 
consistent mass matrix; the results for the proposed scheme (𝑝𝑝 = 3/6) and trapezoidal 
rule are identical 

 
Figure 10: Convergence rate of relative wave speed errors for the proposed scheme 
(𝑝𝑝 = 5/6) with consistent mass matrix 
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Figure 11: Relative wave speed errors of the proposed scheme (𝑝𝑝 = 4/6 and CFL =
0.705) for various values of the propagation angle with consistent mass matrix 

Furthermore, as the proposed scheme with 𝑝𝑝 = 4/6  and 𝑝𝑝 = 5/6  yields accurate 
solutions (see Section 2.3), we additionally consider two parameters (𝑝𝑝 = 4/6 and 
𝑝𝑝 = 5/6) for the dispersion analysis. For the proposed method with 𝑝𝑝 = 5/6, the 
relative wave speed errors are positive for any CFL number (see Fig. 10). The maximum 
value of the relative wave speed errors decreases with a decrease in the CFL number. The 
maximum value of the relative wave speed errors is converged after the CFL number is 
ca. 0.2. For the proposed method (𝑝𝑝 = 5/6) with CFL = 0.2, the maximum speed error is 
ca. 20%. However, for the proposed method with 𝑝𝑝 = 4/6, the maximum speed error is 
ca. 5% when the optimal CFL value (= 0.705) is used (see Fig. 11). Although the 
proposed scheme with 𝑝𝑝 = 5/6 yields a more accurate solution than one with 𝑝𝑝 = 4/6, 
the maximum speed error of the proposed scheme (𝑝𝑝 = 5/6) is approximately four times 
that of the proposed method (𝑝𝑝 = 4/6). In addition, comparing the minimum dispersion 
errors in a two-dimensional analysis when the parameter 𝑝𝑝 takes on the values 3/6, 4/6, 
5/6, and 1, we note that the proposed method with 𝑝𝑝 = 4/6 provides a minimum 
dispersion error in the two-dimensional analysis. Therefore, the parameters 𝑝𝑝 = 1 and 
𝑝𝑝 = 4/6 are recommended in one- and multi-dimensional cases, respectively. 

3 Numerical simulations 
3.1 Wave propagation problem 
To test the proposed scheme for wave propagation solutions, the pre-stressed membrane 
problem is considered, as can be seen in Fig. 12. We compare the solutions of the two-
dimensional wave propagation using the proposed scheme, CDM, the Noh-Bathe method, 
the trapezoidal rule, and the Bathe method. The governing wave equation of the pre-
stressed membrane problem is expressed as follows [Noh and Bathe (2013); Noh, Ham 
and Bathe (2013); Wen, Duan, Yan et al. (2017)]:  

∇2𝑢 + 𝑓𝑓(0,0, 𝑡𝑡) = 1
𝑐02

∂2𝑢
∂𝑡𝑡2

                                                (29) 
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where 𝑢 is the transverse displacement and ∇2= ∂2

∂𝑥𝑥2
+ ∂2

∂𝑦2
. In this problem, we assume 

that the exact wave speed c0 is 1.0. Due to symmetry, the domain [0,10]×[0,10] is only 
considered. The load is given as follows: 
𝑓𝑓(0,0, 𝑡𝑡) = sin(8𝑡𝑡) + sin (3𝑡𝑡)              (30) 
The exact solution of this problem is obtained using Green’s function 𝐺(𝑥𝑥,𝑦, 𝑡𝑡) as 
follows [Wen, Duan, Yan et al. (2017)]: 

𝑢(𝑥𝑥,𝑦, 𝑡𝑡) = ∫ 𝑓𝑓(�̂�𝑡)𝐺(𝑥𝑥,𝑦, 𝑡𝑡 − �̂�𝑡)𝑑𝑑�̂�𝑡𝑡𝑡
0          (31) 

where 𝐺(𝑥𝑥,𝑦, 𝑡𝑡) =
𝐻�𝑐0𝑡𝑡−�𝑥𝑥2+𝑦2�

2𝜋𝑐0�𝑐02𝑡𝑡2−𝑥𝑥2−𝑦2
. Here, 𝐻  is the Heaviside step function. The 

considered CFL number for both the proposed scheme (𝑝𝑝 = 1) and CDM is 1 with the 
lumped mass matrix. For the Noh-Bathe method, it is 1.85 with the lumped mass matrix 
as well. For the proposed scheme (𝑝𝑝 = 4/6) and the trapezoidal rule, the considered CFL 
numbers are 0.705 and 0.65 with consistent mass matrix, respectively, and for the Bathe 
method, it is 1 with consistent mass matrix as well. 
Figs. 13-14 show the numerical and analytical solutions of the displacement and velocity 
considering a 60×60 finite element mesh and various propagating angles at time 
𝑡𝑡 = 7.36. The numerical results for the proposed scheme with 𝑝𝑝 = 1, CDM, and the 
Noh-Bathe method are shown in Fig. 13, whereas Fig. 14 shows the wave problem 
solutions of the proposed scheme with 𝑝𝑝 = 4/6, the trapezoidal rule, and the Bathe 
method. As shown in Fig. 13, the solutions using the proposed scheme with 𝑝𝑝 = 1 and 
CDM are less accurate than those using the Noh-Bathe method as these schemes have 
high dispersion errors. However, in the Noh-Bathe method, it is difficult to describe the 
high frequency wave shape as there are discarded frequency modes (see Fig. 6). 
Furthermore, the proposed scheme (𝑝𝑝 = 4/6), the trapezoidal rule, and Bathe method 
yield more accurate solutions than the proposed scheme (𝑝𝑝 = 1), CDM, and Noh-Bathe 
method. The numerical solutions of the Bathe method do not describe the high frequency 
wave mode as the Bathe method is a dissipative scheme, whereas the proposed scheme 
with 𝑝𝑝 = 4/6 and trapezoidal rule yield solutions including all the wave modes. In the 
numerical results of the non-dissipative implicit scheme, as the proposed scheme 
(𝑝𝑝 = 4/6) has a smaller PE than the trapezoidal rule (see Section 2.3), we observe that 
the proposed scheme has more accuracy than the trapezoidal rule. 
Figs. 15-16 show the numerical results for the displacement at 𝑡𝑡 = 7.36 for a 140×140 
finite element mesh using the lumped and consistent mass matrices a respectively. In the 
proposed scheme (𝑝𝑝 = 4/6), the results for θ = 𝜋

