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Abstract: The lattice Boltzmann method (LBM) is used to simulate the growth of a 
solid-deposit on the walls of a circular tube resulting from a gas-to-solid reaction and 
precipitation process. This process is of particular interest for the design of reactors for 
the production of hydrogen by the heterogeneous hydrolysis of steam with Zn vapor in 
the Zn/ZnO thermochemical cycle. The solid deposit of ZnO product on the tube wall 
evolves in time according to the temporally- and axially-varying convective-diffusive 
transport and reaction of Zn vapor with steam on the solid surface. The LBM is well-
suited to solving problems with coupled flow, heat and mass transfer in a time-evolving 
domain. Here, a D2Q9 axisymmetric multiple-relaxation-time (MRT) lattice Boltzmann 
scheme is used to simulate incompressible fluid transport while a D2Q5 axisymmetric 
MRT lattice Boltzmann scheme is used to simulate the convective-diffusive transport of 
Zn vapor. The model is first validated against several analytical solutions, followed by a 
parametric study to understand the effect of Reynolds, Schmidt, and Damköhler numbers 
on the time evolution of the ZnO deposition profile along the tube axis. The axial location 
of the fastest deposition is found to increase with increasing Peclet number, and decrease 
with increasing Damköhler number, with no independent effect from the Schmidt number. 
When the reaction kinetics are assumed to increase along the tube axis due to non-
isothermal tube wall temperature, a second peak in the deposition profile can be observed 
for sufficiently low values of Da/Pe. 
 
Keywords: Lattice Boltzmann methods, reactive flow, heterogeneous reaction, 
precipitation, solar hydrogen production. 

Nomenclature 
c               sound speed (= 𝛿𝑥

𝛿𝑡
) 

D              mass diffusivity 

Da           Damköhler number (= 𝑘𝑁𝑟
𝐷

 ) 

e      discrete velocity vector 
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f        fluid distribution function 
g        concentration distribution function 
G              flow source term 
K                kinetic constant 
L        length of modeled section of tube 
M        collision matrix 
M a             Mach number (= 𝑢

𝑐
) 

N        number of lattice units 
P        pressure 

P e              Peclet number (𝑢𝑎𝑣𝑅
𝐷

 ) 

Q        volumetric flow rate 
r                  radial coordinate 

rff             reaction rate 
R         tube radius 
R         mass transfer source term 

Re               Reynolds number (= 𝑢𝑎𝑣𝑅
𝜐

) 

S         source term 

 

St Strouhal number (= 𝑅2

𝛤𝐷
) 

t         time 
u         hydrodynamic velocity 
w weight function 
W wall location function 
z axial coordinate 
z0 beginning of non-isothermal tube section  
Greek symbols: 
α discrete velocity index 
ᾱ velocity index in opposite direction of α 
Γ oscillation time period 
δ Kronecker delta 
∆ boundary intersection fraction 
θ local angle of solid boundary  
ν kinematic viscosity 
φ species molar concentration 
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ρ fluid density 
τ relaxation time 
Ω relaxation time vector  
Subscripts: 
0         reference value 
1         core region radius 
2         annular region inner radius 
A annular region 
av average quantity 
C core region 
eq equilibrium conditions 
F flow model 
(g) gas phase 
i         coordinate index 
j         coordinate index 
M mass transfer model 
n inward normal to solid boundary 
r        radial direction 
(s)              solid phase 
w                value on solid boundary (wall) 
z                axial direction 

1 Introduction 
The simultaneous convective-diffusive transport of chemical species and their precipitation 
onto surfaces following reaction is relevant to many naturally-occurring and engineered 
systems. Significant amounts of precipitation can lead to complex changes in the boundary 
geometry, which in turn affects the subsequent fluid flow and species transport. The 
development of accurate and computationally-efficient models for simulating flow and 
transport in reacting systems with complex and time-varying domain boundaries is 
therefore valuable in many applications. 
Lattice Boltzmann methods (LBM) have been developed for fluid flow [He and Luo 
(1997)], heat and mass transport [He, Chen and Doolen (1998)], as well as other physical 
phenomena such as acoustics and ion transport [Li and Shan (2011); He and Li (2011)]. 
Due to the local nature of the algorithm, lattice Boltzmann methods provide significant 
advantages in simulating systems with complex and changing geometries, when compared 
to the finite-difference solution of the Navier-Stokes (N-S) equations, which involves the 
discretization of numerous derivatives in space. Several LB models have been 
demonstrated which use one set of distribution functions to determine the velocity field, 
and an additional set to solve the convective-diffusion equation (CDE), which is coupled to 
the velocity field. These models can both be implemented with the single relaxation-time 



 
 
