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Abstract: Numerical mechanical models used for design of structures and processes
are very complex and high-dimensionally parametrised. The understanding of the model
characteristics is of interest for engineering tasks and subsequently for an efficient design.
Multiple analysis methods are known and available to gain insight into existing models.
In this contribution, selected methods from various fields are applied to a real world
mechanical engineering example of a currently developed clinching process. The selection
of introduced methods comprises techniques of machine learning and data mining, in which
the utilization is aiming at a decreased numerical effort. The methods of choice are basically
discussed and references are given as well as challenges in the context of meta-modelling
and sensitivities are shown. An incremental knowledge gain is provided by a step-by-
step application of the numerical methods, whereas resulting consequences for further
applications are highlighted. Furthermore, a visualisation method aiming at an easy design
guideline is proposed. These visual decision maps incorporate the uncertainty coming from
the reduction of dimensionality and can be applied in early stage of design.
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Notation

ξ deterministic simulation model
ξ ∗ meta-model of the deterministic simulation model
� vector-valued quantity
X space of input parameter
X set of input vectors
x input quantity
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nx number of input quantities, with counter variable i
Z space of result parameter
Z set of result of result vectors
z result quantity
nz number of result quantities, with counter variable j
nsim number of deterministic simulations, with counter variable l
�perm indicator of permissibility
�nperm indicator of non-permissibility
� empirical mean value
S�xi|z j

sensitivity of input parameter xi with respect to result quantity z j

1 Introduction

The ongoing digitalisation includes significant changes in the design of structures and
processes. Due to high costs the design of new products or production processes by ‘trial-
and-error’ investigations at real prototypes seems not economically justifiable any more.
To overcome this, a simulation-based design process is established in many industries.
The main idea is to simulate the new product/process by a numerical model. In general,
this model is parametrised with nx input parameters xi in order to find a suitable set
of parameters fulfilling constraints and optimality criteria. The challenging task is, to
parametrise the model and to identify the optimal design. For supporting this process
many numerical tools are available and need to be applied specifically. The main goals
for these methods are: Gaining insight into the numerical simulation model, identifying
influences of the parameters to constraints and optimality criteria and support the design
process in an efficient manner. In the context of ‘computational intelligence’, the applied
methods/tools are mainly associated with two research areas: Data mining and machine
learning. These fields are highly innovative and the application possibilities of ‘big data’-
methods are enormous. In contrast to the application field ‘big data’, the engineering tasks
are characterized by ‘small data’, because the generation of data (i.e. multiple simulation
model computations) is highly expensive.

Therefore, the common procedure in a simulation-based design process is as follows:

1. development and parametrisation of a simulation model,

2. computing a sample set (Design of Experiments),

3. explore the sample set by data mining methods,

4. construct a meta-model with machine learning methods,

5. use the meta-model for:

(a) sensitivity analysis,

388   Copyright ©  2018 Tech Science Press     CMES, vol.117, no.3, pp.387-423, 2018 



(b) uncertainty analysis,

(c) optimisation.

Many modifications or exchanges in this order of steps are possible, e.g. occasionally
iterative improvements are necessary. The common guiding theme of this contribution is to
discuss and apply several methods at a real design task in the context of a clinching process.

The requirements for the design of mechanical joints have increased steadily in recent years.
In the past, the main requirements that have significantly influenced the development of
mechanical joining technology were economic efficiency, productivity, process reliability
and lightweight construction. A common technology for joining sheet metal is clinching.
When using clinching, the sheet metal is locally formed, a ductile material is required but
no rivet or any other further element is needed and no heat is induced into the joining zone.
Currently, clinching is used only for thin sheet metal, because the determination of the tool
geometry parameters is done by empirical knowledge in combination with experimental
tests. Unfortunately, the suitability of clinching for connecting substantially longer sheet
metal thickness has neither been sufficiently investigated and suitable toolkits for larger
overall sheet metal thickness are only available in very small quantities and only in a few
sizes. The state-of-the-art for ascertaining tools for larger sheet metal thickness and point
dimensions is trial-and-error, which leads to high costs caused by producing a large number
of tools and doing experiments. This paper demonstrates some analytical approaches to
this problem in order to obtain a suitable tool design for clinching thick sheet metal with
the help of a finite element analysis in combination with machine learning methods. The
clinching model is introduced in Section 2. The applied methods are well established and
only briefly reviewed. The exploration of existing data by data mining methods is discussed
in Section 3. In order to increase the efficiency, two different types of meta-models are
compared in Section 4 and utilized for the sensitivity evaluation in Section 5. Furthermore,
a new method for simplification of the design process is proposed, see Section 6. Therefore,
two-dimensional nomographs are developed, which are common visual aids in engineering
related design tasks. On the basis of the acquired information about the simulation model,
‘decision maps’ are constructed. A list of the most relevant symbols can be found at the
end of this paper.

1.1 Simulation model

As described, the foundation of simulation-based design is a parametrised simulation
model. Examples for simulation models are analytical functions or finite element models.
The parametrisation of the model is done by nx input parameters assembled in an input
vector x (also called feature vector). The related input space X ⊂ Rnx is usually composed
of restricted intervals for each dimension

X = I1× I2× . . .× Ii× . . .× Inx . (1)
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These restrictions are usually motivated by physical plausibility (minimum/ maximum
thickness, mass, stiffness, ...). The simulation model

ξ : X→ Z : x 7→ z (2)

maps the input space to the result space Z. Usually, this space is parametrised as well,
thus nz result parameters (synonyms: output, fitness, response) exist, which leads to a result
space Z⊂ Rnz . For applications in mechanical or structural engineering, result parameters
are e.g. displacements, stresses and strains. The parametrisation of the result is important,
due to the manifold result quantities in time dependent finite element analysis. Therefore,
significant (e.g. maximum displacement) or cumulative (e.g. mean displacement) meta
parameter are considered. An important characteristic property of the simulation model
ξ is that only point-to-point relations are possible. Thus, continuous approaches are not
applicable and a sampling-based evaluation needs to be utilized.

1.2 Data mining methods

Data mining methods are used to explore existing data sets and generate knowledge and
information about the underlying (but unknown) relationships of input and output data.
In the field of application described in this contribution, the data has to be generated.
Therefore, methods in context of the Design of Experiments (DoE) are utilized to sample
the input space according to Eq. (1) by nsim simulation points. These simulation points are
a set X of input vectors and a set Z of related result vectors. Due to constraints in the
result space, the sample set can be split into permissible and non-permissible samples. This
means, the total sample is the union of these two subsets

(X ,Z ) = (X ,Z )perm

⋃
(X ,Z )nperm . (3)

The applied sampling scheme is responsible for the effectiveness, i.e. ensuring a minimum
number of samples in the full input space. The simplest method is to evaluate a simulation
model based on high dimensional grids. More effective are space filling designs, aiming
uniform distributed samples. Common algorithms for these sampled random numbers
are ‘Latin Hypercube sampling’ [McKay, Conover and Beckmann (1979)] and ‘SOBOL’
sequences’ [Sobol’ (1967)].

The methods applied for data mining are outlier analysis [Breunig, Kriegel, Ng et al.
(2000)], cluster analysis [Halkidi, Batistakis and Vazirgiannis (2001)] and classification.
Furthermore, sensitivities and correlations can be computed for the existing data.

