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Machine Learning Models of Plastic Flow Based on 
Representation Theory

R. E. Jones1, ∗, J. A. Templeton1, C. M. Sanders1 and J. T. Ostien1

Abstract: We use machine learning (ML) to infer stress and plastic flow rules using data 
from representative polycrystalline simulations. In particular, we use so-called deep 
(multilayer) neural networks (NN) to represent the two response functions. The ML process 
does not choose appropriate inputs or outputs, rather it is trained on selected inputs and 
output. Likewise, its discrimination of features is crucially connected to the chosen input-
output map. Hence, we draw upon classical constitutive modeling to select inputs and 
enforce well-accepted symmetries and other properties. In the context of the results of 
numerous simulations, we discuss the design, stability and accuracy of constitutive NNs 
trained on typical experimental data. With these developments, we enable rapid model 
building in real-time with experiments, and guide data collection and feature discovery.
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1 Introduction
Our effort to produce viable models of plasticity from trusted data draws upon traditional 
constitutive modeling theory and newly developed machine learning (ML) techniques.
The theory of constitutive function representation has a long history, going back to the 
beginnings of the Rational Mechanics movement. Much of the pioneering work was done 
by Rivlin, Pipkin, Smith, Spencer, Boehler, and co-workers [Spencer and Rivlin (1958a,b, 
1962); Pipkin and Wineman (1963); Wineman and Pipkin (1964); Smith and Rivlin (1964); 
Smith (1965); Rivlin and Smith (1969); Spencer (1971, 1987); Boehler (1987)]. Later, 
Zheng contributed a notable monograph on the application of representation theory to 
anisotropy [Zheng (1994)]. Much of these results have been condensed in: Spencer’s 
monograph [Spencer (1971)], Truesdell and Noll’s treatise [Truesdell and Noll (2004)], 
Gurtin’s text [Gurtin (1982)], and the recent book by Itskov [Itskov (2007)].
The application of machine learning (ML) to engineering dates back to at least the 1980’s 
and covers a wide variety of problems. For instance, Adeli et al. [Adeli and Yeh (1989)] 
applied ML to the design of steel beams; Hajela et al. [Hajela and Berke (1991)] used a 
ML model as a surrogate for the exact response of structures to enable fast 
optimization; Cheu et al. [Cheu and Ritchie (1995)] applied ML to traffic m odeling; 
and Theocaris et al. [Theocaris and Panagiotopoulos (1993)] used it to model 
fracture behavior and identification. For further bibliography along these l ines, see a 
review of neural network applications in civil engineering that appeared in 2001 [Adeli 
(2001)].

CMES. doi:10.31614/cmes.2018.04285 www.techscience.com/cmes

1 Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA. 
* Corresponding Author: R. E. Jones. Email: rjones@sandia.gov.