4
 are more accurate than those for 

θ = 0 in the case of the displacement and velocity. The difference can be explained by 
the wave speed errors. When θ = 𝜋

4
, there are few spurious oscillations as the dispersion 

error is almost zero, whereas the spurious oscillations occur forward of the wave front 
when θ = 0, because the speed errors are positive (see Fig. 11). We observe that the 
Noh-Bathe method and Bathe method yield the solutions, including the high frequency 
mode, when a high spatial discretization density is used (e.g., 140×140 mesh) as the 
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minimum wave number decrease as the element size 𝛥𝛥𝑥𝑥  increases (see Eq. (28)). 
However, in the case of a low spatial discretization density (e.g., 60×60 mesh), the 
dissipative schemes provide less accurate solutions of the high wave mode as the 
minimum wave number increases.  

 
Figure 12: Pre-stress membrane problem: initial displacement, velocity, and acceleration 
are 0; exact wave speed is 1.0 

  

(a) Displacement when θ = 0 (b) Displacement when θ = 𝜋
4
 

  

10 

10 

𝒇𝒇(𝟎𝟎,𝟎𝟎, 𝒕𝒕) 

𝒙𝒙 

𝒚𝒚 

: Symmetric condition 
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(c) Velocity when θ = 0 (d) Velocity when θ = 𝜋
4
 

Figure 13: Displacement and velocity variation of the proposed scheme (𝑝𝑝 = 1), CDM, 
and Noh-Bathe method along various propagating angles, at time 𝑡𝑡 = 7.36, 60×60 finite 
element mesh 

  

(a) Displacement when θ = 0 (b) Displacement when θ = 𝜋
4
 

  
(c) Velocity when θ = 0 (d) Velocity when θ = 𝜋

4
 

Figure 14: Displacement and velocity variation of the proposed scheme (𝑝𝑝 = 4/6), 
trapezoidal rule, and Bathe method along various propagating angles, at time 𝑡𝑡 = 7.36, 
60×60 finite element mesh 
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(a) Displacement when θ = 0 (b) Displacement when θ = 𝜋

4
 

  
(c) Velocity when θ = 0 (d) Velocity when θ = 𝜋

4
 

Figure 15: Displacement and velocity variation of the proposed scheme (𝑝𝑝 = 1), CDM, 
and Noh-Bathe method along various propagating angles, at time 𝑡𝑡 = 7.36, 140×140 
finite element mesh 

  

(a) Displacement when θ = 0 (b) Displacement when θ = 𝜋
4
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(c) Velocity when θ = 0 (d) Velocity when θ = 𝜋

4
 

Figure 16: Displacement and velocity variation of the proposed scheme (𝑝𝑝 = 4/6), 
trapezoidal rule, and Bathe method along various propagating angles, at time 𝑡𝑡 = 7.36, 
140×140 finite element mesh 

To evaluate the accuracy of time integration scheme, the Euclidean norm error 𝐸𝑗,θ 
(j = 0, 1 and θ = 0, 𝜋

4
) is used. It is defined as follows: 

𝐸𝑗,𝜃 = �∑ �𝑢𝜃
(𝑗) − 𝑢�𝜃

(𝑗)�
2

𝑖𝑖=𝑛𝑛−1
𝑖𝑖=𝑜 /∑ �𝑢�𝜃

(𝑗)�
2

𝑖𝑖=𝑛𝑛−1
𝑖𝑖=𝑜 × 100%      (32) 

where 𝑢𝜃
(𝑗) (i.e., 𝑢𝜃=0,𝑢𝜃=𝜋4

,  �̇�𝜃=0, and �̇�𝜃=𝜋4
) and 𝑢�𝜃

(𝑗) are the numerical results and 
the exact results at discrete time, respectively. 
Figs. 17-18 show the Euclidean norm errors of the explicit method and implicit method, 
respectively. As shown in Tab. 2, the proposed scheme (𝑝𝑝 = 1) yield less accurate results 
than the Newmark method and Noh-Bathe method when the low spatial discretization 
density is used. However, the proposed scheme (𝑝𝑝 = 1) yields more accurate results for 
displacement than the other schemes as the spatial discretization density increases (see 
Tab. 3). For velocity, the proposed scheme (𝑝𝑝 = 1), CDM, and the Noh-Bathe method 
have similar error norms when using the high spatial discretization density. 
In the implicit time integration scheme, the proposed scheme with 𝑝𝑝 = 4/6 provides 
highly accurate solutions regardless of spatial discretization density for displacement and 
velocity (see Fig. 18). Moreover, in the proposed scheme (𝑝𝑝 = 4/6), the results for 
θ = 𝜋