530   Copyright © 2018 Tech Science Press        CMES, vol.117, no.3, pp.527-553, 2018 

Bhatnagar-Gross- Krook (BGK) collision operator [He, Chen, and Doolen (1998); 
Parmigiani, Huber, Chopard et al. (2009); Chai and Zhao (2013)], as well as with 
multiple relaxation times [Yoshida and Nagaoka (2010)]. 
The LBM for the CDE has been applied to many problems wherein it is desirable to exploit 
its benefits regarding irregular and/or moving boundaries. Kang et al. simulated the growth 
of crystals using the LBM to solve the N-S equations and the CDE with a first-order 
kinetic boundary condition [Kang, Zhang, Lichtner et al. (2004)]. The boundary condition 
was implemented using lattice-sized control volumes at the liquid/solid interface. Similar 
approaches were later used to model snow crystal growth in clouds [Lu, Depaolo, Kang 
et al. (2009)] as well as the growth of hydrate crystals in geological CO2 sequestration 
[Kang, Lichtner, Viswanathan et al. (2010)], and surface growth in reactive capillary-
driven flow [Sergi, Grossi, Leidi et al. (2014)]. A similar approach was also used to model 
flow-related clotting in an investigation of blood clots [Harrison, Smith, Bernsdorf et al. 
(2007)], however, the passive scalar was treated with a first-order upwind scheme rather 
than the LBM. These studies used a “stair-case” approximation of the solid boundary, i.e. 
one in which the boundary does not cut through adjacent lattice boundaries, but rather is 
staggered between regular lattice nodes, resulting in a “pixelized” boundary. Some other 
studies have employed a sub-grid representation of the solid boundary, i.e. one not 
conforming to lattice boundaries. A lattice Boltzmann approach with an immersed sub-
grid boundary was recently used to simulate solid/liquid phase change [Huang and Wu 
(2014)]. Here, the curved boundary between the solid and liquid phases was 
approximated as piecewise linear between a set of Lagrangian points. In another 
investigation, the growth of dendrite formations in channel flow was simulated using a 
lattice Boltzmann model for the flow and a phase-field method for the combined mass 
transfer and solid boundary growth [Hawkins, Angeluta, Hammer et al. (2013)]. 
Although many applications of these methods occur in cylindrical geometries, i.e. flow in 
pipes and capillaries, much of the previous work on precipitation/dissolution models has 
assumed a Cartesian coordinate system. To the authors’ knowledge, there has been no 
examination to date of problems involving precipitation in cylindrical geometries despite 
their scientific and industrial relevance. In the current work, we apply recently advanced 
multiple-relaxation-time lattice Boltzmann models for both incompressible fluid flow and 
mass transport in axisymmetric cylindrical coordinates. We also employ a new treatment 
for the third-kind boundary condition for mass transfer on curved boundaries. 
The goal of our current work is to develop a basis for predicting the time- and axially- 
evolving profile of solid ZnO deposits in a non-isothermal tubular reactor designed for 
hydrogen production by the heterogeneous hydrolysis of steam with Zn vapor. 
Heterogeneous hydrolysis with Zn vapor offers a method of water-splitting with higher 
theoretical efficiency and reliability than previous aerosol-based reactors for hydrolysis 
with Zn in the Zn/ZnO solar thermochemical cycle [Lindemer, Advani and Prasad (2016); 
Lindemer, Advani and Prasad (2017)]. The precipitation of solid ZnO during the 
hydrolysis reaction presents a unique consideration for the design and modeling of 
reactors for this process. Thus, characterizing the effect of flow, mass transfer, and 
reaction conditions on the transient accumulation of solid ZnO deposits are the primary 
reasons for developing the model. In addition, the numerical methods and results 
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presented in this paper may also be useful in understanding reactive 
precipitation/dissolution processes in other industrial, environmental, and biological flows. 
The paper is organized as follows: In Section 2, we describe the mathematical models for 
flow and mass transport that are used in this work. Section 3 presents a detailed description 
of the assumptions and boundary conditions used for our simulations. Section 4 presents 
several validation studies that were used to verify the accuracy of the current LB models 
as well as the associated boundary condition implementations. In Section 5, we present 
results and discussion from a parametric study to investigate the effects of the relevant 
non-dimensional parameters (Reynolds, Schmidt, and Damköhler numbers), other model- 
specific parameters, and axially-varying kinetics on the evolution of the ZnO precipitation 
profile. Finally, in Section 6, we present our conclusions. 

2 LB models for flow and mass transport 
2.1 Multiple-relaxation-time (MRT) model for axisymmetric incompressible fluid flow 
The D2Q9 scheme for axisymmetric incompressible fluid flow presented in Zhou [Zhou 
(2011)] is used in the current work. This scheme replicates the incompressible Navier-
Stokes equations in axisymmetric cylindrical coordinates, which can be written in indicial 
notation as: 
∂𝑢𝑖
∂𝑡

+ ∂(𝑢𝑖𝑢𝑗)
∂𝑥𝑗

= − 1
𝜌
∂𝑃
∂𝑥𝑖

+ 𝜈 ∂
∂𝑥𝑗

(∂𝑢𝑖
∂𝑥𝑗

+ ∂𝑢𝑗
∂𝑥𝑖

) + 𝑆𝐹       (1) 

With 

𝑆𝐹 = 𝜈
𝑟

(∂𝑢𝑖
∂𝑟

+ ∂𝑢𝑟
∂𝑥𝑖

)− 𝑢𝑖𝑢𝑟
𝑟
− 2𝜈𝑢𝑖

𝑟2
𝛿𝑖𝑟       (2) 

by substituting the axisymmetric continuity equation: 
∂𝑢𝑗
∂𝑥𝑗

+ 𝑢𝑟
𝑟

= 0                  (3) 

into the momentum equation. Here, the momentum equation has been written in a “pseudo-
Cartesian” form with the source term SF contributing the remaining terms in the 
axisymmetric momentum equation. 
Here, the ui represent the 𝑟 (radial) and 𝑧 (axial) components of the hydrodynamic velocity, 
𝜌 is the fluid density, 𝑃 is the pressure, 𝜈 is the kinematic viscosity, and repeated indices 
imply summation over 𝑟, 𝑧. Li et al. [Li, Mei and Klausner (2013)] extended the BGK 
scheme presented in Zhou [Zhou (2011)] for implementation with the commonly used 
MRT collision operator presented in Lallemand et al. [Lallemand and Luo (2000)]. Using 
this approach, the collision process is described by: 

|𝑓
^

= |𝑓 −𝑴𝐹
−1𝛀𝐹(𝑴𝐹|𝑓 −𝑴𝐹|𝑓𝑒𝑞) + 𝑮𝛿𝑡    (4) 

where |𝑓 is the vector of pre-collision distribution functions (𝑓0, 𝑓1, ... , 𝑓8), |𝑓
^
 is similarly 

the post-collision vector, |𝑓𝑒𝑞   is the equilibrium distribution vector,  
𝛀F=diag(1/τF0, 1/τF1, ... , 1/τF8) is a matrix of relaxation parameters, and 𝑴F is the 
collision matrix given by: 
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𝑴𝐹 =

�

�

�

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

�

�

�

        (5) 

The equilibrium distribution functions 𝑓𝑒𝑞 are defined by: 

𝑓𝛼
𝑒𝑞 = 𝑤𝛼 �𝜌 + 𝜌0 �3

𝒆𝛼⋅𝒖
𝑐2

+ 9
2

(𝒆𝛼⋅𝒖)2

2𝑐4
− 3

2
𝒖⋅𝒖
2𝑐2
��          (6) 

where ρ0 is the average density, taken to be 1.0, and c is the sound speed, also taken to 
be 1.0. The components of the source term vector 𝑮 are given by: 

𝐺𝛼 = −1
𝑟
2𝜏𝐹−1
2𝜏𝐹

𝑒𝛼𝑟(𝑓𝛼 − 𝑓𝛼
𝑒𝑞) −𝑤𝛼

𝜌𝑢𝑟
𝑟
− 1

6
𝑒𝛼𝑖(

𝜌𝑢𝑖𝑢𝑟
𝑟

+ 2𝜌𝜈𝑢𝑖
𝑟2

𝛿𝑖𝑟)       (7) 

which correspond the source term SF shown in Eq. (1), as shown by the Chapman-Enskog 
analysis in Zhou [Zhou (2011)]. 
After the collision step, the post-collision distributions are then streamed to neighboring 
nodes according to: 