1.3 Machine learning

In engineering applications, the computation of the mechanical model, e.g. by the finite
element method, is highly time consuming and for various evaluations (e.g. sensitivity
analysis, uncertainty analysis) a large number of model computations is necessary. To
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overcome this disadvantage, the research area machine learning or ‘meta-modelling’
provides multiple methods for an approximative model computation [Siddique and Adeli
(2013); Simpson, Poplinski, Koch et al. (2001)]. The mechanical model ξ is represented
by a meta-model

ξ
∗ : X→ Z : x 7→ z∗, (4)

such that the orignal is

ξ (x) = ξ
∗(x)+ ε, (5)

aiming a minimal error ε between mechanical model and approximation

minε = min | ξ (x)−ξ
∗(x) | ∀x ∈X . (6)

Commonly, artificial neural networks [Siddique and Adeli (2013)], radial basis function
networks [Jin, Chen and Simpsion (2001)] or support vector regression [Cherkassky and
Ma (2004)] are used. A simpler approach is the polynomial approximation. For these
methods, several implementations (e.g. ‘libSVM’ [Chang and Lin (2011)]) exist and can
be utilized as surrogate model. Details about the methods applied in this paper (artificial
neural networks and polynomial approximations) can be found in Section 4.1.

Remark The procedure described in this contribution is based on non-adaptive meta-
models. This means, the sample set is pre-computed and the meta-model is trained on the
basis of this data. Adaptive meta-models integrate the sampling and training in the usage
phase [Dubourg (2011)]. Due to the adaptivity, they perform better for highly non-linear
problems but are more complicated in implementation and usage.

1.4 Sampling-based sensitivity measures

Sensitivity analysis is the quantification of the influence of each input parameter to the result
parameters [Saltelli, Chan and Scott (2008)]. In general, it is possible to distinguish between
global and local sensitivity measures. Locally, the gradient of the simulation model ξ gives
information about the influence of each parameter [Sobol’ and Kucherenko (2009)]. For
the numerical design, this method is not applicable and the variance-based SOBOL’ index
[Sobol’ (2001)] or the frequency-based measure FAST (FOURIER amplitude sensitivity
test) [Saltelli, Tarantola and Chan (1999)] can be applied alternatively. The measures are
computed on the basis of specific sampling schemes and need a high amount of model
evaluations. The variance of the input parameter is predefined on the basis of informative
or non-informative random numbers. To quantify the robustness of one selected design,
informative random numbers (e.g. normal distribution) can be used. For the design process
analysed in this contribution, no information should be considered and, therefore, a non-
informative uniform distribution is applied.



2 Introduction of the guiding example

2.1 Clinching process

Clinching is one of the common mechanical joining technologies that can be found in car
body production and household appliance (refrigerators, washing machines etc.). It can be
classified as a manufacturing process, more detailed as a joining technology or specific as
joining by forming, such as hemming or riveting. The main advantage of clinching is that no
additional part is necessary (in opposite to riveting) to join the blank sheets. Furthermore,
a prepunched hole is not required. It is possible to join blank sheets with different material,
for example aluminium and steel. In comparison to welding, no heat is supplied to the
joining zone.

For the clinching process, special tools are required: A punch, a die (several types exist,
such as round point dies, flat dies or dies with movable blades) and a blank holder. In the
first step, the blanks are positioned and clamped between the blank holder and the top of
the die. The blank holder prevents a take-off of the blanks and supplies the push out force
for removing the punch out of the blanks. In some cases, an additional lower blank holder
is use, in order to push the clinch joint out of the die cavity after the clinching process. The
upsetting step (see II. in Fig. 1) is characterized by moving the punch downwards until the
die-sided sheet metal is in contact with the die. In the last step, the punch is penetrating
the material to a predefined position so that an interlock is formed. In order to get a strong
clinch joint, the clinch point should have a large neck thickness. A large interlock provides
high cross tension strength and prevents unbuttoning under shear load.

Figure 1: Steps of the clinching process

2.2 Numerical model and description of parametrisation

Simulation In order to save simulation time and getting practical results, the simulation
model is a 2D-model with axisymmetric boundary conditions, because of the rotational
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symmetry of geometry and loads (see Fig. 2). Nevertheless, it is possible to compute
3D-models, when non-symmetric geometries or loads occur. The used simulation type is
Langrangian incremental with Newton-Raphson iteration and an automatic remeshing. That
means, if one rigid part or mesh penetrates another or the used mesh is highly distorted, a
remeshing is executed automatically. The material model of the sheets is elasto-plastic, to
get springback effects after the joining process. The tools are defined as rigid objects, where
the die is fixed and the punch is moving at constant speed. The blank holder is coupled to
the punch by pretensioned springs with linear stiffness.

The mechanical properties of the considered material (construction steel S350GD) are
determined in tensile tests and transferred to simulation software as pairs of variates for
true strain and yield stress (yield surface). The friction between the sheet metal and tools
– but also the sheets itself - is very complex. In the simulation, the friction conditions are
defined as a constant shear factor during the whole process, which is state of the art in metal
forming simulation. Further information can be found in Landgrebe et al. [Landgrebe,
Kropp, Gehrke et al. (2017); Landgrebe, Mauermann and Kropp (2017)].

Validation To make sure that the simulation results match with experimental data, three
configurations with different sheet thickness ratios where joint (t1 + t2 ∈ {3+2 mm;2.5+
2.5 mm;2+3 mm}). This comparison is done by considering the contour geometry of the
cross-section and the load-stroke-data of the joining process. The very good agreement
between simulation an experiment can be seen in Figs. 2 and 3.

Figure 2: Clinching construction steel
S350GD (t1 = 3 mm, t2 = 2 mm)

Figure 3: Comparison between simu-
lation results and experimental data

Geometric tool parameters and output parameters In the present paper, the focus is
on the interaction of geometric tool parameters (see Fig. 4).



Figure 4: Geometric input parameters
of clinch tools

Figure 5: Geometric parameters of a
clinched joint

In Tab. 1, the investigated parameters for the die and the punch geometry are shown. 
Investigated is a fixed total sheet thickness of t.t = 5 mm, with variable ratio of the single 
sheet thickness xt1. To avoid samples without reference to reality, some parameters are 
given in a relative manner. For example, it is not practicable using a punch diameter D.S 
that is larger than the diameter of the die D.M. Such that, the punch diameter is related to 
the die diameter D.S = xD.S_rel · xD.M.

The response variables interlock zf and neck thickness zt.n (see Fig. 5) are significant for
the quality of a clinching joint. The overall objective is to find geometries with maximal
interlock and neck thickness constrained by specific thresholds.