4
 are more accurate than those for θ = 0 in the case of the displacement and 

velocity as the dispersion error for θ = 𝜋
4
 is smaller than one for θ = 0. In contrast, we 

note that for the trapezoidal rule, the numerical results for θ = 0 are more accurate 
owing relative speed errors. Although the proposed scheme (𝑝𝑝 = 4/6) and trapezoidal 
rule have similar average values of the error norms when the high spatial discretization 
density (e.g., 140×140 mesh) is used, the proposed scheme (𝑝𝑝 = 4/6) yields more 
accurate results than other methods even when using the low spatial discretization density. 
Therefore, the parameter 𝑝𝑝 = 4/6  is recommended for wave propagation, and the 
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proposed scheme will suffice for usual engineering use. 
In Fig. 19, the computational efforts of the various methods are compared. For the 
explicit method, the Noh-Bathe method costs more time than the proposed method 
(𝑝𝑝 = 1) and CDM as the Noh-Bathe method has two sub-steps and a CFL number that is 
1.85 times that of the proposed scheme (𝑝𝑝 = 1) and CDM. On the other hand, for the 
implicit method, the Bathe method with two sub-steps requires more time than the other 
methods. Moreover, comparing the computational efforts of the proposed scheme 
(𝑝𝑝 = 4/6) and trapezoidal rule, the proposed scheme (𝑝𝑝 = 4/6) requires less effort as it 
has a CFL number that is 1.08 times that of the trapezoidal rule. Therefore, the proposed 
methods (𝑝𝑝 = 1 and 𝑝𝑝 = 4/6) are desirable for wave propagation problems on the 
explicit and implicit methods, respectively, owing to their reasonable accuracy and 
acceptable time cost. 

Table 2: Euclidean norm errors of various schemes, at time 𝑡𝑡 = 7.36, 60×60 finite 
element mesh 

Schemes 𝐸0,0 𝐸0,𝜋4
 𝐸1,0 𝐸1,𝜋4

 

Explicit Present study (𝑝𝑝 = 1) 1.6207 1.6136 1.3086 1.4088 

 CDM 1.0052 1.2781 1.2171 1.2094 

 Noh-Bathe (𝑝𝑝 = 0.54) 1.1333 1.1287 0.9527 0.9546 

Implicit Present study (𝑝𝑝 = 4/6) 0.3435 0.2621 1.5698 1.6136 

 Newmark (trap. rule) 0.5060 0.7438 3.4339 4.9636 

 Bathe (𝛾𝛾 = 0.5) 0.5652 0.6346 1.6334 1.6597 

Table 3: Euclidean norm errors of various schemes, at time 𝑡𝑡 = 7.36, 140×140 finite 
element mesh 

Schemes 𝐸0,0 𝐸0,𝜋4
 𝐸1,0 𝐸1,𝜋4

 

Explicit Present study (𝑝𝑝 = 1) 0.3168  0.3021  1.2759  1.7517  

 CDM 1.2021  1.2378  1.4363  1.1153  

 Noh-Bathe (𝑝𝑝 = 0.54) 0.6804  0.7544  1.1497  1.6307  

Implicit Present study (𝑝𝑝 = 4/6) 0.1569  0.0895  0.8034  0.8370  

 Newmark (trap. rule) 0.0844  0.1363  0.6573  0.8576  

 Bathe (𝛾𝛾 = 0.5) 0.3360  0.3673  1.2443  1.6476  
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Figure 17: Accuracy for various explicit schemes in wave propagation problem 

 
Figure 18: Accuracy for various implicit schemes in wave propagation problem 
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Figure 19: Required computational efforts of various methods considering the wave 
propagation problem at time 𝑡𝑡 = 7.36 

3.2 Standard undamped SDOF system 
The free vibration of a standard undamped SDOF (single-degree-of-freedom) system is 
used to test the accuracy of the proposed scheme. To solve the undamped SDOF system, 
we consider the representative cases of the proposed scheme: 𝑝𝑝 = 1 (with desirable 
dispersion in the one-dimensional case), 𝑝𝑝 = 5/6 (with highest accuracy), and 𝑝𝑝 = 4/6 
(with desirable dispersion in the multi-dimensional case). The equilibrium equation of the 
undamped SDOF system is given by Eq. (17) [Wen, Duan, Yan et al. (2017)]. 
In this section, we assume that the natural frequency is 𝜔 = 𝜋 (that is, the natural period 
is 𝑇𝑛𝑛 = 2), and the considered time duration 𝑇 is 4 sec. In order to calculate the 
accuracy and efficiency of various schemes, the Euclidean norm error 𝐸𝑗 (j = 0, 1, 2) is 
also used as follows: 

𝐸𝑗 = �∑ (𝑢(𝑗) − 𝑢�(𝑗))2𝑖𝑖=𝑛𝑛−1
𝑖𝑖=𝑜 /∑ (𝑢�(𝑗))2𝑖𝑖=𝑛𝑛−1

𝑖𝑖=𝑜 × 100%      (33) 

where 𝑢(𝑗) (i.e., 𝑢,  �̇�, and �̈�) and 𝑢�(𝑗) are the numerical results and the exact results at 
discrete time, respectively. 
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(a) Displacement (b) Velocity 

 
(c) Acceleration 

Figure 20: Accuracy and convergence rate for various schemes in undamped SDOF 
system 

Fig. 20 shows the Euclidean norm error of the proposed scheme, CDM, the Noh-Bathe 
method, the trapezoidal rule, and the Bathe method. In general, the relation between 
displacement, velocity and acceleration is linear. However, for the Noh-Bathe method, 
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the relation between the displacement and velocity, or between velocity and acceleration 
is not linear [Wen, Duan, Yan et al. (2017)]. Besides, for the proposed method (𝑝𝑝 = 5/6), 
a linear relation exists between displacement and acceleration because of the applied 
computation procedure. For displacement, velocity, and acceleration, the proposed 
schemes (𝑝𝑝 = 1 and 𝑝𝑝 = 4/6) and the Bathe method have similar error norms. The 
results of the proposed schemes (𝑝𝑝 = 1 and 𝑝𝑝 = 4/6) and CDM are similar only for 
displacement. The proposed scheme (𝑝𝑝 = 5/6) yields similar numerical results for 
velocity to those of the Noh-Bathe method, which provides highly accurate solutions. 
Moreover, the proposed scheme (𝑝𝑝 = 5/6) yields more accurate results for displacement 
and acceleration than the other schemes. This corresponds to the results for PE (see Fig. 
3). As the proposed scheme has no sub-steps, the proposed scheme has a lower 
computational cost. Therefore, the proposed time integration method with 𝑝𝑝 = 5/6 is 
more effective for the undamped SDOF system. 