𝑓𝛼(𝑥
→

+ 𝒆𝜶𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝛼
^

(𝑥
→

, 𝑡)      (8) 
where the (r, z)-components of the discrete velocities 𝒆𝜶 are defined by: 

𝒆𝛼 =

(0,0) :𝛼 = 0
(𝑠𝑖𝑛[(𝛼 − 1) 𝜋

2
], 𝑐𝑜𝑠[(𝛼 − 1) 𝜋

2
])𝑐 :𝛼 = 1,2,3,4

(𝑠𝑖𝑛[(𝛼 − 5) 𝜋
2

+ 𝜋
4

], 𝑐𝑜𝑠[(𝛼 − 5) 𝜋
2

+ 𝜋
4

])√2𝑐 :𝛼 = 5,6,7,8
         (9) 

The weight functions wα are given by w0=4/9, wα=1/9 for α=1-4 and wα=1/36 for α=5-8. 
Additional details, including the derivation of the scheme for the Cartesian BGK case, can 
be found in He et al. [He and Luo (1997)]. The kinematic viscosity ν is given in terms of 
the hydrodynamic relaxation time and the sound speed c as: 

𝜈 = (𝜏𝐹 −
1
2
) 𝑐

2

3
𝛿𝑡            (10) 

where τF=τF7=τF8 to enforce isotropic momentum diffusion [Lallemand and Luo (2000)]. 
After evolving the mesoscopic distribution functions throughout the domain, the local 
density is then given in terms of the distribution functions by: 
𝜌 = ∑ 𝑓𝛼8

𝛼=0                 (11) 
the local pressure P is given by: 

𝑃 = 𝜌 𝑐2

3
                    (12) 

and the velocities ui are given as: 

𝑢𝑖 = 1
𝜌
∑ 𝒆𝛼𝑖𝑓𝛼8
𝛼=0            (13) 
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The hydrodynamic quantities are then used to find the equilibrium distributions 𝑓𝛼
𝑒𝑞 at the 

next time step. 

2.2 Multiple-relaxation-time (MRT) model for mass transport 
The D2Q5 model for the passive scalar presented in Li et al. [Li, Mei and Klausner 
(2013)] is implemented in the current work. The passive scalar in this case is the molar 
concentration of the reactive species (Zn vapor). The concentration of Zn vapor is 
assumed to be sufficiently dilute such that the passive scalar approach is accurate. 
This scheme replicates the axisymmetric CDE given by: 
∂𝜙
∂𝑡

+ ∂(𝑢𝑟𝜙)
∂𝑟

+ ∂(𝑢𝑧𝜙)
∂𝑧

= ∂
∂𝑟

(𝐷 ∂𝜙
∂𝑟

) + ∂
∂𝑧

(𝐷 ∂𝜙
∂𝑧

) + 𝑆𝑀              (14) 

with  

𝑆𝑀 = −𝑢𝑟𝜙
𝑟

+ 𝐷
𝑟
∂𝜙
∂𝑟

               (15) 

where (ur, uz) are the hydrodynamic velocity components determined by the D2Q9 model 
presented in Section 2.1, and D is the diffusion coefficient of the reactive species, 
assumed to be isotropic. Similar to the axisymmetric momentum equation, the CDE has 
been written in “pseudo-Cartesian” form with the source term SM contributing the 
axisymmetric terms. 
The collision step for the mass transport model is described by: 

|𝑔
^

= |𝑔 −𝑴𝑀
−1𝛀𝑀(𝑴𝑀|𝑔 −𝑴𝑀|𝑔𝑒𝑞) + 𝑹𝛿𝑡       (16) 

where g is the pre-collision vector (g0, g1, ... , g4),  ĝ is similarly the post-collision vector, 
geq is the equilibrium distribution vector, 𝛀M = diag(1/τM0, 1/τM1, ... , 1/τM4), and 𝑴𝑀 is 
the collision matrix given by: 

𝑴𝑀 = �
�

1 1 1 1 1
4 −1 −1 −1 −1
0 0 1 0 −1
0 −1 1 −1 1
0 1 0 −1 0

�
�              (17) 

and the (r, z)-components of the discrete velocities are given by: 

𝒆𝛼 =
(0,0) :𝛼 = 0

(𝑠𝑖𝑛[(𝛼 − 1) 𝜋
2

], 𝑐𝑜𝑠[(𝛼 − 1) 𝜋
2

])𝑐 :𝛼 = 1,2,3,4                (18) 

It should be noted that the collision matrix 𝑴𝑀  has been re-arranged from the definition 
given in Yoshida et al. [Yoshida and Nagaoka (2010)] and [Li, Mei and Klausner (2013)] 
for consistency with the numbering of the discrete velocities 𝒆α used in the current work. The 
off-diagonal components of the relaxation matrix are assumed to be zero because diffusion 
is considered to be isotropic. 
The components of the source term vector 𝑹 are given by: 

𝑅𝛼(𝑥
→

, 𝑡) = −𝑤𝛼
𝑢𝑟
𝑟
� 𝑔𝛼

𝑒𝑞4
𝛼=0 − 𝑤𝛼

1
𝑟

(1 − 1
2𝜏𝑀

) 𝛿𝑥
𝛿𝑡
� 𝑒𝛼𝑟(𝑔𝛼 − 𝑔𝛼

𝑒𝑞)4
𝛼=0           (19) 

The equilibrium distributions are given by: 
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𝑔𝛼
𝑒𝑞(𝑥

→
, 𝑡) = 𝑤𝛼(1 + 3 𝛿𝑡

𝛿𝑥
(𝐮 ⋅ 𝐞𝛼))            (20) 

The post-collision distributions then stream to neighboring nodes at the next time step, as 
in the flow model, according to: 

𝑔𝛼(𝑥
→

+ 𝒆𝜶𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑔
^
𝛼(𝑥

→
, 𝑡)                 (21) 

The concentration is given by: 
𝜙 = ∑ 𝑔𝛼4

𝛼=0             (22) 
The diffusivity is related to the species relaxation time, time step, and sound speed by: 

𝐷 = (𝜏𝑀 − 1
2
) 𝑐

2

3
𝛿𝑡             (23) 

where τM = τM2 = τM4 to enforce isotropic diffusion [Zhou (2011)]. 