 CMES, vol.117, no.3, pp.309-342, 2018 



Research on applying ML to constitutive modeling dates back to roughly the same 
time period. In solid mechanics in particular, Ghaboussi et al. [Ghaboussi, Pecknold, 
Zhang et al. (1998)] applied a neural network (NN) to data from experiments of beam 
deflection. They created a model which acquired increasing fidelity as experiment 
progressed via hierarchical learning and adapting new hidden layers. Furukawa et al.
[Furukawa and Yagawa (1998)] constructed an “implicit” model of linear viscoplasticity 
with a NN based on a state space formulation, where the NN provided the driving term 
for plastic evolution and the elastic response was assumed to be known. Notably, they 
expressed a need for variety in the training data.
More recently, a number of studies have appeared comparing NN plasticity models to other 
models calibrated on experimental data for specific materials. Lin et al. [Lin, Zhang 
and Zhong (2008)] built a NN model of the flow s tress of low alloy s teel based on only 
experimentally observable quantities. Bobbili et al. [Bobbili, Ramakrishna, Madhu  et al. 
(2015)] constructed a NN model of high strain rate Hopkinson bar tests of 7017 aluminium 
alloy and compared it to a Johnson-Cook model. For T24 steel, Li et al. [Li, Wang, Wei et 
al. (2012)] compared a NN model to a modified Zerilli-Armstrong and strain-compensated 
Arrhenius-type model. They remarked on the opacity of the NN model and the need for 
extensive data. Desu et al. [Desu, Guntuku, Aditya  et al.  (2014)] made flow stress 
prediction of austenitic 304 stainless steel with support vector machine construct and 
compared it to a NN model. Asgharzadeh et al. [Asgharzadeh, Aval and Serajzadeh (2016)] 
modelled the flow s tress behavior o f AA5086 aluminum using a NN with two hidden 
layers. Also, in the realm of fluid mechanics, Ling et al. [Ling and Templeton (2015); Ling, 
Kurzawski and Templeton (2016)], Duraisamy et al. [Tracey, Duraisamy and Alonso 
(2015); Duraisamy, Zhang and Singh (2015)], and Milano et al. [Milano and 
Koumoutsakos (2002)] have been particularly active in applying machine learning 
techniques to model turbulence [Wang, Wu, Ling et al. (2017)]. Unlike traditional models 
based on physical mechanisms and intuition, these ML models are purely data-driven and 
phenomenological. Recently, mathematical analysis has been applied to understanding the 
training and response structure of NNs, which have traditionally been treated as black 
boxes. The work of Tishby and co-workers [Shwartz-Ziv and Tishby (2017)] and Koh et al. 
[Koh and Liang (2017))] is particularly illuminating and explores the trade-offs between 
information compression and prediction accuracy in the training process.
In the wider context of data-driven modeling, a number of recent developments [Alharbi 
and Kalidindi (2015); Kirchdoerfer and Ortiz (2016); Smith, Xiong, Yan et al. 
(2016); Versino, Tonda and Bronkhorst (2017); Bessa, Bostanabad, Liu et al. (2017)] 
are also noteworthy. Alharbi et al. [Alharbi and Kalidindi (2015)] constructed a 
database of Fourier transformed microstructural data and used this spectral information 
to drive the evolution of crystal plasticity simulation. Kirchdoerfer et al. [Kirchdoerfer 
and Ortiz (2016)] sought to subvert the traditional empirical model in the data-to-
model-to-prediction chain and replace it with a penalization of the prediction 
response by its distance to closest experimental observation/data point. This approach 
of directly using a database is commendable (and avoided data interpolation which 
appears, for example, in Shaughnessy et al. [Shaughnessy and Jones (2016))]. The 
optimization was constrained by conservation principles like a Newtonian force balance 
and was applied to truss and elasticity problems. The authors  explored the technique’s
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robustness to noise and convergence. Versino et al. [Versino, Tonda and Bronkhorst 
(2017)] applied a genetic/evolutionary algorithm and a symbolic regression to model 
Taylor impact test data. The symbolic regression ML technique selects a best model 
composed of given analytic building-blocks and is especially attractive since the resulting 
tree structure leads to a physically intepretable model based on the physics embedded in 
the building-block sub-models. Lastly, Bessa et al. [Bessa, Bostanabad, Liu et al. 
(2017)] integrated design of experiments, simulation, and machine learning in 
materials discovery and design. It should be noted that the Materials Genome and 
similar material discovery and selection efforts [Jain, Ong, Hautier et al. (2013); Saal, 
Kirklin, Aykol et al. (2013); Raccuglia, Elbert, Adler et al. (2016)] are a deep and 
active field of research but this classification problem has minor bearing on the 
constitutive modeling task at hand.
In the vein of designing the architecture NN suit to specific tasks, the method we adopt and 
generalize, the Tensor Basis Neural Network (TBNN) [Ling, Jones and Templeton (2016)], 
is not simply a feed-forward, deep neural network. Unlike other NN mechanics models of 
the components of output quantities, such as stress, TBNN models have built-in invariance 
properties. The TBNN formulation shifts the basis for the unknown coefficient functions 
from the (arbitrary) Cartesian basis of the training data to an objective basis made up of 
powers of the selected inputs, as representation theory [Spencer (1971); Truesdell and Noll 
(2004)] suggests. This comes with the cost that the coefficient functions and basis are not 
linearly independent  i.e. they must be trained simultaneously. This representation is akin to 
the Gaussian Approximation Potential (GAP) with the Smooth Overlap of Atomic 
Positions (SOAP) basis [Bartók and Csányi (2015)] that is gaining popularity in molecular 
dynamics, in that this machine learning constitutive function uses a spectral basis to 
preserve rotational and permutational invariance. It also has goals in common with 
image transforms that embed invariance properties [Khotanzad and Hong (1990); Lowe 
(1999)].
Motivated by the goal of achieving on-the-fly model construction, directed sam- 
pling/experiments, and discovery of features/trends in large datasets, in this work we show 
how classical constitutive modeling is needed to obtain viable ML models of constitutive 
behavior. In Section 2, we provide the fundamentals of representation and plasticity 
theories and connect them with our NN formulation of the components of plasticity, namely 
the stress and flow rules. In Section 3 , we discuss how the data t o t rain t he models is 
obtained, the specifics of the learning algorithm, and the t ime integration algorithm used 
to predict the plastic evolution. One of the data sets is obtained from the elastic-plastic 
response of an ensemble of oligo-crystalline aggregates, and so the resulting NN model can 
be considered a form of homogenization. The results of these developments are discussed 
in Section 4 and include comparisons of various model architectures. These comparisons 
are based on cross-validation errors and evaluations of stability and prediction accuracy in 
the context of adequate training. Finally, in Section 5, we discuss results and innovations, 
such as the generalized tensor basis architecture, the novel ways of embedding physical 
constraints in the formulation, and the exploration of data sufficiency, robustness, and 
stability in the context of commonly available data.
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2 Theory
In this section we provide a concise overview of representation theory and how we apply it
in the context of constitutive modeling by (artificial) neural networks (NNs). Specifically,
we employ a generalization of the Tensor Basis Neural Network (TBNN) [Ling, Jones
and Templeton (2016)] concept based on an understanding of classical representation
theory. With it we construct models that represent the selected output as a function of
inputs with complete generality and compact simplicity. This construction is distinct from
the predominance of component-based NN constructions, for example those mentioned
in the Introduction, in that basic symmetries, such as frame invariance are built into the
representation and do not need to be learned.