 
Figure 21: Required computational efforts of various methods in undamped SDOF 
system when Δ𝑡𝑡/𝑇 = 0.02 is used 

3.3 Damped SDOF system 
The forced vibration of a damped SDOF system is used to verify the accuracy of a new 
numerical scheme [Wen, Duan, Yan et al. (2017)]. In the viscously damped SDOF 
system, which is shown in Fig. 22, the equation of motion is given as follows [Rao 
(2011)]: 
𝑚�̈�𝑥(𝑡𝑡) + 𝑐�̇�𝑥(𝑡𝑡) + 𝑘𝑥𝑥(𝑡𝑡) = 𝑘𝑦(𝑡𝑡) + 𝑐�̇�(𝑡𝑡)                                  (34) 
where 𝑥𝑥(𝑡𝑡) and 𝑦(𝑡𝑡) are the displacements of the mass and base from their static 
equilibrium positions at time 𝑡𝑡, respectively. In this study, we assume that the mass 𝑚 



 

 

Development of Non-Dissipative Direct Time Integration Method              65                 

 

is 10 kg/m, viscous damping coefficient 𝑐 is 20 N-s/m, and spring constant 𝑘 is 4000 
N/m. The displacement of the base is  𝑦(𝑡𝑡) = 1

20
sin (5𝑡𝑡) m and the initial conditions are 

𝑥𝑥(0) = 0.1 m and �̇�𝑥(0) = 0 m/s. 

 
Figure 22: Damped system under the hormonic motion of the base 

 
Figure 23: Homogenous, particular, and general solutions in the example 3.3 

As seen in Fig. 23, the exact solution of this problem is 𝑥𝑥(𝑡𝑡) = 𝑥𝑥ℎ(𝑡𝑡)+𝑥𝑥𝑝(𝑡𝑡), where the 
homogenous solution 𝑥𝑥ℎ(𝑡𝑡) is 0.1004𝑒−𝑡𝑡cos(19.975𝑡𝑡 + 0.0831) and the particular 
solution 𝑥𝑥𝑝(𝑡𝑡)  is {53.331 sin(5𝑡𝑡) − 0.0888cos (5𝑡𝑡)} × 103 . Fig. 24-26 show the 
relative error norms, which are defined by the following equation, when the time 
increment ∆t is 0.2𝑇𝑛𝑛 (the natural period 𝑇𝑛𝑛 = 2𝜋

𝜔
= 𝜋

10
 sec). 

𝜀𝑗 = �𝑢(𝑗)−𝑢�(𝑗)�
�𝑢�(𝑗)�

× 100%                                                 (35) 

 

Mass, m 

k c 

Base 

𝒚𝒚 + 

𝒙𝒙 + 
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It is important to note that damped SDOF problem is used to analyze the effect of time 
integration schemes for harmonic and transient responses. The error curves in Figs. 24-26 
start converging after the time is 𝜏 (≈ 10 𝑠), where 𝜏 is the time when the amplitude of 
the transient response is c.a. 0.0015%; that is, the transient response is negligible (see Fig. 
23). Therefore, the physical meaning of the relative error is the accuracy of the transient 
responses when 𝑡𝑡 ≤ 𝜏, whereas the physical meaning of the error is the accuracy of the 
harmonic response when 𝑡𝑡 > 𝜏. 
As seen in Figs. 24-26, the proposed scheme with 𝑝𝑝 = 4/6 provides more accurate 
solutions for velocity than the other methods when 𝑡𝑡 > 𝜏. However, for the proposed 
scheme (𝑝𝑝 = 4/6), the numerical results for velocity are less accurate than those of other 
methods when 𝑡𝑡 ≤ 𝜏 , and this scheme has low accuracy in the prediction of the 
displacement and acceleration. In contract, for displacement and acceleration, the 
proposed scheme with 𝑝𝑝 = 5/6 has the highest accuracy compared with the other 
schemes, and the numerical results for velocity are more accurate than those of other 
methods when 𝑡𝑡 ≤ 𝜏.  
Figs. 27-29 show the accuracy and convergence rate using Eq. (33) for 𝑡𝑡 ≤ 𝜏, 𝜏 < 𝑡𝑡 ≤
100𝑇𝑛𝑛, and 𝑡𝑡 ≤ 100𝑇𝑛𝑛 corresponding to the transient response, harmonic response, and 
both transient and harmonic responses, respectively. The Noh-Bathe method has a similar 
accuracy as that of the proposed scheme with 𝑝𝑝 = 5/6 when 𝑡𝑡 ≤ 𝜏, and shows a lower 
accuracy than the proposed scheme (𝑝𝑝 = 5/6) when 𝑡𝑡 > 𝜏. Therefore, for the transient 
response, the proposed scheme (𝑝𝑝 = 5/6) and the Noh-Bathe method can yield accurate 
solutions. For the harmonic response, the proposed scheme with 𝑝𝑝 = 5/6 provides more 
accurate solutions for displacement and acceleration than the Noh-Bathe method, 
whereas the 𝑝𝑝 = 4/6 case shows high accuracy for velocity when compared with other 
schemes. However, as shown in Fig. 29, for both transient and harmonic responses, the 
proposed scheme (𝑝𝑝 = 5/6) can be used to acquire desirable solutions in engineering 
problems. Therefore, we can identify that the optimal parameter 𝑝𝑝 is 5/6 for the damped 
SDOF system. 
Furthermore, as the Noh-Bathe method and Bathe method have two sub-steps, the 
computational time is approximately twice as high as that of the proposed scheme, CDM, 
and trapezoidal rule. Fig. 30 shows the quantitative comparison of the computational 
time/cost for various schemes. As shown in Fig. 30, the proposed scheme (𝑝𝑝 = 5/6) that 
yields small errors can be used to reduce computational efforts. 
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(a) Proposed schemes (𝑝𝑝 = 1, 𝑝𝑝 = 5/6, and 𝑝𝑝 = 4/6) 