3 Exploration of data

The given initial design space (X ,Z )init following from the data in Tab. 1 is the basis 
for a DoE. Therefore, 9101 samples of the numerical simulation of the clinching process 
are carried out on the basis of Latin Hypercube Sampling (LHS). The sample set was 
reduced by removing non-physical samples. It is the main goal of the numerical simulations 
to derive general properties of the physical process with respect to preferred geometric 
properties, described by two result quantities. The evaluation of the result values leads to 
the conclusion that not every design vector x is permissible regarding the desired properties. 
The existing data set is investigated with data exploration techniques, in order to enhance 
the general understanding of the physical process as well as validate upcoming results of 
the surrogate models by comparison to characteristic quantities based on the actual data set.
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Table 1: Input and response parameters of the simulation model

# variable description min. value max. value

input parameters
1 xD.M die diameter 7.5 mm 12.5 mm
2 xt.M_rel die depth in relation to total sheet thickness

xt.M_rel =
t.M

t1+t2

0.2 0.6

3 xD.MB_rel die diameter bottom in relation to punch
diameter xD.MB_rel =

D.MB
D.S

0.8 1.2

4 xalpha.M angle die bottom 15◦ 45◦

5 xbeta.M angle die side face 0◦ 5◦

6 xD.S_rel punch diameter in relation to die diameter
xD.S_rel =

D.S
xD.M

0.5 0.75

7 xR.S radius punch 0.25 mm 0.5 mm
8 xgamma.S angle punch face 0◦ 2◦

9 xdelta.S angle punch side face 0◦ 4◦

10 xt1_rel thickness upper sheet in relation to total
sheet thickness xt1_rel =

t1
t1+t2

0.2 0.8

11 xt.b bottom thickness 0.589 mm 5.035 mm

output parameters
1 zf interlock
2 zt.n neck thickness

3.1 Permissible design space

Initially, the data set is split into permissible and non-permissible data according to Eq. (3),
whereas the constraint is defined by

zf > 0, (7)

forcing the existence of an interlock. With respect to Eq. (7), nperm = 2365 permissible data
points in (X ,Z )perm and, consequently, nnperm = 6736 non-permissible in (X ,Z )nperm
are obtained.

To have a brief overview of the interdependencies between two parameters, a scatter plot of
the data as depicted in Fig. 6 can be used. The upper triangular matrix is related to X perm,
the lower to X nperm.

With the focus on the permissible data, there are two noticeable issues. First of all,
the correlation or more general dependency between the following pairs of parameters is



Figure 6: Scatter plot for permissible (green) and non-permissible (red) data

observable

xD.S_rel ∼ xt.M_rel, xt.b ∼ xD.S_rel and xt.b ∼ xt1_rel . (8)

Secondly, the non-permissible data is approximately as equally distributed in X as the 
permissible data, except of the correlated parameters. Hence, if an input space Xperm is 
defined by Xperm = [xmin,perm,1,xmax,perm,1] × . . . × [xmin,perm,11,xmax,perm,11] , the permissible
design range for each input parameter is equal to the initial ranges in Tab. 1. It is not 
ensured that x ∈ Xperm is permissible. Particular with regard to the approximation by a 
surrogate model, it is expedient to integrate e.g. a classification method. An alternative 
approach is the computation of design spaces based on permissible points only [Graf, Götz 
and Kaliske (2018)]. Other names for this method are solution space [Zimmermann and von 
Hoessle (2013)] or feasible design area [Duddeck and Wehrle (2015)]. If these subsets are

396   Copyright ©  2018 Tech Science Press     CMES, vol.117, no.3, pp.387-423, 2018 



Data Mining and Machine Learning Methods 397

independent intervals for each input variable, a permissible hypercuboid can be computed. 
A method to compute such a hypercuboid is given in Goetz et al. [Götz, Liebscher and Graf 
(2012); Graf, Götz and Kaliske (2018)].

For the analysed data set, the permissible hypercuboid is given in Fig. 7 and Eq. (9). The 
difference compared to the initial design space are emphasized

xmin,perm,HC = [7.453,0.196,0.796,14.7,1.0,0.55,0.248,0.0,0.0,0.195,0.59],

xmax,perm,HC = [12.53,0.604,1.204,45.3,5.0,0.75,0.502,4.0,1.6,0.81,1.478].
(9)

The permissibility is defined according to Eq. (7), whereas the objective is a permissible
hypercuobid with maximum number of points inside. The visualisation applied in Fig. 7 is
called parallel coordinate plot [Inselberg (1985)]. Hereby each parameter is represented by
a separated axis. A parameter vector inside the permissible hypercuboid is represented as
line inside the grey marked area. The shown hypercuboid contains 25.6 % of the permissible
points, which is a reasonable result.

Figure 7: Permissible design space visualised as parallel coordinate plot

The benefit of t he computed permissible design space i s, t hat within t he design process, 
the engineer can select any parameter combination inside the permissible design space. A 
disadvantage is that the usable hypervolume, representing the range of possible designs, is 
only 10.2% of the initial design space, see Tab. 1.



3.2 Sensitivity analysis

For engineering related design guidelines, the amount of 11 independent parameters is
challenging regarding the specification of a suitable design. A sensitivity analysis is
carried out in order to identify parameters with major influence on the result quantities.
Correlations are evaluated with the goal to substitute one parameter by another for the
purpose of parameter reduction. One correlation coefficient as well as two sensitivity
coefficients will be briefly introduced and applied to the permissible data set (X ,Z )perm.

Spearman correlation coefficient The SPEARMAN rank correlation coefficient is
commonly applied to assess the relationship between two parameters described by
monotonic function and is therefore a non-linear correlation coefficient [Saltelli, Chan and
Scott (2008)]. It is defined as

rSPEARMAN(x,z) =
∑

nsim
l=1 (rg(xi)− rgx) ·

(
rg(zl)− rgz

)√
∑

nsim
l=1 (rg(xl)− rgx)

2 ·∑nsim
l=1

(
rg(zl)− rgz

)2
, (10)

with the rank rg(�) and the mean of the rank rgx = rgz = (n+ 1)/2. A coefficient value
|rSPEARMAN|= 1 is related to an ideally positive or negative monotonic (non-linear) relation
between x and z. The resulting correlation coefficients rSPEARMAN is depicted in Fig. 8 for
each parameter combination where the result parameters are separated by the dashed line.

The correlation assumption by the visual interpretation of Fig. 6 is reassured by following
correlation coefficients

rSPEARMAN(xt.m_rel,xD.S_rel) = +0.674, rSPEARMAN(xt1_rel,zf) = +0.308 ,

rSPEARMAN(xD.S_rel,xt.b) = +0.548, rSPEARMAN(xt1_rel,zt.n) = +0.939 , (11)

rSPEARMAN(xt1_rel,xt.b) =−0.328, rSPEARMAN(xt.b,zf) =−0.767 .

For the further analysis and utilization of the data set, the correlations between input and
output parameters are from higher importance. Under the assumption that |rSPEARMAN(x,z)|
can be additionally interpreted as sensitivity measure, xt1_rel has the major effect to zt.n and
xt.b to zf. Especially the identified correlation information between the input parameters
xt.m_rel ∼ xD.S_rel and, consequently, the reduced permissible design space (see Fig. 6) is
decisive for the training, evaluation and utilization of surrogate models.

Correlation relation estimation Additional to the correlation analysis, an estimation of
the sensitivities is utilized by the application of a correlation relation estimation.