2.1 Representation theory

Representation theorems for functions of tensors have a foundation in group theory [Olver
(2000); Goodman and Wallach (1998, 2009); Sattinger and Weaver (2013)] with the
connection being that symmetry is described as functional invariance under group action.
In mechanics, the relevant invariance under group action are rotations (and translations)
of the coordinate system, which is known as material frame indifference, invariance
under super-posed rigid body motions or simply objectivity.1 This is a fundamental and
exact symmetry. Practical applications of representation theory to mechanics are given
in Truesdell and Noll’s monograph [Truesdell and Noll (2004)] and Gurtin’s text [Gurtin
(1982)] and address complete, irreducible representations of general functions of physical
vector and tensor arguments. For example, the scalar function f(A) of a (second order)
tensor A is invariant if

f(A) = f(GAGT ) , (1)

and a (second order) tensor-valued function M(A) is objective if

GM(A)GT = M(GAGT ) , (2)

for every member G of the orthogonal group.
Underpinning the representations of f and M are a number of theorems. The spectral
theorem states that any symmetric second order tensor A has spectral representation:

A =

3∑
i=1

λiai ⊗ ai , (3)

composed of its eigen-values {λi} and eigen-vectors {ai} where i = 1, 2, 3. Spectral
representation makes powers of A take a simple form: An =

∑
i λ

n
i ai ⊗ ai, and in

particular A0 ≡ I. The equally important Cayley-Hamilton theorem states that the tensor
A satisfies its characteristic equation:

A3 − (λ1 + λ2 + λ3)︸ ︷︷ ︸
J1=trA

A2 + (λ1λ2 + λ2λ3 + λ3λ1)︸ ︷︷ ︸
J2= 1

2
(tr2 A−trA2)