 
(b) Proposed scheme (𝑝𝑝 = 5/6) and CDM 

Figure 24: Accuracy of the displacement for various schemes in damped SDOF system 
when the time increment ∆t is 0.2𝑇𝑛𝑛 
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(c) Proposed scheme (𝑝𝑝 = 5/6) and Noh-Bathe method 

 
(d) Proposed scheme (𝑝𝑝 = 5/6) and Newmark method (trap. Rule) 

Figure 24: (continued) 
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(e) Proposed scheme (𝑝𝑝 = 5/6) and Bathe method 

Figure 24: (continued) 

 
(a) Proposed schemes (𝑝𝑝 = 1, 𝑝𝑝 = 5/6, and 𝑝𝑝 = 4/6) 
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(b) Proposed schemes (𝑝𝑝 = 5/6 and 𝑝𝑝 = 4/6) and CDM 

Figure 25: Accuracy of the velocity for various schemes in damped SDOF system when 
the time increment ∆t is 0.2𝑇𝑛𝑛 

 

 
(c) Proposed schemes (𝑝𝑝 = 5/6 and 𝑝𝑝 = 4/6) and Noh-Bathe method 
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(d) Proposed schemes (𝑝𝑝 = 5/6 and 𝑝𝑝 = 4/6) and Newmark method (trap. Rule) 

Figure 25: (continued) 

 
(e) Proposed schemes (𝑝𝑝 = 5/6 and 𝑝𝑝 = 4/6) and Bathe method 

Figure 25: (continued) 
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(a) Proposed schemes (𝑝𝑝 = 1, 𝑝𝑝 = 5/6, and 𝑝𝑝 = 4/6) 

 
(b) Proposed scheme (𝑝𝑝 = 5/6) and CDM 

Figure 26: Accuracy of the acceleration for various schemes in damped SDOF system 
when the time increment ∆t is 0.2𝑇𝑛𝑛 
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(c) Proposed scheme (𝑝𝑝 = 5/6) and Noh-Bathe method 

 
(d) Proposed scheme (𝑝𝑝 = 5/6) and Newmark method (trap. Rule) 

Figure 26: (continued) 
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(e) Proposed scheme (𝑝𝑝 = 5/6) and Bathe method 

Figure 26: (continued) 

  
(a) Displacement (b) Velocity 



 

 

Development of Non-Dissipative Direct Time Integration Method              75                 

 

 
(c) Acceleration 

Figure 27: Accuracy and convergence rate of transient responses for various schemes in 
damped SDOF system 

  
(a) Displacement (b) Velocity 
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(c) Acceleration 

Figure 28: Accuracy and convergence rate of harmonic response for various schemes in 
damped SDOF system 

  
(a) Displacement (b) Velocity 
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(c) Acceleration 

Figure 29: Accuracy and convergence rate of both harmonic and transient responses for 
various schemes in damped SDOF system 

 
Figure 30: Required computational cost of various methods for example 3.3 
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Figure 31: Two degrees-of-freedom spring system 

3.4 Two degrees-of-freedom spring system 
In the two degrees-of-freedom system shown in Fig. 31, we compare the solutions of the 
velocity and acceleration by using the proposed scheme, CDM, Noh-Bathe explicit 
method, trapezoidal rule, and Bathe implicit method. The governing equation of two 
degrees-of-freedom system is expressed by as follows: 

�𝑚1 0
0 m2

� ��̈�1
(𝑡𝑡)

�̈�2(𝑡𝑡)� + �k1 + 𝑘2 −𝑘2
−k2 k2

� �𝑢1
(𝑡𝑡)

𝑢2(𝑡𝑡)� = �𝐹(𝑡𝑡)
0 �                       (36) 

In the present study, we assume that 𝑚1 = 1,𝑚2 = 1,𝑘1 = 10 and 𝑘2 = 10. Also, we 
consider the external force 𝐹(𝑡𝑡) at the node 1 as follows: 
𝐹(𝑡𝑡) = 𝐴sin𝜔𝑝𝑡𝑡                                                       (37) 
with 𝐴 = 10 and 𝜔𝑝 = 3. In this example, the considered time increment 𝛥𝛥𝑡𝑡 is 0.1. In 
this study, the reference solution and numerical solutions are investigated based on the 
time history of velocities and accelerations of each method at node 1 and 2. Newmark 
method with computational time increment of 𝛥𝛥𝑡𝑡 = 0.0001 is referred to as ‘reference 
solution’. As shown in Figs. 32-33, CDM, the trapezoidal rule, and Bathe method provide 
large period errors as time increases, while the proposed scheme and Noh-Bathe method 
present smaller period errors as shown in Figs. 32-33. Although the Noh-Bathe method 
has reasonably accurate solutions, the accuracy of the proposed method is higher than the 
Noh-Bathe method.  