According to Siebertz et al. [Siebertz, van Bebber and Hochkirchen (2010)], the correlation
relation can be defined as

KVi =
Var[E[Z|Xi]]

Var[Z]
, 0≤ KVi ≤ 1, (12)

398   Copyright ©  2018 Tech Science Press     CMES, vol.117, no.3, pp.387-423, 2018 



Data Mining and Machine Learning Methods 399

Spearman-RCC
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 8: Correlation matrix (SPEARMAN rank correlation coefficient) for input and output
parameters

analogous to the variance-based sensitivities measures. A sampling-based estimator
for the sensitivity measure is proposed in Siebertz et al. [Siebertz, van Bebber and
Hochkirchen (2010)]. This method itself is not applicable to existing data, but the general
concept has been adapted to a variance-based sensitivity measure for existing data KVest
(KVestimation).

Each input parameter is separated into p intervals Ii,k,k∈ {1, . . . , p}with the associated data
set

(
X ,Z j

)
i,k =

nperm⋃
l=1

(
xl,z j,l

)
| xl ∈ Xi,k (13)

for each output parameter z j. Hence, the conditional mean values

Z i, j,k =
1

#{Z i, j,k}
·∑Z i, j,k (14)



are utilized to approximate the correlation relation with the variance of the mean values by

SKVest
xi|z j

= KVesti, j =
ŝ
(
Z i, j,k

)2

ŝ
(
Z j
)2 ≈

Var[E[Z j|Xi]]

Var[Z j]
. (15)

The presented sensitivity measure is interpretable as first order SOBOL’ indices, see
Section 5.1. Assuming a large number of data samples as well as sub spaces, it holds
SKVest

xi|z j
≈ SSOBOL’

xi|z j
, whereas a small data set is still applicable to quantify the significance of

input parameters even for non-linear dependencies.
For each output parameter, the computed sensitivities for the most sensitive input 
parameters are shown in Tab. 2. Especially the variance of zt.n seems to be solely 
depending on xt1_rel and weakly xt.b. According to the KVest measures, the other remaining 
input parameters are insignificant t o t he o utput p arameter. C ompared t o t he correlation 
evaluation with the SPEARMAN coefficient (see Eq. (11)), the same two main contributors 
are identified.

Table 2: Three major influences in descending order

interlock zf neck thickness zt.n
parameter SKVest

xi|zf
SEASI

xi|zf
parameter SKVest

xi|zt.n
SEASI

xi|zt.n

xt.b 0.44 0.59 xt1_rel 0.61 0.68
xD.S_rel 0.15 0.11 xt.b 0.16 0.08
xt1_rel 0.11 0.10 xD.M 0.07 0.08

1−∑
nx
i=1 S�xi|zf

0.30 0.20 1−∑
nx
i=1 S�xi|zt.n

0.16 0.16

EASI For the purpose of comparison and validation of the identified correlation and
sensitivity values, another and methodical different approach is used as sensitivity measure.
Originally, the ‘effective algorithm for computing global sensitivity indices’ (EASI) has
been introduced by [Plischke (2010)] as a sensitivity measure for existing data of non-
linear systems. The method is adapted to the general concept of FAST, which is analysing
the input space by frequency dependent characteristic functions and the map

Gω(s) =
1
π

arccos(cos(2π ·ω · s)). (16)

Due to permutation and resorting of existing data (X ,Z ), the EASI approach leads to
the approximation of Eq. (16) for the frequency ω = 1. At the beginning, one input
parameter xi and one output parameter z j are increasingly sorted to obtain an ordered vector
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(xi,l,z j,l)
′ = (xi,z j)l | xi,l ≤ xi,l+1∀ l = 1,2, . . . ,nperm . In order to approximate a triangular

shaped function, all odd indices of (xi,z j)
′
l in increasing order are followed by all even

indices in decreasing order, such as

(xi,l,z j,l)
′′ =

{
(xi,z j)

′
2l−1 l ≤ n+1

2

(xi,z j)
′
2(nsim+1−l) l > n+1

2

l = 1,2, . . . ,nperm . (17)

This specific shuffling leads to a triangular-shape vector, which is in analogy to the FAST
sampling at ω = 1. Since the permutation of the output parameter is conjoined to the input
permutation, the resonances of period ω = 1 and its higher harmonics in the power spectrum
are used to determine the sensitivity. Based on the complex coefficients

cm =
nsim

∑
l=1

z′′j,l · exp
[
−2π · i

nsim

](l−1)·m
, i2 =−1 , (18)

of the discrete Fourier transformation, the first order sensitivity index is computed by

SEASI
xi|z j

=

M
∑

m=1
|cm|2

nsim/2
∑

m=1
|cm|2

. (19)

According to Plischke [Plischke (2010)], the number of higher harmonics is set to M = 6. 
The computed sensitivities are given in Tab. 2.

Both introduced sensitivity measures only provide an approximation for first order
sensitivity. The sum of higher order sensitivities (total sensitivity) can be estimated by

SEASI, KVest
xi|z j

1 −∑i
n
=

x 
1 .                 As can be seen in Tab. 2, the amount of higher order sensitivities is

significant and cannot be neglected. For both result values, the determined sensitivities are
depicted in Fig. 9. Evidently, the qualitative results of both measures are similar to each
other or equal regarding the descending order of the sensitive input parameters.

Self-organizing map An entirely different approach in correlation analysis is the
evaluation of Self-organizing maps (SOM). Introduced by KOHONEN, SOM try to adapt
the biological brains ability to map complex high-dimensional data to a low-dimensional
(2D) representation of information, thus SOM: Rnx → R2. Topological properties of the
data are hereby preserved, which allows the identification of e.g. clusters or correlation
behaviour. Possible evaluation methods for cluster identification or spatial distribution of
data are described in Liebscher et al. [Liebscher, Witowski and Goel (2009); Ultsch (2003)].

In this contribution, component maps, based on an orthogonal neural grid of 30× 30
neurons, are utilized and the resulting component charts are separately depicted in Fig. 10.
Based on the grid representation of the neural network, the parameter value of a neuron



Figure 9: Result of sensitivity analysis with KVest and EASI for zf (interlock) and zt.n (neck
thickness)

Figure 10: Component map of Self-Organizing map trained for permissible data
(X ,Z )perm (response parameters are highlighted in green)
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Summary of data mining From the previously discussed results, the following
conclusions can be drawn:

• independent measures (KVest and EASI) yield the same results,

• most significant parameter for result interlock zf: xt.b (bottom thickness), xD.S_rel
(punch diameter in relation to die diameter) and xt1_rel (thickness upper sheet in
relation to total sheet thickness),

• most significant parameter for result neck thickness zt.n: xt1_rel (thickness upper sheet
in relation to total sheet thickness), xt.b (bottom thickness) and xD.M (die diameter),

• high amount of parameter interaction is expected,

• permissible design space cannot be identified on the basis of the scatter plot,

• dependencies (correlations) in the permissible and non-permissible data set are
identifiable.

4 Meta-modelling

In the following, two different machine learning methods (artificial neural network and
response surface) are discussed and applied to the presented example. Furthermore, the
meta-models are evaluated and visualised.

are represented at the neurons position in the grid. Under the assumption of a considerably
good fit of the network, correlation analysis can be provided, since at each map position the
actual data space is represented as well.

No correlation is visualized by two orthogonal component charts, whereas either positive or
negative correlation is represented by equal or inverse gradients of the components. Those
observations can be done globally over the map and, therefore, the entire data space, or
locally for a partial area of the SOM.