A− (λ1λ2λ3)︸ ︷︷ ︸
J3=detA

I = 0 , (4)

where {Ji} are the principal (scalar) invariants of A. The (generalized) Rivlin’s identities
[Rivlin (1955); Rivlin and Smith (1997)] provide similar relations for multiple tensors and
their joint invariants.
1 Frame indifference is a special case of the more general principle of covariance with changes of

the metric tensor [Marsden and Hughes (1983)].
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Scalars that respect Eq. (1), such as {Ji}, are called scalar invariants and are formed from
polynomials or, more generally, functions of the eigenvalues of A. Hence, f(A) reduces
to

f(A) = f(I) (5)

where I is a set of scalar invariants of A, and consequently f is also an invariant. A set of
invariants I is considered irreducible if each of its elements cannot be represented in terms
of others and conveys a sense of completeness and simplicity.2 Since the eigenvalues {λi}
are costly to compute, typically traces such as {trA =

∑
i λi, trA

2 =
∑

i λ
2
i , trA

3λ3
i }

are employed as scalar invariants. Joint invariants of a functional basis for multiple
arguments are formed with the help of Pascal’s triangle.
For tensor-valued functions such as M(A) in Eq. (2), a power series representation

M(A) =

∞∑
i=0

ci(I)Ai (6)

provides a starting point for a more compact representation. The coefficient functions ci are
represented in terms of scalar invariants as in Eq. (5). This power series representation can
then be reduced by application of the Cayley-Hamilton theorem (4), in the recursive form
Aj+3 = J1A

j+2−J2A
j+1 +J3A

j . The transfer theorem (as referred to by Gurtin [Gurtin
(1982)]) states that isotropic functions such as M(A) inherit the eigenvalues of their
arguments and implies the fact that these functions are co-linear with their arguments. Also
Wang’s lemma (I,A,A2 span the space of all tensors co-linear with A) is a consequence
of Eq. (3) and Eq. (4), and gives a sense of completeness of the representation:

M(A) = c0(I)I + c1(I)A + c2(I)A2 . (7)

Eq. (7) evokes the general representation for a symmetric tensor function of an arbitrary
number of arguments in terms of a sum of scalar coefficient functions multiplying the
corresponding elements of the tensor basis. The general methodology for constructing the
functional basis to represent scalar functions is given in Rivlin et al. [Rivlin and Ericksen
(1955)], and the corresponding methodology to construct tensor bases is developed in Wang
[Wang (1969, 1970)].
Representation theory, like machine learning, does not determine the appropriate inputs
and output for constitutive functions. In mechanics, there is a certain amount of fungibility
to both. For instance, the (spatial) Cauchy stress can easily be transformed into the
(referential) first Piola-Kirchhoff stress, and left and right Cauchy-Green stretch have
same eigenvalues but different eigen-bases. Also, any of the Seth-Hill/Doyle-Ericksen
strain family [Seth (1961); Hill (1968); Doyle and Ericksen (1956)] provide equivalent
information on deformation, and any of the objective rates formed from Lie derivatives
[Johnson and Bammann (1984); SzABo and Balla (1989); Haupt and Tsakmakis (1989,
1996)] provide equivalent measures of rate of deformation; however, some choices of
arguments and output lead to greater simplicity in the representation than others.
Lastly, it is important to note that isotropic functions are not restricted to isotropic
responses. The addition of a structure tensor characterizing the material symmetry to the

2 In some sense, a complete set of invariants are coordinates on the manifold induced by symmetry
constraints and hence are clearly not unique in their ability to coordinatize the manifold.
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arguments allows isotropic function theory to be applied so that the joint invariants encode
anisotropies [Smith and Rivlin (1957b,a); Spencer (1982); Zhang and Rychlewski (1990);
Svendsen (1994); Zheng (1994)].

2.2 Plasticity models

Briefly, plasticity is an inelastic, history-dependent process due to dislocation motion or
other dissipative phenomena. We assume the usual multiplicative decomposition [Lee
(1969); Lubarda (2004)] of the total deformation gradient F into elastic (reversible) Fe
and plastic (irreversible) Fp components:

F = FeFp (8)

is valid. As a consequence, the velocity gradient in the current configuration, l ≡ ḞF−1,
can be additively decomposed into elastic and plastic components :

l = ḞeF
−1
e + Fe ḞpF

−1
p︸ ︷︷ ︸

Lp

F−1
e , (9)

refer to Lubliner [Lubliner (2008)]. The assumption that Fp is pure stretch (no rotation) 
reduces Lp to Dp ≡ sym Lp. The elastic deformation determines the stress, for instance the 
Cauchy stress T:

T = T̂(Fe) = T(ee) , (10)

and the evolution of the plastic state is determined by a flow rule, e.g. :

Ḟp = DpFp where Dp = D̂p(Fp,T) = Dp(bp,σ) , (11)

where Fp quantifies the plastic state and T the driving stress. Invariance allows the
reduction of the argument of T to, for example, the objective, elastic Almansi strain
ee = 1

2

(
I− b−1

e

)
based on the left Cauchy-Green/Finger stretch tensor be = FeF

T
e .