  
(a) Displacement of node 1 (b) Section A-A in (a) 

𝒖𝒖𝟏𝟏 𝒖𝒖𝟐𝟐 

𝒌𝒌𝟏𝟏 𝒌𝒌𝟐𝟐 

𝑭𝑭(t) 
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 (c) Velocity of node 1 (d) Section B-B in (c) 

  
(e) Acceleration of node 1 (f) Section C-C in (e) 

Figure 32: Numerical solutions of node 1 for two degrees-of-freedom problem 

  
(a) Displacement of node 2 (b) Section D-D in (a) 
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(c) Velocity of node 2 (d) Section E-E in (c) 

  
(e) Acceleration of node 2 (f) Section F-F in (e) 

Figure 33: Numerical solutions of node 2 for two degrees-of-freedom problem 

3.5 Beam with boundary springs 
In this section, we consider a beam with boundary constraints (see Fig. 34), modeled with 
five-node element. The specific boundary conditions are as shown in the following 
equation: 

𝑤𝑤(0, 𝑡𝑡) = 𝑤𝑤(𝐿, 𝑡𝑡) = 0,     𝑘𝜃1 = (1.𝑒+5)𝐸𝐼
𝐿

,     𝑘𝜃2 = 𝐸𝐼
𝐿

                          (38) 

The important point to note here is that the boundary conditions (i.e., 𝑤𝑤(0, 𝑡𝑡) = 0 and 
𝑤𝑤(𝐿, 𝑡𝑡) = 0 ) is equivalent to 𝑘𝑤1 = ∞  and 𝑘𝜃2 = ∞ , respectively. However, in 
implementing the computations, it is impractical to apply 𝑘𝑤1 = 𝑘𝜃2 = ∞  due to 
floating point precision. 
We consider the applied force 𝑓𝑓(𝐿/2, 𝑡𝑡) at the center node of Fig. 34 as follows: 
𝑓𝑓(𝐿/2, 𝑡𝑡) = sin (2𝜋𝑓𝑓𝑓𝑡𝑡)                                          (39) 
where the forcing frequency is set to 𝑓𝑓𝑓 = 1.5(𝜔1/2/𝜋). Here, 𝜔1 is the fundamental 
frequency of the beam vibrations. 
Figs. 35-36 shows the time responses of the beam at its mid-span using the proposed 
scheme, trapezoidal rule, Bathe method. The step increment 𝛥𝛥𝑡𝑡 used for the three 
methods is 2.28𝑒 − 7sec. Newmark method with step size of 𝛥𝛥𝑡𝑡 = 2.28𝑒 − 8𝑠𝑒𝑐 is 
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referred to as ‘reference solution’. As shown in Figs. 35-36, the solutions provided by the 
proposed method are more accurate than those yielded by other methods. 

 
Figure 34: Beam with boundary springs modeled using five-node elements 

  
(a) Displacement (b) Section G-G in (a) 

  
(c) Velocity (d) Section H-H in (c) 
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(e) Acceleration (f) Section I-I in (e) 

Figure 35: Vertical time response at the midspan of the beam 

  
(a) Displacement (b) Section J-J in (a) 

  
(c) Velocity (d) Section K-K in (c) 



 

 

Development of Non-Dissipative Direct Time Integration Method              83                 

 

  
(e) Acceleration (f) Section L-L in (e) 