3 Model description 
3.1 Flow boundary conditions 
We consider a core-annular flow configuration as shown in Fig. 1 in which Zn vapor is 
fed to the central core and steam is fed to the annular region. At the inlet, the velocity 
boundary condition (given in lattice units) in the core region (0<r<R1) is assumed to be 
fully-developed flow through a circular duct:  
𝑢𝑧(𝑟, 0) = 𝑢𝐶(𝑅12 − 𝑟2)          (24) 
Similarly we assume fully-developed flow through an annular duct as the inlet boundary 
condition for R2 < r < R: 
𝑢𝑧(𝑟, 0) = 𝑢𝐴((𝑟2 − 𝑅12) − (𝑅22 − 𝑅12)ln ( 𝑟

𝑅1
)/ln (𝑅2

𝑅1
))       (25) 

 
Figure 1: Schematic of tube reactor. The wall of the Zn-vapor supply tube shown in grey 
separates the core and annular flow regions, and the modeled region is enclosed by the blue 
rectangle 

where uC and uA are the characteristic velocities assigned in the core and annular regions, 
respectively. At the reactor inlet, the axial velocity uz is assumed to be zero in the region 
R1<r<R2 which corresponds to the wall thickness of the tube that introduces the core flow 
into the reactor. The radial velocity ur is also assumed to be zero for all r at z=0. 
At the outlet (z=L), a zero gradient outflow condition is assumed for both axial and radial 
velocity:  
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∂𝑢𝑧
∂𝑧

(𝑟, 𝐿) = ∂𝑢𝑟
∂𝑧

(𝑟, 𝐿) = 0            (26a) 

The velocities at both the inlet and outlet are specified using the method of Zou et al. 
[Zhou and He (1997)]. 
Along the z-axis (r=0), a symmetry condition for the flow velocities is enforced by 
setting 𝑓2=𝑓4, 𝑓6= 𝑓7, and 𝑓5 = 𝑓8, as discussed in Succi [Succi (2009)].  Thus, the bottom 
row of lattice nodes resides on the line r=0. All terms with a factor of 1/𝑟 in the collision 
step are neglected for these nodes, as they become zero when L’Hôpital’s rule is applied 
at r=0 [Premnath and Abraham (2005); Reis and Phillips (2008); Zhou (2011)]. 
The flow boundary condition on the solid boundary is implemented according to the 
interpolated bounce-back method for curved/moving boundaries presented in Lallemand 
et al. [Lallemand and Luo (2002)]. 
Along the tube wall, the growth of the solid precipitate is assumed to progress in the 
direction normal to the existing surface. The hydrodynamic velocity boundary condition 
for the solid boundary is determined by the growth rate of the solid layer projected onto 
each coordinate direction, similar to the condition in Li et al. [Li, Huang and Meakin 
(2010)]: 

𝑢𝑧,𝑤(𝑧) = 𝑟″𝑠𝑖𝑛(𝜃𝑤(𝑧))
𝜙(𝑠)

               (26b) 

𝑢𝑟,𝑤(𝑧) = 𝑟″𝑐𝑜𝑠(𝜃𝑤(𝑧))
𝜙(𝑠)

                (27) 

where φ(s) is the constant molar concentration of the bulk solid, which is taken to be 1000.0 
unless otherwise stated,  𝑟’’ is the local reaction rate, and θw(z) is the local angle of the 
curved solid boundary measured from the z-direction. The local angle of the wall is 
determined from the current shape of the solid deposit which is described by the curve 𝑟" =
𝑊(𝑧), 

𝜃𝑤(𝑧) = 𝑡𝑎𝑛−1(𝑊(𝑧+1)−𝑊(𝑧−1)
2

)        (28) 

When enforcing the bounce-back condition, the value of θw at the point of the outgoing 
population’s intersection with the solid boundary is determined using quadratic 
Lagrangian interpolation at nearest-neighbor values of 𝑧, (i.e. at 𝑧 − 1, 𝑧, 𝑧 + 1), as the 
intersection point will not generally be on a node. The distance between a boundary node 
and the boundary (i.e. between 𝑥𝑓 and 𝑥𝑓𝑓  in Fig. 2) is determined by using a piecewise-
linear representation of the boundary curve 𝑟 = 𝑊 (𝑧), so that the computation is simple. 
This piecewise linear description is similar to that used in Huang et al. [Huang and Wu 
(2014)], however rather than using a dynamically-updated set of Lagrangian points to 
represent the interface, here, the curve is tracked using a simple Eulerian description, i.e. 
the curve’s height is tracked at a fixed set of 𝑧-values. 
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Figure 2: Schematic of boundary treatment at solid-fluid interface 

3.2 Mass transfer boundary conditions 
The inlet concentration boundary condition in the core region (0≤r≤R1) is: 
𝜙(𝑟, 0) = 𝜙0 = 1.0       (29) 

and φ = 0.0 for r > R1. The value of φ0 is chosen so that the baseline molar concentration 
of Zn vapor appropriately lower than the chosen molar concentration of the solid phase. 
The Dirichlet boundary condition for concentration is implemented using the “scheme D” 
presented in Liu et al. [Liu, Lin, Mai et al. (2010)]. At the outlet, a zero-gradient 
condition is assumed for the concentration: 

∂𝜙
∂𝑧

(𝑟, 𝐿) = 0                   (30) 

which is implemented using the method presented in Liu et al. [Liu, Lin, Mai et al. (2010)] 
for Neumann boundary conditions. Similar to the flow model, a symmetry boundary 
condition is implemented on r=0 by setting g2=g4. The collision terms involving 1/𝑟 are 
likewise ignored on these nodes. 
The reaction rate is assumed to follow a first-order kinetic model in terms of 𝜑𝑤, the con- 
centration on the wall: 
r″ = kϕw            (31) 
We also assume that the mole balance in the normal direction on 𝑟 = 𝑊 (𝑧) includes the 
mass flux induced by the growth of the solid layer, as in Li et al. [Li, Huang and Meakin 
(2010)]: 