Regarding the data set, multiple interdependencies can be identified. The response values
seem to be independent to each other, since charts are clearly orthogonal to each other,
whereas the positive correlation between zt.n and xt1_rel can be derived from the equally
oriented trend lines. Same applies for the dependency between xD.S_rel and xt.M_rel. The
distinctive negative correlation between xt.b and zf is not clearly visible, but can be
confirmed by SOM. Due to the component charts, see [Malone, McGarry, Wermter et al.
(2005); Mostafa (2009)], low (blue) parameter values of xt.b comply with the total range of
zf, but increasing parameter values lead to a decrease of the output parameters (see lower
left and right corner).



4.1 Artificial neural networks and polynomial approximation

Artificial neural networks An artificial neural feed-forward network with one hidden
layer (with nv neurons, see Fig. 11) can be written as weighted sum of the output of the
neurons

ξ
∗(x) =

nv

∑
v=1

β
v
·G(wv,θ v,x). (20)

The vector β contains the weighting factors between hidden layer and output neuron. The
function G is the processing of one neuron, see Fig. 12. It is G(w,θ ,x) = ϕ(ξ ,θ) =
ϕ(ξ (w,x),θ). The neuron consists of two separated functions. A common propagation
function is the weighted sum of all input signals ξ (w,x) = ∑

nx
i=1 wv,i · xi. The weights

w representing the strength of influence for each input neuron to each hidden neuron
separately. The activation function ϕ can be formulated by various functions, e.g.
hyperbolic tangent or binary threshold. In this study, an unipolar function

ϕuni,θ (ξ ,θ) =
1

1+ e−(ξ+θ)
(21)

is used. This function depends on the output of the propagation function ξ and a bias value
θ .

input layer hidden layer output layer

Figure 11: Generalised neural network
with one hidden layer

synaptic weight

bias

activation
function

output
signal

propagation
function

input
signals

Figure 12: Construct of hidden neuron i

The training or learning of the ANN is the definition of appropriate weighting factors for
a preliminary defined network architecture (i.e. number of neurons, number of layers,
activation function) see Hagan et al. [Hagan and Menhaj (1994); Siddique and Adeli (2013);
Wilson and Martinez (2003)].
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Polynomial approximation The polynomial approximation is mostly called ‘Response
Surface Method (RSM)’. The main idea is to represent the data by a polynomial of degree
n.

Usually, the degree is n = 1 for linear approximation or n = 2 for quadratic approximation

ξ
∗(x) = β0 +

nx

∑
i=1

βixi +
nx−1

∑
i=1

nx

∑
j=i+1

βi jxix j +
nx

∑
i=1

βiix2
i . (22)

The coefficient β0 is the constant, βi,i j,ii are the coefficients for the linear, mixed and
quadratic terms, respectively.

The training procedure is the computation of vector β on the basis of minimization of the
root mean square error by an HESSIAN matrix, see Myers et al. [Myers, Montgomery and
Anderson-Cook (2009)]. Thereby, the most common assumption for the error ε in Eq. (5)
is zero mean, yielding the ordinary least-squared estimator of β .

4.2 Selection and training of meta-models

Meta-models contain various parameters, which need to be found during a training process.
Due to different characteristics (e.g. size, dimensionality, complexity, white noise, ...),
data sets cannot be considered by one general meta-model. Thus, it is challenging for
meta-modelling to select a type of model, the architecture of the model and the training
parameters of the model. A common method is to analyse the performance of different
meta-models for the same data set. To have possibility for validation, the data set is split
into a set used for training and another for testing. The approximation error depends on the
selection of training and test data. To overcome this, the k-fold cross-validation (CV) [Arlot
and Celisse (2010); Geisser (1975)] is commonly used. Thereby, the data set is split into k
subsets

(X ,Z ) =(X ,Z )1
⋃

(X ,Z )2
⋃

. . .
⋃

(X ,Z )k (23)

and the training is repeated k times. Typically, the number of subsets is selected within
k ∈ {5,10}.
The comparison of different meta-models is based on a mean error

εRMS =
1
k

k

∑
i=1

εi,RMS. (24)

The error measure εRMS is given in Eq. (26). The k-fold CV is basis for an automatic
selection process.

For the solution analysed in this contribution, the meta-modelling is performed for
both result quantities zf and zt.n independently. The training is done for a polynomial
approximation (linear and quadratic) according to Eq. (22), support vector regression using



‘libSVM’ [Chang and Lin (2011)] and ANN according to Eq. (20). The finding of an
optimal ANN architecture is included in the automatic select process. These neuron-layer
combinations are based on the number of neurons in a first hidden layer of {1−25} and for
a second hidden layer of {0− 25}. By holding the condition that the number of hidden
neurons in the second hidden layer is smaller/equal that in the first hidden layer, 219
different architectures are observed.

The training, i.e. the optimisation of neuron bias values and connecting weights, can be
done by back-propagation algorithms. These algorithms are very slow, which is critical
due to the high amount of observed models. Therefore, the LEVENBERG-MARQUARDT-
algorithm can be used [Hagan and Menhaj (1994); Levenberg (1944); Marquardt (1963)].
This algorithm is very fast but tends to over-learning. This disadvantage is due to the
repeated training in the framework of k-fold CV not relevant.

The analysis is performed on an ‘Intel i7-4790’ CPU within 40 hours for each result
quantity. As result of the observed meta-models, ANNs perform best. The best architectures
(number of input neurons – hidden layer neurons – hidden layer neurons – output neurons)
are for zf: (11−25−16−1) and for zt.n: (11−22−18−1).

4.3 Quality evaluation and visualisation

The quality of meta-models is evaluated by characteristic measures. The error to be
observed is the difference between original result and the approximation. The error for
a simulation point l is

εl = |zl− z∗l |. (25)

The following two measures are mainly used. The root mean square error (RMS) is

εRMS =

√
1

nsim
·

nsim

∑
l=1

(εl)
2 (26)

A disadvantage is, that the value of the RMS depends on the order of magnitude for the
observed result. This means, only a relative evaluation of the approximation quality is
possible. But different meta-models for the same data set can be evaluated relatively to
each other. Another important measure is the coefficient of determination R2 (also called
CoD [Most and Will (2010)])

εR2 =

nsim

∑
l=1

(
Z ∗

l −Z
)2

nsim

∑
l=1

(
Z l−Z

)2
= 1−

nsim

∑
l=1

(Z ∗
l −Z l)

2

nsim

∑
l=1

(
Z l−Z

)2
=

explained sum of squares
total sum of squares

. (27)
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For the analysed data set, the quality measures are given in Tab. 3. Additionally to 
the ANNs, a polynomial meta-model with quadratic polynomial degree is given. The 
polynomial approximation follows the formulation in Eq. (22) in general. However, only 
the most significant input parameters (based on correlation measures) are considered in the 
utilized polynomial approximation.