Figure 36: Rotational time response at the midspan of the beam 

4 Concluding remarks 
In the present study, the direct time integration scheme based on Gauss-Legendre 
quadrature is proposed for structural dynamics. The proposed scheme possesses second-
order accuracy and is non-dissipative. Moreover, this scheme has one parameter that 
affects stability, accuracy, and dispersion. When 𝑝𝑝 ≠ 1, the proposed scheme is an 
implicit method, as the methods used to solve for displacement and velocity are implicit 
and explicit, respectively. However, when 𝑝𝑝 = 1 , the proposed scheme is explicit 
method. By using the appropriate value of the parameter, the desirable stability, accuracy, 
and dispersion could be achieved. When 𝑝𝑝 < 1, the stability limit of the proposed 
scheme is larger than that of CDM, whereas the proposed scheme with 𝑝𝑝 ≤ 0.5 has 
unconditional stability. 
In order to show the uniqueness of the proposed algorithm, the solutions to the wave 
propagation problem are obtained using various schemes, and the numerical solutions are 
compared with the exact solutions. The proposed scheme (𝑝𝑝 = 4/6) provides more 
accurate numerical results than other methods (including explicit and implicit methods) 
even in the case of a low spatial discretization density. This requires a large 
computational cost as compared to explicit methods; however, this method requires less 
time than other implicit methods. Furthermore, we presented the performance of the 
solutions of a standard undamped system and a damped system. In a standard undamped 
SDOF system, the proposed scheme (𝑝𝑝 = 5/6) has the highest accuracy. In addition, in a 
damped SDOF system, two degrees-of-freedom system, and time responses of the beam, 
the proposed scheme (𝑝𝑝 = 5/6) has higher accuracy. As there is no sub-step in the 
calculation of the solutions, the computational cost and time of the proposed scheme is 
lower. In addition, the accuracy of the proposed scheme is higher than that of the Noh-
Bathe method and Bathe method consisting of two sub-steps. Therefore, the proposed 
scheme is desirable for linear structural dynamics owing to its accuracy and acceptable 
time cost. 
The proposed scheme has the following technical merits and demerits in engineering. The 
proposed scheme has the same or a higher stability limit than CDM when 𝑝𝑝 ≤ 1; that is, 
the proposed scheme is good for practical use as it has good stability characteristics. As 
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shown in Section 2.3, the method with 𝑝𝑝 = 5/6 has high accuracy characteristics when 
compared with those of the other methods, which is in good agreement with the 
numerical results provided in Sections 3.2-3.3. The proposed scheme is less expensive 
than both the Noh-Bathe method and the Bathe method, since the proposed scheme has 
no sub-step, making it almost 2 times cheaper than the others. On the other hand, the 
proposed scheme (𝑝𝑝 > 0.5) lacks unconditional stability, which has a critical time step 
corresponding to the stability limit. However, for the proposed scheme, the time step 
corresponding to the optimal CFL number is smaller than the critical time step. Therefore, 
in wave propagation solutions, the proposed method is stable and yields accurate 
solutions in engineering 
For the general structure dynamics, two most important issues are the linear and 
nonlinear dynamic response of a finite element system. In this study, we consider only the 
linear equations in dynamic analysis. However, the proposed scheme discussed 
previously for linear problems can also be extended for nonlinear dynamic analysis. 
Therefore, further research on the solution of the nonlinear dynamic response by using 
the proposed scheme would be necessary in the future.  
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Appendix A. Local truncation error analyses 
Local truncation error measures the order of accuracy of time integration methods at an 
arbitrary time step, assuming that the method was exact at the previous time step [Chung 
and Lee (1994); Zhang, Liu and Liu (2017); Kim and Choi (2018)]. In a single iteration 
of a time integration algorithm, the local truncation error is defined as the difference 
between the exact solution and the numerical solution. Local truncation error analyses 
similar to those described in Zhang et al. [Zhang, Liu and Liu (2017)] have been 
performed. 
The equation of motion in Eq. (2) at time 𝑡𝑡 and 𝑡𝑡 + ∆𝑡𝑡 are as follows: 
𝑴𝑴�̈�𝒖(𝑡𝑡) + 𝑪𝑪�̇�𝒖(𝑡𝑡)  + 𝑲𝑲𝒖𝒖(𝑡𝑡) = 𝑭𝑭(𝑡𝑡)                          (40)  
𝑴𝑴�̈�𝒖(𝑡𝑡 + ∆𝑡𝑡) + 𝑪𝑪�̇�𝒖(𝑡𝑡 + ∆𝑡𝑡)  + 𝑲𝑲𝒖𝒖(𝑡𝑡 + ∆𝑡𝑡) = 𝑭𝑭(𝑡𝑡 + ∆𝑡𝑡)                     (41) 
Where 𝒖𝒖(𝑡𝑡), �̇�𝒖(𝑡𝑡), �̈�𝒖(𝑡𝑡), and 𝑭𝑭(𝑡𝑡) are the numerical solutions of the exact displacement 𝒖𝒖𝑡𝑡, 
velocity �̇�𝒖𝑡𝑡, acceleration �̈�𝒖𝑡𝑡, and external nodal force vector 𝑭𝑭𝑡𝑡 at time 𝑡𝑡, respectively. 
The exact solutions satisfying Eq. (2) at time 𝑡𝑡 and 𝑡𝑡 + ∆𝑡𝑡 yields 
𝑴𝑴�̈�𝒖𝑡𝑡 + 𝑪𝑪�̇�𝒖𝑡𝑡  + 𝑲𝑲𝒖𝒖𝑡𝑡 = 𝑭𝑭𝑡𝑡                          (42)  
𝑴𝑴�̈�𝒖𝑡𝑡+∆𝑡𝑡 + 𝑪𝑪�̇�𝒖𝑡𝑡+∆𝑡𝑡  + 𝑲𝑲𝒖𝒖𝑡𝑡+∆𝑡𝑡 = 𝑭𝑭𝑡𝑡+∆𝑡𝑡                        (43) 
Substituting Eqs. (6)-(7) and half-step CDM into Eq. (41), we obtain the following 
relation: 

𝑴𝑴� �̈�𝒖(𝑡𝑡 + ∆𝑡𝑡) = −𝑪𝑪��̇�𝒖(𝑡𝑡) + 1
2
∆𝑡𝑡�̈�𝒖(𝑡𝑡)� − 𝑲𝑲 �𝒖𝒖(𝑡𝑡) + ∆𝑡𝑡�̇�𝒖(𝑡𝑡) + 𝑝

2
∆𝑡𝑡2�̈�𝒖(𝑡𝑡)� + 𝑭𝑭(𝑡𝑡 + ∆𝑡𝑡)   

                            (44) 
where 𝑴𝑴�  is the coefficient matrix defined by the following equation: 

𝑴𝑴� = 𝑴𝑴 + 1
2
∆𝑡𝑡𝑪𝑪 + 𝑞𝑞∆𝑡𝑡2𝑲𝑲              (45)  