𝐷 ∂𝜙
∂𝑛
− 𝑢𝑛𝜙 = 𝑘𝜙            (32) 

where 𝑛  is the normal direction pointing into the fluid domain, and 𝑘  is the kinetic 
constant. In order to implement this boundary condition on a curved boundary, we used 
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the method in [Li, Mei and Klausner (2013)], in which both the tangential and normal 
mass fluxes are calculated at the intersection of the outgoing population eα and the 
boundary, and are then projected onto the incoming population with velocity eα¯. The 
presence of a tangential mass flux on a curved boundary is an important consideration for 
accurate implementation of this boundary condition. 
Fig. 2 illustrates how the boundary condition in Eq. (29) is implemented. The values of gˆα 
and gˆα¯ at points 𝑥𝑓 and 𝑥𝑓𝑓  are used in the calculation as well as gˆβ¯ and gˆβ at 𝑥𝑓′  and 
𝑥𝑓𝑓′ .  The vectors eα and eβ are perpendicular, and constitute basis vectors for calculation of 
the tangential and normal mass fluxes. The green points are used to interpolate the value of 
gˆβ(𝑥𝑓𝑓′ ), which generally does not reside on a regular node point. Values at 𝑥𝑓′  are 
determined from extrapolation from 𝑥𝑓 and 𝑥𝑓𝑓, as described in Guo et al. [Guo, Zheng, 
and Shi (2002)]. The curved boundary, shown in blue, is approximated as piecewise linear, 
as shown by the red lines. 
The normal and tangential mass fluxes are projected onto the α¯-direction using the 
known relationships between θw, θnα¯, and θnβ¯. Finally, the projected mass flux is 
implemented as a Neumann boundary condition, as described in Li et al. [Li, Mei, and 
Klausner (2013)]. 
Once all incoming populations have been determined, the wall concentration profile 
𝜑𝑤(𝑧) is then calculated from g2 on the boundary nodes using Eq. (41b) in Li et al. [Li, 
Mei and Klausner (2013)]. A profile of the reaction rate can then be determined from the 
definition 𝑟′′(𝑧)  =  𝑘𝜑𝑤(𝑧). 

3.3 Non-dimensional parameters 
The relevant non-dimensional numbers in this system are the Reynolds number, given by: 

𝑅𝑒 = 𝑢𝑎𝑣𝑁𝑟
𝜈

= 𝑢𝑎𝑣𝑁𝑟
(𝜏𝐹−

1
2)𝑐

2
3 𝛿𝑡

             (33) 

with 

𝑢𝑎𝑣 = 𝑄𝐶+𝑄𝐴
𝜋𝑁𝑟2

            (34) 

where QA and QC are the volumetric flow rates through the annular and core regions of 
the inlet, respectively, determined analytically from Eqs. (20) and (21). Nr is the number 
of lattice units in the radial direction. 
The Mach number is defined as: 
𝑀𝑎 = 𝑢𝑎𝑣

𝑐
           (35) 

The Schmidt number is defined as:  

𝑆𝑐 = 𝜈
𝐷

=
(𝜏𝐹−

1
2)

(𝜏𝑀−
1
2)

             (36) 

                
The Peclet number is defined as: 
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𝑃𝑒 = 𝑢𝑎𝑣𝑁𝑟
𝐷

= 𝑢𝑎𝑣𝑁𝑟
(𝜏𝑀−

1
2)𝑐

2
3 𝛿𝑡

                    (37) 

The Damköhler number is defined as: 

𝐷𝑎 = 𝑘𝑁𝑟
𝐷

= 𝑘𝑁𝑟
(𝜏𝑀−

1
2)𝑐

2
3 𝛿𝑡

                      (38) 

We also define a second Damköhler number as the ratio of the reaction rate to the advective 
mass transfer rate:  

𝐷𝑎2 = 𝑘1
𝑢𝑎𝑣

                (39) 

In the current work, this parameter is only of interest for cases with axially-varying 
kinetics, where k1 represents the initial value of the kinetics constant at the inlet. The 
non- dimensional time is defined using diffusive scaling: 

𝑡∗ = 𝑁𝑡𝐷
𝑁𝑟2

                        (40) 

where Nt is the number of time steps. 

4 Model validations 
To verify the accuracy of the models used, several validation problems were selected. First, 
to validate the coupling of the flow model to the convective-diffusion equation, the problem 
of hydrodynamically-developed but thermally-developing flow, also known as the Graetz 
problem, was simulated using the LBM code. At the outset, a uniform body force was 
applied to the flow model in a circular tube with periodic boundary conditions at the inlet 
and outlet, and the flow was allowed to converge to a fully-developed Poiseuille velocity 
profile. Next, a constant temperature of T0=1.0 was applied at the inlet and a constant 
temperature of Tw=0.0 was applied at r=R, with a symmetry boundary condition at  r=0. 
The Nusselt number is defined as 𝑁𝑢 = −2

𝜃𝑏

𝜕𝜃
𝜕𝑟

(𝑅), and 𝜃 = 𝑇/𝑇0 the bulk temperature 

θb=∫ 2𝜋𝑟𝑢𝑇 𝑑𝑟𝑅
0 /𝑇0 ∫ 2𝜋𝑟𝑢𝑑𝑟𝑅

0 . The temperature gradient at the wall was determined by 
non-equilibrium extrapolation and the bulk temperature was obtained by numerical 
integration of the temperature and velocity profiles. The results for Re=250 and Pr=0.7 are 
shown in Fig. 3 along with the theoretical results from the first 10 terms of the Graetz 
series solution. The agreement with theory is found to be quite good except for very low 
values of 𝑧  due to the singular point at (𝑧 = 0, 𝑟 = 𝑅 ). The Nusselt number closely 
approaches the well-known result of 3.657 at the outlet. In addition, the axial evolution of  
the  bulk  temperature  computed  by  LBM  matches  very  well  with  theory. 
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Figure 3: Results for thermally-developing flow with a constant wall temperature 
boundary condition for Re = 250, Pr = 0.7 

Second, to validate the movement of the solid boundary as well as the implementation of 
the flow and mass transfer boundary conditions, a one-dimensional reaction-diffusion 
validation problem similar to the one given in Li et al. [Li, Huang and Meakin (2010)] 
was simulated. In this problem, a solute diffuses and reacts on a wall, which moves in 
accordance with the growth of the deposited solid over time. This problem is formulated in 
Cartesian coordinates, so all of the axisymmetric terms were left out of the collision operator 
for mass transfer in Eq. (14). The problem is implemented with five lattice points in the 
wall-parallel (x) direction, and periodic boundary conditions in x so that the problem has no 
x-dependence. Initially, the entire domain has a uniform concentration φ0; subsequently, the 
concentration at the y-origin (y=0) remains fixed at φ0, so that φ(0, t) = φ(y, 0) = φ0. The 
initial location of the wall is given by 𝒲(𝑡 = 0) = 𝒲0. Assuming a first-order reaction 
rate, the velocity of the wall in the wall-normal direction is proportional to the reaction rate 
on the surface (y = 𝒲), and is given by: 
𝑑𝒲
𝑑𝑡

= −𝑘𝜙(𝒲)
𝜙(𝑠)

                 (41) 

where φ(𝒲) is the concentration at the wall, k is the kinetic constant, and φ(s) is the 
constant concentration of the solid phase. Then, for reaction-limited slow growth, 
(Da<<1, Pe<<1), the transient solution for the wall location is given as:

𝒲(𝑡) = 𝒲0 −
𝐷
𝑘

+�𝐷2

𝑘2
− 2𝐷𝑡 𝜙0

𝜙(𝑠)
                  (42) 

The LBM results are compared with the analytical solution in Fig. 4 for Ny = 40, with time 
non-dimensionalized using the diffusive scaling as in Eq. (37). The two are found to diverge 
slightly at lower values of Was fewer lattice points are being used in the simulation, and 
hence there is a loss of accuracy with increasing time. 
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Figure 4: Comparison of LBM results with theory for the one-dimensional reaction- 
diffusion problem under slow growth conditions 
Finally, as a check on the transient performance of the axisymmetric model and overall 
convergence, the problem of transient diffusion in slug flow with sinusoidally-varying wall 
concentration, as described in Li et al. [Li, Mei and Klausner (2013)] was simulated. We 
consider a section of a pipe of radius R and length L=2R with a uniform axial velocity U. The 
concentration boundary condition is prescribed as 𝜑(𝑅, 𝑧, 𝑡) = 𝑐𝑜𝑠(𝑘𝑧 +  𝜔𝑡)  with 
𝑘 = 2𝜋/𝐿 and ω=2𝜋/𝛤, where Γ is the time period of oscillation. The Strouhal and Peclet 
numbers are defined as 𝑆𝑡 = 𝑅2

𝛤𝐷
 and 𝑃𝑒 = 𝑈𝑅

𝐷
 respectively. Periodic boundary conditions 

are applied at 𝑧 = 0 and 𝑧 = 𝐿.  
The analytical solution for the concentration in the pipe is given by Li et al. [Li, Mei and 
Klausner (2013)]: 

𝜙(𝑟, 𝑧, 𝑡) = 𝑅𝑒𝑎𝑙[𝑒𝑖(𝑘𝑧+𝜔𝑡) 𝐼0(𝜎𝑟)
𝐼0(𝜎𝑅)

]                 (43) 

where 𝜎 =  𝑘

 

�1 +  𝜔+𝑖𝑈
𝐷𝑘2

, and I0 is the modified first-kind Bessel function of order 0. 

The convergence of the temporally and spatially averaged error E2 is shown in Fig. 5 for 
different values of the mass transfer relaxation time τM, for Pe=20.0, St=10.0. The 
convergence is seen to be second-order with the number of lattice points in the radial 
direction (Nr) as was also found in Li et al. [Li, Mei and Klausner (2013)]. 
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Figure 5: Normalized cumulative global error E2 after one period Γ for St=10, Pe=20 

5 Results and discussion 
Following the validation studies presented in the previous section, the model is now applied 
to investigate the heterogeneous hydrolysis of steam with Zn vapor in a tubular reactor 
under a negative axial temperature gradient. The negative axial temperature gradient is of 
interest for optimization of the hydrolysis reaction in the Zn/ZnO thermochemical cycle for 
water-splitting [Lindemer, Advani and Prasad (2016)]. For all cases, the simulation is 
initialized with the fluid at rest and the Zn vapor concentration set to zero everywhere. Thus, 
initially, only the background flow of steam is present. The flow boundary conditions are 
then applied and the flow is allowed to develop until it reaches a steady-state, and then the 
mass transfer boundary conditions are applied. This sequence is followed in order to decouple 
the development of the initial flow field from the results for different cases. The simulations 
use Nr=40 for all cases, which was found to give sufficient accuracy with reasonable 
computational time in the model validations. 
The evolution of the axial velocity uz and Zn-vapor concentration φ for a typical case with 
Sc=0.7, Da=1.0, and Re=1.0 is shown in Figs. 6 and 7, respectively for three instants in 
time. As the solid ZnO layer (shown by the dashed white line) grows inward, the axial 
velocity in the throat region increases since the inlet mass flux is fixed. The velocity 
boundary layer is also seen to be thinnest at the point of fastest deposition since the 
reduction in cross-sectional area causes the flow to accelerate. By numerically integrating 
the velocity profile along the radial direction, it was verified that the mass flow rate remains 
constant for all z locations, with any small differences owing to different numbers of radial 
nodes at each value of z resulting in different degrees of error. 
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Figure 6: Contours of uz (lattice units) for Sc=0.7, Da=1.0, and Re=1.0, at t∗=612.5, 
6862.5, 9362.5.  The dashed white line indicates the deposition profile at each time step 

 
Figure 7:   Contours  of  φ  for  Sc=0.7,  Da=1.0,  and  Re=1.0,  at  t∗=612.5, 6862.5, 9362.5. 
The dashed white line indicates the deposition profile at each time step 

Due to the relatively low value of Da in this case, the concentration contours in Fig. 7 do 
not show the presence of a boundary layer adjacent to the solid ZnO boundary. It is also 
apparent that the contours of constant concentration are stretched axially at later time 
steps owing to the stronger effect of advection due to increasing velocities. For increasing 
values of Da, the results are qualitatively similar to Fig. 7, except with a more pronounced 
concentration boundary layer, as the case of Da>>1 represents a zero-concentration 
boundary condition. 
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5.1 Effect of Re 
Fig. 8 shows the effect of increasing Re for Re 1.0 for Da=20.0, Sc=0.7, and Qr=1.0 for 
different time steps. The plots for Re=0.01 and Re=0.1 are virtually identical since for very 
low flow velocities the problem is essentially diffusion-dominated with advection playing a 
minimal role in mass transport. For Re=1.0, the deposit exhibits a similar profile to the lower 
Re cases, however the growth is faster over each time interval. This is because the φu term in 
the total inlet mass flux is larger at higher flow velocities, and hence the total mass flux into 
the system is significantly larger for Re = 1.0 compared to the lower Re cases. 