Table 3: Comparison of the approximation quality for ANN and polynomial

interlock zf neck thickness zt.n

error measure ANN polynomial ANN polynomial

εRMS 0.0084 0.0472 0.0039 0.0386
εR2 0.9977 0.9204 0.9992 0.9868

The error measures in the table show the disadvantage of the measure εR2 . For the
polynomial approximation, a value of zf = 0.92 indicates a reasonable approximation, but
Fig. 13(b) shows that the approximation quality is not reasonable. The measure εRMS
indicates the very good approximation quality of the ANNs, which can be validated by
Fig. 13(a) and Fig. 13(c). The graphs in Fig. 13 show the predicted results z∗i and the
original results zi for all sample data.
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Figure 13: Quality assessment of analysed meta-models (black: zi, green: z∗i )

It is common to use 3D visualisations depict the meta-model, which is challenging for the
multi-dimensional input space (here 11-dimensional). The others (not shown dimensions)
need to have fixed values, such that n2

x−nx
2 possibilities for visualisations exist. Thus, any

visualisation of multi-dimensional data in 3D is limited. In Figs. 14 and 15, two input
parameter are selected, separated for each result. Additional to the meta-model result
(continuous plot), the original data set is shown.



Most of the scatter of the input data can be explained by the two selected input parameters.
In contrast, Fig. 16 has two selected input parameters where the meta-model cannot
explain the scatter. These parameters can be interpreted as locally (due to the fixed other
parameters) non-sensitive.
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Figure 14: 3D-visualisation for zf, x = [10.0, [0.2,0.6],1.0,30.0,2.5,0.63,0.38,2.0,2.0,
0.5, [0.6,4.7]] and sample set (blue points)
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Figure 15: 3D-visualisation for zt.n, x = [[7.45,12.53],0.4,1.0,30.0,2.5,0.63,0.38,
2.0,2.0, [0.20,0.81],2.64] and sample set (blue points)
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Figure 16: Non-useful 3D-visualisation for zt.n, x = [[7.45,12.53], [0.2,0.6],1.0,30.0,
2.5,0.63,0.38,2.0,2.0,0.5,2.64] and sample set (blue points)

5 Sensitivities

In this section, the most common sensitivity measures are described, computed and
discussed for the clinching process. Namely, these measures are the SOBOL’ indices of
first order SSOBOL’ and the total SOBOL’ indices SSOBOL’,T. The sensitivities are computed
using the developed meta-models. The results are compared to the measure for existing data
SKVEST (see Section 3.2) and the measure SCOP. The Coefficient of Prognosis (CoP) is used
in [OptiSLang (2011)] and computed for the polynomial meta-model. Furthermore, the
functional behaviour of the total SOBOL’ index called sectional sensitivity measure shows
the change of influence for each input parameter.

5.1 Sensitivity measures

For variance-based sensitivity measures, it can be distinguished between effects of first and
higher order. Effects of first order S�xi|z j

, also called main effects, quantifying the influence

of one parameter xi to the variance of the result z j. Effects of higher order S�xi,...,p|z j
capturing

the influence of two or more input parameters xi,...,p to variance of the result z j. The
overall influence of one input parameter is called total sensitivity. The computation of the
SOBOL indices, i.e. the solution of high dimensional integrals, can be done by Monte-Carlo
simulation or more efficient on the basis of polynomial chaos expansion [Sudret (2008)].

SOBOL’ index The SOBOL’ index of first order [Sobol’ (2001)] is defined as

SSOBOL’
xi|z j

=
Varxi [E[z j|xi]]

Var[z j]
, (28)

with the result quantity z j and the input quantity xi. The expected value of z j under the
condition of occurrence for a specific xi is E[z j|xi]. The variance overall possible xi is Varxi .



The variance of the result Var[z j] is designated as total variance. This measure is also called
measure of importance.

Total SOBOL’ index The cumulative influence of all lower level sensitivities (i.e. first
order, second order, ...) can be computed by the total SOBOL’ index [Homma and Saltelli
(1996)]. In analogy to Eq. (28), it is

SSobol’,T
xi|z j

= 1−
Varx∼i [E[z j|x∼i]]

Var[z j]
. (29)

The subscript �∼i indicates the consideration of all input quantities xk | k = {1, . . . ,nx}
holding k 6= i. Conclusively, Varx∼i [E[z j|x∼i]] is the partial variance of all input quantities xk
without xi.

Coefficient of Prognosis – CoP The sensitivity measure Coefficent of Prognosis is
defined in Most et al. [Most and Will (2011)] as

SCoP
xi|z j

=CoPz j ·S
Sobol’,T
xi|z . (30)

The measure is the total SOBOL’ index linearly scaled by the Coefficient of Prognosis,
which is a quality estimator for the meta-model. The quality estimators CoP of the
polynomial approximation for the two results are CoPzf = 0.9169 and CoPzt.n = 0.9866.

5.2 Results of sensitivity analysis based on meta-model computations

Additionally to the above described measures, the measure KVest, already discussed in
Section 3.2, is included in the comparison. The computed sensitivities can be found in
Figs. 17(a) and 17(b) for the response interlock zf and neck thickness zt.n, respectively.

KVest versus SOBOL’ As already pointed out in Section 3.2, the sensitivity measure
KVest is comparable to SOBOL’ indices of first order. But, in this example there is
a substantial difference between them. The measure KVest identifies more sensitive
parameters than the SOBOL’-indices. Only the most significant parameters are found by
both. One reason for the difference is the dependency of the input data, see Figs. 6 and 8
and Eqs. (8) and (11). Within the sampling-based sensitivity measures, the dependencies
cannot be considered and cause the differences. Another reason of difference is the usage of
the meta-model for computing the SOBOL’ indices. To capture such influences, sensitivity
measures based on existing data and sampling-based measures need to be compared.
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CoP

(a) Sensitivities for zf (interlock)

CoP

(b) Sensitivities for zt.n (neck thickness)

Figure 17: Sampling-based and existing data-based sensitivity measures

SOBOL’ versus SOBOL’,T The comparison of the total SOBOL’ indices and the first order
indices indicates the amount of interaction phenomena. For the both result quantities, a
huge difference can be found. For zf, the parameters xD.S_rel and xt1_rel are different. For
zt.n, many parameters show interaction phenomena, but especially xt.M_rel, xt1_rel and xt.b
need to be highlighted.

SOBOL’,T versus CoP The comparison yields, that the selection of the type of meta-
model has a significant influence on the sensitivity evaluation. The measure CoP is a linear
scaled total SOBOL’ index, such that a comparison of the measures is possible. Even if
the three most sensitive parameters (xt1_rel,xD.M,xt.M_rel ) for the result zt.n are identified
with both measures, the differences are very substantial. The amount of influence and the
interaction phenomena are very different.



5.3 Sectional sensitivities

Description of methodology In Pannier et al. [Pannier and Graf (2014)], a method for
the sectional evaluation of global sensitivity measures is proposed. The aim is to have more
detailed information about the sensitivity for xi by separating the input space X according
to Eq. (1) into p equidistant intervals. The separation is done independently for each input
parameter, such that the sensitivity is computed as function depending on xi. The splitting
is formulated as

X = I1× I2× . . .×
p⋃

k=1

Ii,k× . . .× Inx , (31)

p⋃
k=1

Ii,k = [ai,1,bi,1]∪ [ai,2,bi,2]∪ . . .∪ [ai,k,bi,k]∪ . . .∪ [ai,p,bi,p], (32)

with ai,k = ai +(k− 1) ·∆, bi,k = ai + k ·∆, ∆ = bi−ai
p . The same splitting is applied to

the data set for the sensitivity measure ‘KVest’, see Eq. (13). For the input parameter xi,
all segments Xi,k = I1× I2× . . .× Ii,k× . . .× Inx have to be considered. The sensitivity is
computed for each segment of the input space k ∈ {1, . . . , p}, such that

S�xi,k|z j
= S�xi|z j

(Xi,k) (33)

is the sectional sensitivity for the input parameter xi. As sensitivity measure, all common
global sensitivity measures can be applied. For global comparison, these sectional
sensitivities have to be scaled by

Sxi,k|z j =
p ·Sxi,k|z j

p
∑

k=1
Sxi,k|z j

·Sxi|z j . (34)

Thus, the mean of the sectional sensitivity values is equal to the sensitivity of the full input
space X computed with the same global sensitivity measure S.