Similarly, the state variable in the flow rule can be reduced by applying invariance, for
example, bp = FpF

T
p . The driving stress can be attributed to the deviatoric part of the

pull-back of the Cauchy stress T: σ = dev
[
F−1
e TF−Te

]
which is also invariant and also

coexists in the intermediate configuration with Dp. Furthermore, a deviatoric tensor basis
element, such at σ, generates an isochoric flow which respects plastic incompressibility
detFp ≡ 1. Other choices of the inputs and outputs of the stress and flow functions are
discussed in Results section. Typically both the stress and flow are derived potentials,
despite the fact that potential usually cannot be measured directly, to ensure elastic energy
conservation for the stress and associative flow for the flow rule; however, in this work we
to allow for a more general flow and a non-differentiable NN model.3

A few basic properties are built into traditional empirical models that need to be learned in 
typical NN models. First, zero strain, ee = 0, implies zero stress:

T(0) = 0 , (12)

and, likewise, zero driving stress should result in zero plastic flow:

Dp(Fp,0) = 0 . (13)

3 Also worth mentioning are the complex requirements for elastic stability, see Marsden et al.
[Marsden and Hughes (1983)], that we do not attempt to embed in the formulation mainly because
they require a potential.
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Also there is a dissipation requirement for the plastic flow. Generally speaking, the 
Coleman et al. [Coleman and Noll (1963)] argument, together with the first and second law 
of thermodynamics, applied to a free energy in terms of the elastic deformation and a 
plastic history variable results in: (a) The stress being conjugate to the elastic strain rate, 
and (b) The internal, plastic state variable, when it evolves, reduces the change in free 
energy to M · Lp ≥ 0, where M is the Mandel stress

M = det(F)
[
FTe Fe

] [
F−1TF−T

]
, (14)

or equivalently

T · dp ≥ 0 , (15)

refer to Lubliner [Lubliner (2008)]. Also, given the physics of dislocation motion, it is
commonly assumed that the plastic deformation is incompressible, detFp = 1, which
implies the flow is deviatoric

trDp = 0 (16)

For more details see the texts [Lubliner (2008); Simo and Hughes (1998); Gurtin, Fried and
Anand (2010)].

2.3 Application to neural network constitutive modeling

As mentioned in the Introduction, we generalize the Tensor Basis Neural Network (TBNN)
formulation [Ling, Jones and Templeton (2016)] to build NN representations for the stress
relation, Eq. (10), and the plastic flow rule, Eq. (11), that embed a number of symmetries
and constraints. Both T and Dp are required to be isotropic functions of their arguments by
invariance. As discussed in Section 2.1, classical representation theorems give the general
form

f(A) =
∑
i

fi(I)Bi , (17)

whereA ≡ {A1,A2, . . .} are the pre-supposed dependencies/arguments of function f , I ≡
{Ij} is an (irreducible) set of scalar invariants of A, and B = {Bj} is the corresponding
tensor basis. In Eq. (17), only the scalar coefficient functions are {fi} are unknown once
the inputs have been selected; and, hence, they are represented with a dense NN using
the selected scalar invariants I as inputs embedded in the overall TBNN structure. In the
TBNN framework, the sum the NN functions {fi(I)} and the corresponding tensor basis
elements {Bi} in Eq. (17) is accomplished by a so-called merge layer, and the functions
{fi} are trained simultaneously (refer to Fig. 1 and more details will be given in Section
3.2). This formulation is in contrast to the standard, component-wise NN formulation:

f(A) =
∑
i,j

fij([A1]ij , [A2]ij , . . .) ei ⊗ ej , (18)

which is based on components of both the inputs {A1,A2, . . .} and the output f .
For the stress, we assume a single symmetric tensor input selected from the Seth-
Hill/Doyle-Ericksen elastic strain family, in particular ee, is sufficient, so that
representation Eq. (7):