 
Figure 8: Deposition profiles for different values of Re, with Da=20.0, Sc=0.7, QA/QC 
=5.0. Results for t∗=508.0 are shown in blue, t∗=848.8 in green, and t∗=1530.7 in red 

Fig. 9 shows the effect of Re on the evolution of the deposition profile for Re>1, with all 
other non-dimensional quantities the same as those in Fig. 8. Increasing Re primarily has 
the effect of changing the shape of the deposition profile such that the axial location of 
fastest deposition is shifted downstream, as well as increasing the total amount of de- 
position over any time interval. The shifting of the deposition profile downstream with 
increasing Re is due to the advection of mass increasing downstream with Re, and the in- 
creased rate of overall deposition is again due to higher advective mass flux into the 
system at higher Re. Hence, for constant Sc, the value of Re is a strong predictive factor 
in the problem, with Re<1 representing one regime with minimal differences in the 
evolution of the ZnO deposition profile, and Re>1 representing a regime with significant 
sensitivity to Re. 
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Figure 9: Deposition profiles for different values of Re, with Da=20.0, Sc=0.7, QA/QC=5.0. 
Results for t∗=167.0 are shown in blue, t∗=508.0 in green, and t∗=848.8 in red 

5.2 Effect of Da 
Fig. 10 shows the effect of Da for moderate-to-high values of Da with Re=10.0, Sc=0.7, 
and Qr=5.0. At low t∗, the deposition profiles for Da=5.0, 10.0, and 20.0 are nearly 
identical. This is because for this range of Da, the kinetics are very fast relative to the rate of 
diffusion, and hence the reaction is mass transport-limited. At higher values of t∗, the radial 
diffusion length decreases due to the growth of the solid deposit, and thus the mass 
transfer resistance due to diffusion also decreases. In this regime, the kinetics begin to 
play a stronger role in the rate of reaction, and the deposition profiles become more 
sensitive to Da, with higher Da resulting in faster deposition. Faster deposition results in 
a faster decrease in diffusion length, and thus the differences in the deposition profiles 
for different Da become more pronounced over time. At high Da the axial location of 
fastest deposition is rather insensitive to Da, because the initial location is strongly mass 
transfer-controlled. 
Fig. 11 shows the effect of Da for Da=1.0, with all other conditions the same as those in 
Fig. 10. In this range, the reaction is kinetics-limited, and hence the deposition profiles 
immediately show sensitivity to Da at low t∗. For higher Da, the deposition is faster and 
occurs further upstream, as a higher amount of reactive species that contacts the wall will 
react rather than be transported downstream. The long vertical tick marks in Fig. 11 
indicate the axial position of fastest deposition for each case. Thus, while increasing Re 
has the effect of pushing the location of fastest deposition downstream for constant Da, 
increasing Da has the opposite effect for constant Re. 
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Figure 10: Deposition profiles for different values of Da, Re=10.0, Sc=0.7, QA/QC=5.0

 
Figure 11: Deposition profiles for different values of Da, Re=10.0, Sc=0.7, QA/QC=5.0.   
Results for t∗=249.5 are shown in blue, t∗=758.8 in green, and t∗=1268.1 in red 

5.3 Effect of Sc 
In Section 5.1, the effect of changing Re for constant Sc was examined, which is 
equivalent to changing Pe. The effect of changing Sc and Re simultaneously for Pe=10.0 
and Da=20.0 was investigated. It was found that when Pe is held constant, the results are 
virtually identical for any value of Sc. Any slight differences in the deposition profiles 
can be attributed to differences in numerical error, as the value of M a is different for 
each case. This insensitivity to Sc for constant Pe indicates that in the moderate Re 
regime, the actual predictor of the deposition profile is Pe. However, it is possible that 
under turbulent flow conditions, Re would play a role independent of the value of Pe as 
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discussed in Hawkins et al. [Hawkins, Angeluta, Hammer et al. (2013)], but an 
investigation into this effect is beyond the scope of the current work. 

5.4 Effect of QA/QC 
The effect of changing the annular-to-core flow rate ratio QA/QC was also investigated 
while holding all other non-dimensional parameters constant. Despite the non-uniform 
velocity profiles at the inlet, for a constant value of Re, the hydrodynamic entry length is 
roughly the same for each case, and hence the axial location of fastest deposition is nearly 
identical for all cases examined. This is likewise found to hold for lower values of Da. 
Although the inlet velocity profiles are very different for these cases, the flow develops to 
nearly the same velocity profile at a relatively low value of z/R for all cases. As the ratio 
QA/QC is increased for constant Re, QC is decreased, which decreases the total flux of 
reactive species into the system. For higher QA/QC, the total amount of deposition is 
decreased for any value of t∗. Thus, the value of QC is important in determining the total 
mass flux of reactant into the system, and thus the overall rate of deposition, but the results 
are relatively insensitive to QA/QC for any given QC. 

5.5 Effect of φ(s) 
Here, we examine the effect of the product molar density φ(s) on the deposition profile. 
As discussed in Li et al. [Li, Huang, and Meakin (2010)], the interface velocity uw is 
typically very small for gas/solid precipitation, and in fact can be safely ignored for large 
values of φ(s) with minimal impact on the results. Thus, for high values of φ(s), the 
problem is quasi-steady in time. Deposition profiles are shown for different values of φ(s) 
in Fig. 12. Physically, different values of φ(s) represent different solid products, or 
different morphologies of the same material. Hence, a product with a higher porosity 
would correspond to a solid with a lower molar density. The deposition profile for 
φ(s)=500.0 at the earliest time overlaps with the profile for φ(s)=1000.0 at the second time 
instant, and with the profile for φ(s) =2000.0 at the fourth time instant. This is to be 
expected, as the growth of the deposit should be twice as slow when the density of the 
solid is doubled, and so on. This illustrates that the shape of deposition profile for a 
material with a given φ(s) can be easily inferred from results for other values of φ(s), as 
the results scale predictably for slow growth conditions. As φ(s) is decreased significantly 
for a given k and φ0, the wall velocities will become comparable to the axial velocity of 
the flow, and the growth may not be quasi-steady; however, investigation of this regime 
this is beyond the scope of the current work. 
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Figure 12: Deposition profiles for different values of φ(s), Re=10.0, Sc=0.7, Da=10.0, and 
QA/QC=5.0 

5.6 Effect of Da2 with variable kinetics 
The heterogeneous hydrolysis of steam by Zn vapor is optimally performed non-
isothermally under a negative axial temperature gradient, as discussed in (15) and 
experimentally verified in Lindemer et al. [Lindemer, Advani, and Prasad (2017)]. The 
reaction should ideally begin at a high temperature to minimize the use of carrier gas, and 
the reactor temperature should then decline downstream in order to take advantage of 
faster kinetics and obtain higher equilibrium yields. Thus, it is of particular interest to 
examine cases where the kinetic constant varies due to a negative temperature gradient in 
the axial direction. 
Accordingly, we now examine the effect of Da2=k1/uav for cases with axially-varying 
kinetics. The kinetic constant is assumed to be constant at k=k1 for z<z0 and then 