As there is no previous truncation error at time 𝑡𝑡 and the external nodal force vectors are 
known, the following relationships hold: 
𝒖𝒖(𝑡𝑡) = 𝒖𝒖𝑡𝑡,   �̇�𝒖(𝑡𝑡) = �̇�𝒖𝑡𝑡,   �̈�𝒖(𝑡𝑡) = �̈�𝒖𝑡𝑡,   𝑭𝑭(𝑡𝑡) = 𝑭𝑭𝑡𝑡,   𝑭𝑭(𝑡𝑡 + ∆𝑡𝑡) = 𝑭𝑭𝑡𝑡+∆𝑡𝑡        (46)  
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The acceleration local truncation error 𝒆�̈�𝒖(𝑡𝑡+∆𝑡𝑡) and the corresponding weighted local 
truncation error 𝒆��̈�𝒖(𝑡𝑡+∆𝑡𝑡) are defined as follows: 
𝒆�̈�𝒖(𝑡𝑡+∆𝑡𝑡) = �̈�𝒖𝑡𝑡+∆𝑡𝑡 − �̈�𝒖(𝑡𝑡 + ∆𝑡𝑡)                         (47)  
𝒆��̈�𝒖(𝑡𝑡+∆𝑡𝑡) = 𝑴𝑴� [�̈�𝒖𝑡𝑡+∆𝑡𝑡 − �̈�𝒖(𝑡𝑡 + ∆𝑡𝑡)]                         (48)  
By using Eqs. (43) and (46) to express the external nodal force vector in Eq. (44) and 
Taylor series expansion to approximate 𝒖𝒖𝑡𝑡+∆𝑡𝑡, �̇�𝒖𝑡𝑡+∆𝑡𝑡, and �̈�𝒖𝑡𝑡+∆𝑡𝑡, substituting Eq. (44) 
into Eq. (48) yields 

𝒆��̈�𝒖(𝑡𝑡+∆𝑡𝑡) = �𝑞𝑞 − 1−𝑝
2
�𝑲𝑲�̈�𝒖𝑡𝑡∆𝑡𝑡2 + � 1

12
𝑪𝑪𝒖𝒖𝑡𝑡

(4) + �𝑞𝑞 − 1
6
�𝑲𝑲𝒖𝒖𝑡𝑡

(3)� ∆𝑡𝑡3 + 𝑂(∆𝑡𝑡4)        (49)  

where 𝒖𝒖𝑡𝑡
(𝑖𝑖) is the 𝑖-th time derivative with respect to time 𝑡𝑡. 

By expanding Eq. (47) using Taylor series and comparing it with Eq. (49), the 
acceleration local truncation error is as follows: 

𝒆�̈�𝒖(𝑡𝑡+∆𝑡𝑡) = �𝑞𝑞 − 1−𝑝
2
�𝑴𝑴−1𝑲𝑲�̈�𝒖𝑡𝑡∆𝑡𝑡2 +

⎣
⎢
⎢
⎢
⎡

1
12
𝑴𝑴−1𝑪𝑪𝒖𝒖𝑡𝑡

(4)

+ �𝑞𝑞 − 1
6
�𝑴𝑴−1𝑲𝑲𝒖𝒖𝑡𝑡

(3)

−�𝑞
2
− 1−𝑝

4
�𝑴𝑴−1𝑪𝑪𝑴𝑴−1𝑲𝑲�̈�𝒖𝑡𝑡⎦

⎥
⎥
⎥
⎤
∆𝑡𝑡3 + 𝑂(∆𝑡𝑡4)   (50)  

Similarly, for velocity and displacement, we obtain the following local truncation errors: 

𝒆�̇�𝒖(𝑡𝑡+∆𝑡𝑡) = �1
2
�𝑞𝑞 − 1−𝑝

2
�𝑴𝑴−1𝑲𝑲�̈�𝒖𝑡𝑡 −

1
12
𝒖𝒖𝑡𝑡

(4)� ∆𝑡𝑡3 + 𝑂(∆𝑡𝑡4)        (51)  

𝒆𝒖𝒖(𝑡𝑡+∆𝑡𝑡) = �1−𝑝
2
− 𝑞𝑞�𝑴𝑴−1𝑲𝑲�̈�𝒖𝑡𝑡∆𝑡𝑡2 +

⎣
⎢
⎢
⎢
⎡ �1−𝑝

4
− 𝑞

2
�𝑴𝑴−1𝑪𝑪�̈�𝒖𝑡𝑡

+ �1
6
− 𝑞𝑞�𝑴𝑴−1𝑲𝑲𝒖𝒖𝑡𝑡

(3)

−�1−𝑝
4
− 𝑞

2
�𝑴𝑴−1𝑪𝑪𝑴𝑴−1𝑲𝑲�̈�𝒖𝑡𝑡⎦

⎥
⎥
⎥
⎤
∆𝑡𝑡3 + 𝑂(∆𝑡𝑡4)   (52) 

As shown in Eqs. (50)-(52), the local truncation errors are 𝑂(∆𝑡𝑡3) for 𝑞𝑞 = (1 − 𝑝𝑝)/2. 
That is, the proposed scheme is second-order accurate in time for any 𝑝𝑝  if 𝑞𝑞 =
(1 − 𝑝𝑝)/2. Besides, as the damping term is included in Eqs. (50)-(52), the proposed method is 
always second-order accurate with and without damping. 

Appendix B. Integration and load operators 
The integration operator 𝐀 and load operators 𝐋𝑎  and 𝐋𝑏  are computed using the 
following equations: 

𝐀 = �
β
α

− Ω02

𝛼Δ𝑡𝑡
Δ𝑡𝑡
γ
�1 − 𝑝𝑝𝜉Ω0 −

1−𝑝
𝛼
𝜉Ω0β�

1
γ
�1 + 𝜉Ω0 − �1+𝑝

2
− 1−𝑝

𝛼
𝜉Ω0�Ω02�

�            (53)  

𝐋𝑎 = �

Δ𝑡𝑡
𝛼

(Δ𝑡𝑡)2

γ
�1+𝑝

2
− 1−𝑝

𝛼
𝜉Ω0�

�                                             (54) 
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𝐋𝑏 = �
0

(Δ𝑡𝑡)2

γ
1+𝑝
2
�                                                        (55) 

where 𝛼 = 1 +  𝜉𝛺0, 𝛽 = 2 − 𝛼, and 𝛾𝛾 = 𝛼 + 1−𝑝
2
Ω02. 
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