Sectional sensitivity can be interpreted as mean quantitative functional behaviour for each
input parameter xi under consideration of the variance of all others. For the interpretation of
the results, it has to be considered, that the sensitivities between different input parameters
are not comparable within one segment, because they are computed in different subspaces
Xi,k.

Results Here p = 10 sections are evaluated, the results are given in Fig. 18. Due to the
high number of interaction phenomena, the total SOBOL’ index SSobol’,T is considered.

For the result zf, the two parameters xt.b and xD.S_rel are remarkable. All other parameters
showing uniform behaviour, which means the influence is constant over the complete
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(b) Sectional sensitivities for zt.n (neck thickness)

Figure 18: Selected sectional sensitivity using SOBOL’,T (continuous lines) for 10 subsets
and relevant original values (dashed lines, see Fig. 17)

input range. Furthermore, the dashed line in Fig. 18(a) (showing the result discussed
in the previous section) is equal to the overall sensitivity. The parameter xt.b has very
high sensitivity for low parameter values and lower sensitivity for high parameter values.
This characteristic has to be evaluated according to the production process, low parameter
values exist at the end of the process, see Fig. 1. To validate this result, the meta-model
visualisation in Fig. 14(a) can be used. For small values of xt.b, a very high gradient is
observable. The same evaluation is valid for xD.S_rel.

For result zt.n, the input parameters xt1_rel, xt.M_rel and xD.M are significant. The parameter
xt1_rel is very sensitive and shows small changes only. The input parameter xt.M_rel shows
decreasing sensitivity. This behaviour cannot be found in Fig. 15(a), presumably because
the interaction sensitivity of xt.M_rel is very high, which cannot be visualized in a 3D-plot.



5.4 Summary of sensitivity results

The following main facts can be concluded:

• sensitivity of result zf (interlock)

– most relevant parameters: xt.b (bottom thickness), xD.S_rel (punch diameter in
relation to die diameter) and xt1_rel (thickness upper sheet in relation to total
sheet thickness),

– same relevant parameters are found as on the basis of existing data, seeTab. 3,

– parameter interaction exists in the meta-model,

– sensitivity of xt.b (bottom thickness) decreases for high parameter values.

• sensitivity of result zt.n (neck thickness)

– most relevant parameters: xt1_rel (thickness upper sheet in relation to total sheet
thickness), xt.M_rel (die depth in relation to total sheet thickness), xt.b (bottom
thickness) and xD.M (die diameter),

– except xt.M_rel, same relevant parameters are found as on the basis of existing
data, see Tab. 3,

– high amount of parameter interaction exists in the meta-model,

– sensitivity of xt1_rel (thickness upper sheet in relation to total sheet thickness)
and xtM_rel (die depth in relation to total sheet thickness) showing significant
changes within the parameter range.

• dependency in the input data set does not allow to fully comparable the meta-
model-based sensitivity measures and the sensitivities discussed in Section 3.2
(extrapolation of meta-model),

• results depend on the selected meta-model.

6 Decision map-engineering approach for visualisation of high-dimensional param-
eter spaces

A common engineering design approach is the visualisation of complex functional
relationships by two-dimensional nomographs. These nomographs simplify the design
process and helps to find appropriate parameter ranges for each problem. This approach
is adapted for the ANN meta-model, developed in Section 4.2. The map should represent
the 11-dimensional input vector x, by two dimensions ξ map : R2 → R. Thus, the function
ξ ∗ : R11 → R needs to be constructed in a reduced way. In general, two methods can
be used. First, by the application of dimension reduction methods, such as principal
component analysis or singular value decomposition, the sample space can be reduced,
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Figure 19: Proposed approach for generating decision maps

maybe to a two-dimensional space. Crucial is, that this space has no physical relationship
and, therefore, engineering decisions cannot be made based on those values. The second
methodology is proposed in this contribution and is based on the selection on two
representative dimensions xi,x j, which are the map dimensions. The question to be
answered is, what values should be taken for the others not shown parameters x?. This
aspect is previously already discussed for the meta-model visualisations in Figs. 14 and
15. The proposed method is to consider the not shown parameters x? as intervals and
construct two decision maps. One decision map represents the lowest and the other the
highest values. The computation of these extremal values needs to be repeated for each
lattice point. In Fig. 19, the approach is shown, especially the consideration of constraints
h(x) is highlighted. The difference of the two maps can be interpreted as the influence of
the not shown parameters x?. It has to be remarked, that the common method plotting
two signification input values and consider the others x? as mean value yields wrong
interpretations.

6.1 Construction of decision maps for interlock and neck thickness

The major requirement for any design is permissibility. For the analysed sample set, no
clear relationship of permissibility can be identified, see Fig. 6. To take this characteristic
into account, the decision maps are built for the permissible design space, see Section 3.1.
This hypercuboid Eq. (9) represents permissible samples only. Because of the interaction
freedom of the hypercuboid with respect to the selection of samples, the maps can be made
interaction free. Alternative approaches, as describing the permissible samples with the
help of convex hulls, do not have this advantage.

For the functions ξ ∗ = zf and ξ ∗ = zt.n, the monotony requirement cannot be guaranteed
and two constraints need to hold. The constraints are due to the dependency of xt.M_rel and
xD.S_rel, which can be seen in Fig. 6. The other identifiable dependencies, as xt1_rel and
xt.b, are not present in the permissible design space. The constraints for permissibility are



formulated as

h1(x) = xD.S_rel−0.50 · xt.M_rel−0.50 < 0 and (35)

h2(x) = xD.S_rel−0.32 · xt.M_rel−0.43 > 0. (36)

and xD.M are most sensitive in descending order. For the result zt.n, the input parameter
xt1_rel, xt.M_rel and xD.M are most sensitive. The idea of the map is the visualisation the
functional characteristics with respect to these input parameters. If only the two most
sensitive parameters would be used, the resulting map would be too general and not
applicable in practice. To overcome this, a grid of maps is computed, therefore fixed
values of the third and fourth most sensitive parameters are considered. For zf, no specific
characteristic can be found in the sectional sensitivities, see Fig. 18(a). But, for zt.n the
input parameter xD.M show a significant change in sensitivity, see Fig. 18(b). Therefore, the
fixed values of the input parameter are placed in these regions, which are already indicated
in Fig. 18(b). To directly include the constraints Eqs. (35) and (36), a link between zf and
zt.n is provided by sharing the parameter xD.S_rel.