increases as 𝑘 = 𝑘1 + 𝑘2 �
𝑧−𝑧0
𝑁𝑧/2

�
2
for z>z0. For the following cases, we also define Da= 

k1R/D in order to characterize the initial reaction rate separately from the axial variation 
in kinetics. The kinetic constant is used as a proxy for the tube wall temperature, and we 
assume that the temperature gradient does not affect the flow or mass transfer. The increase in 
k is used to simulate both the increase in kinetics and the shifting of equilibrium conditions 
toward ZnO production at lower temperatures [Lindemer, Advani and Prasad (2016)], 
although the current rate law does not explicitly account for reaction equilibrium. 
Results are shown in Fig. 13 for Da=0.1, k2/k1=50.0, Sc=1.0, z0=5Nr, and various values 
of Re. Since Da2 can be written as Da2=Da/ReSc, we vary Re in order to change Da2 while 
holding the kinetics profile, Sc and Da constant. As Re is increases, the deposition profile 
transitions from exhibiting a single maximum to exhibiting two local maxima. This 
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phenomenon was also consistently observed in experimental results that were obtained 
using a non-isothermal laboratory-scale tube reactor for the heterogeneous hydrolysis of 
steam with Zn vapor [Lindemer, Advani, and Prasad (2017)]. Moreover, as Re increases, 
the relative size of the second maximum increases and the location of the maximum 
occurs further downstream. 

 
Figure 13: Deposition profiles for the varying kinetics case with Sc=1.0, Da=0.1, QA/QC 
=5.0, and various values of Re. Results for t∗=1516.6 are shown in blue, t∗=7707.1 in 
green, and t∗=13897.6 in red 

For a given kinetics profile, the appearance of this two-peak deposition profile is found to 
depend on Da2, which is the ratio of the reaction rate to the advective transport rate in  
the constant kinetics (entrance) region. As Re is increased with constant Da and Sc, Da2 
is decreased by definition, and the relative size of the second deposition peak is found to 
increase, as shown in Fig. 13. This is because as the flow rate increases, the kinetics at the 
inlet become slower compared to advection and thus more species is advected downstream 
rather than deposited. The concentrations are thus higher in the downstream section with 
faster kinetics, resulting in a rapid increase in reaction rates. For high enough values of 
Da2, the second peak in the deposition profile does not occur, as very little reactant remains 
to be transported to the downstream region with faster kinetics. It is also found that for a 
constant value of Da2, varying the value of Sc does not significantly change the shape of 
the deposition profile, and therefore has no effect independent of Da2, similar to what was 
found for the constant kinetics case in Section 5.3. 
For a constant value of Da2, the shape of the kinetics profile also influences the shape of the 
deposition profile. Figs. 14 and 15 show the effect of varying the values of z0 and k2/k1, 
respectively for Da2=0.1. As shown in Fig. 14, as z0 is increased, the second increase in the 
deposition is pushed correspondingly further downstream, shortly downstream from z0. 
Increasing the value of k2/k1 increases the relative size of the second maximum, as shown in 
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Fig. 15. At a given Da2 and z0, for low enough values of k2/k1, the second maximum will 
not occur, as the slow increase in kinetics does not make the case significantly different from a 
constant kinetics case, as shown in Fig. 15 for k2=20k1. As 𝑧0 → 0, only a single deposition 
maximum is observed, because most of the limiting reactant is depleted very close to the 
entrance due to the sharply increasing kinetics. Likewise, if z0 is too large, only one 
maximum is observed, because most of the limiting reactant is depleted before z0 is reached. 
As Da2 is increased, it is found that a larger value of k2/k1 is required for the same value 
of z0, in order for the two-maxima deposition profile to occur. This is because the effect of 
advection is weaker in the constant kinetics section, resulting in lower concentrations in the 
high kinetics region, which must then be overcome with a sharper increase in kinetics. 
Similarly, as Da2 is increased, a lower value of z0 is required to produce a two-maxima 
deposition profile for the same value of k2/k1, as the kinetics must rise sharply before a 
significant amount of the limiting reactant has been depleted. 

 
Figure 14: Deposition profiles for the varying kinetics case with Re=1.0, Sc=1.0, Da=0.1, 
QA/QC=5.0, and various values of z0. Results for t∗=1516.6 are shown in blue, t∗=7707.1 
in green, and t∗=13897.6 in red 
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Figure 15: Deposition profiles for the varying kinetics case with Re=1.0, Sc=1.0, Da=0.1, 
QA/QC=5.0, and various values of k2/k1. Results for t∗=1516.6 are shown in blue, 
t∗=7707.1 in green, and t∗=13897.6 in red 

6 Conclusions 
The reactive gas/solid precipitation of ZnO in a circular tube has been simulated using 
multiple-relaxation-time lattice Boltzmann schemes in axisymmetric cylindrical 
coordinates for both flow and mass transfer. A D2Q9 scheme is used for the 
incompressible fluid flow, and a D2Q5 scheme is used for the mass transfer. The model 
assumes first-order kinetics at the solid boundary and a third-kind boundary condition for 
curved surfaces. The flow and mass transfer models are both validated using several 
problems in axisymmetric cylindrical coordinates with analytical solutions. 
The deposition of solid products is found to depend strongly on whether the mass transfer is 
diffusion or advection-limited, with the results being nearly identical for diffusion limited 
conditions due to the assumption of constant concentration at the inlet. In the advection- 
limited regime, the axial location of fastest mass deposition is found to scale with Pe, or 
equivalently with Re for constant Sc. The results are insensitive to Sc for a given value of 
Pe. It is also found that the results depend strongly on whether the reaction is kinetics- or 
diffusion-limited, with the axial location of fastest deposition scaling inversely with Da 
under diffusion-limited conditions. Under diffusion-limited conditions, the reaction 
transitions from being diffusion-limited to kinetics-limited as the solid deposit grows and 
diffusion lengths are decreased. Thus, over short time scales, the results are nearly 
independent of Da for Da>5. 
Finally, the effect non-isothermal conditions are simulated by axially varying the kinetic 
constant. The results show that the value of Da2=Da/ReSc determines whether the 
deposition profile has one or two peaks for a given kinetics profile, with the two-peak 
pattern occurring at lower values of Da2. Likewise, the shape kinetics profile has an effect on 
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the deposition profile, with sharp increases in kinetics at moderate distances from the tube 
entrance tending to produce the second maximum in the deposition profile. 
The model and results help to gain insight into the reactive deposition of ZnO in 
heterogeneous water-splitting using Zn vapor. More generally, this approach may be 
applicable to similar heterogeneous reactive/precipitation processes in axisymmetric 
cylindrical coordinates in other engineering situations. This work has demonstrated 
methods of validating such a model, and discusses the key physics involved in this 
process as elucidated from our numerical results. 
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