As depicted in Fig. 19, the values of the decision map should be represented by the
minimum and the maximum z = [zmin,zmax]. If the optimisation tasks are solved, the
extremal values are inside of extrapolation meta-model areas. This yields a drastic
overestimation of the uncertainty and is not explainable in practice. To cope with this, the
map is approximatively constructed by replacing the extremal values by empirical quantile
values assuming zmin ≈ z0.01 and zmax ≈ z0.99. The random sampling of the input space is
performed by Monte-Carlo simulation using a set of nsim = 50000 samples for each lattice
girder point.

The resulting maps for zf and zt.n are shown in Figs. 21(a) and 21(b) for the minimum and
maximum values, respectively.

The minimum maps can be used by the following steps, as indicated in Fig. 20:

1. define threshold for interlock
e.g. zf > 0.3
→ region of permissible designs in maps for zf and zt.n (green highlighted),

2. select permissible xt.b under consideration of a manufacturing constrain xt.b > 0.2 · t.t
e.g. xt.b = 1.0,

3. select xD.S_rel fulfilling objective maxzt.n and holding the constraints
e.g. xD.S_rel = 0.72,

4. select xt.M_rel fulfilling objective maxzt.n and holding the constraints
e.g. xt.M_rel = 0.53.
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minimum maximum

Figure 20: Example for using the decision map, with xD.M = 10.0 and xt1_rel = 0.5 (for
colour legend see Fig. 21(a))

This results can be projected to the maximum map, yielding zf ∈ [0.34,0.73] and zt.n ∈
[0.19,0.44]. For the further design process (finding the other parameters x?), it is ensured,
that the constraints hold and the result values are within the given intervals.

6.2 Evaluation of the decision maps

The evaluation of the decision maps (Figs. 21(a) and 21(b)) shows a significant difference
between the minimum and the maximum value map. This shows the relevance of computing
the extremal maps and not only a mean value map. A reason for the unexpected difference
(unexpected because the most significant parameters are represented) can be the high
amount of parameter interactions. This can be seen in Fig. 17 at the difference of first
order SOBOL’ index and the total SOBOL’ index.

The minimum and the maximum maps for zf show the same trend. Furthermore, it can be
seen that for the three different xD.M a slight shift of the contour lines is recognisable. The
change with respect to xt1_rel depends on the value of xD.M. The differences between the
minimum and the maximum values are the same for all nine maps, which is indicated by,
a shift of the contour lines for each and can be interpreted as nearly linear behaviour, w.r.t.
xD.M and xt1_rel. An important information of the sectional sensitivities (see Section 5.3) is,
that the effect of high sensitivity in the first sections and less sensitivity in the last section
for xD.S_rel. This can also be found in the map, the gradient of the contour lines decreases
for increasing xD.S_rel. The same characteristic can be found for xt.b.

The maps for zt.n are different compared to the maps for zf. The shapes of the contour lines
are different for the minimum and the maximum chart the uncertainty is higher. This means,
for any selected design the range of possible values is higher. For the minimum map, the



(a) Minimum decision maps

(b) Maximum decision maps

Figure 21: Decision maps for zf (interlock) and zt.n (neck thickness), with three testing
points (◦, ♦, O) and highlighted constraints (see Eqs. (35) and (36))
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change is more significant. The change with respect to xt.b is negligible. In comparison to
the sensitivities (see Section 5.2), it can be seen, that the influence of xt1_rel is higher than
for xt.M_rel. But xt.M_rel has significant influence to the minimum map.

6.3 Application of decision maps for real test specimens
To show the applicability of the decision maps and evaluate their quality, three specimens 
are simulated and tested. In Tab. 4, the input parameters and the results are given. The 
photography of the real test specimens 2.1 is given in Fig. 2.

It can be seen, that the meta-model results for the neck thickness zt.n are very accurate and
less accurate for the interlock zf. The results applying the maps are also given in Figs. 21(a)
and 21(b). The evaluation of the map indicates a range of possible responses due to the
limited information content in two-dimensions. It is obvious that the expected results for
the neck thickness zt.n are in the ranges of the maps. The prediction quality of the map
for the interlock zf is less, but suitable. The validity of the decision maps depends on
the approximation quality of the meta-model, which can clearly be seen from the table.
For more detailed maps, construction of an improved meta-model, e.g. only within the
permissible range is suggested.

Table 4: Input and response parameters of three test specimens, related meta-model results 
z∗ and results using the decision maps zmap

parameter specimen 2.1 ◦ specimen 2.2 ♦ specimen 2.3 O

xD.M 10.0 10.0 10.0
xt.M_rel 0.36 0.36 0.32
xD.S_rel 0.58 0.58 0.58
xt1_rel 0.6 0.4 0.5
xt.b 1.1 1.1 1.3

zf 0.31 0.46 0.30
z∗f 0.27 0.33 0.22

zmap
f [0.05,0.36] [0.10,0.36] [0.06,0.28]

zt.n 0.69 0.27 0.47
z∗t.n 0.60 0.26 0.44
zmap

t.n [0.05,0.75] [0.20,0.33] [0.25,0.55]

Remark to the term ‘uncertainty’ In general, the term uncertainty has multiple usages.
In this contribution, it is used to indicate the unknown information due to the dimension
reduction for the visualisation purposes. This kind of uncertainty can be seen within the 
context of early stage of design. The second main usage of the term uncertainty is in context 
of imprecisely known model parameter for a particular design, which is not in the scope of 
this contribution.



7 Conclusion

The contribution comprises the evaluation and determination of information based on
numerical simulations of the physical joining process of two metal sheets (clinching).
Accurate numerical simulations are inevitable since related physical experiments tend to be
economically and ecologically expensive compared to the numerical pendant. Therefore,
multiple simulations are utilized to obtain overall knowledge related to the clinching
process. Based on the computed simulation results data mining methods, correlation
and sensitivity analysis could be applied, gaining general insight to the manufacturing
process with respect to inherent system interdependencies. The utilized methods are briefly
introduced and discussed regarding their applicability. Basically, the applied correlation
and sensitivity measures indicate the same set of input parameters as either dependent to
each other or sensitive to particular output dimension.

As usual in engineering related design process, it is helpful to provide design guidelines.
Since the single evaluation of a certain design by a numerical simulation is highly
computational expensive, an approach for a meta-model-based guideline has been created.
By substituting the design space by an artificial neural network, it is possible to validate
the data-based sensitivity and correlation indices, whereas it is worth mentioning, that the
approximation quality strongly dependence on the non-linearity of the output parameters.
Additionally, the determination of sectional sensitivity is carried out, which allows the
computation of sensitivities in subsets of the input space and, therefore, process related
changes of influence. The combination of the meta-model and data mining results lead
to so-called decision maps, representing the point-wise evaluated meta-model over the
most sensitive parameters. This 2D-representation of the clinching process enables the
prediction of an initial design based on output requirements. As shown in the contribution,
the utilization of mean values for input parameters could be misleading, wherefore extremal
value are used. The generated decision has been exemplary validated.

Conclusively, the application of data mining methods in combination with the meta-model
approximation enables a gain in process insight and simultaneously a visualisation of
the clinching process provided by the decision maps. Nevertheless, the evaluation and
application strongly dependence on the initial data set and its completeness regarding the
representation of the mechanical/physical process.
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