T = σ0(I)I + σ1(I)ee + σ2(I)e2
e , (19)
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is appropriate. Despite this formulation being based on strain, versus stretch, it does not
embed the zero stress property, Eq. (12), and, hence, σ0(I) will need to learn that zero strain
implies zero stress. We prefer to impose, rather than learn, physical constraints such as
Eq. (12) since this reduces the necessary training data [Ling, Jones and Templeton (2016)],
and exact satisfaction leads to conservation and other properties necessary for stability, etc.
Exact satisfaction of Eq. (12) can be accomplished a few different ways: shifting the basis
with the Cayley-Hamilton theorem (4)

T = σ1ee + σ2e
2
e + σ3e

3
e , (20)

refactoring some T = (I2σ
′
0) I + σ′1ee + σ′2e

2
e, or all T = I2

(
σ′′0I + σ′′1ee + σ′′2e

2
e

)
of the

coefficient functions {σi} with I2 = tr e2
e. In general, any of these representations can be

expressed on the spectral basis

T =
∑
i

3∑
j=1

σiλ
i
jaj ⊗ aj =

3∑
j=1

(∑
i

σiλ
i
j

)
aj ⊗ aj (21)

so there is a (weak) equivalence between coefficient functions of the various
representations. Here, ee =

∑
i λiai ⊗ ai.

As mentioned in Section 2.2, we assume that the inputs to the flow rule are (a) a history
variable bp, and (b) driving stress σ. A general function representation from classical
theory for an isotropic function of two (symmetric) tensor arguments requires ten invariants
[Rivlin (1955)] (see also Boehler [Boehler (1987)]):

I ≡ {Ii} = {trbp, trb2
p, trb

3
p, trσ, trσ

2, trσ3, trbpσ, trb
2
pσ, trbpσ

2, trb2
pσ

2} (22)

and eight tensor generators/basis elements

B ≡ {Bi} = {I,bp,b2
p,σ,σ

2, symbpσ, symb2
pσ, symbpσ

2} , (23)

where symA ≡ 1
2(A + AT ). To satisfy the zero flow condition, Eq. (13), we can shift

basis for the second, stress argument and eliminate all basis elements solely dependent on
the first, plastic state argument:

B = {σ,σ2,σ3, symbpσ, symb2
pσ, symbpσ

2} . (24)

Plastic incompressibility, in the form of deviatoric plastic flow, Eq. (16), can imposed by
applying the linear operator dev, devA ≡ A− 1

3 tr(A)I,

Dp = f01 devσ + f11 sym devbpσ + f02 devσ2

+ f21 dev symb2
pσ + f12 dev symbpσ

2

Dissipation of plastic flow can be strictly imposed by requiring that the flow be directly
opposed to the stress in Eq. (15) which implies:

Dp = f1 σ + f3 σ
3 , (25)

and f1(I) > 0 and f3(I) > 0. In this study we will rely on the learning process to ensure
the positivity of the coefficient functions f1 and f3 but this could be accomplished exactly
with the Macauley bracket (ramp function) applied to f1 and f3, for example.

3 Methods
We train the NN models of plasticity with data from two traditional plasticity models. In
this section we give details of (a) the traditional models, (b) the training of the NNs, and
(c) numerical integration of the TBNN plasticity model.
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3.1 Plasticity models

In an exploration of the fundamental properties of NNs applied to plasticity, we seek to
represent responses of two models: (a) A poly-crystalline representative volume element
(RVE) with grain-wise crystal plasticity (CP) response (an unknown closed form model
since the poly-crystalline aspect of the CP model obscures its closed form), and (b) A
simple visco-plasticity (VP) material point (a known closed form model). Both are finite
deformation models so that invariance and finite rotation are important; and both are visco-
plastic in the sense of lacking a well-defined yield surface and strictly dissipative character.
Briefly, crystal plasticity (CP) is a well-known meso-scale model of single crystal 
deformation. Here we use crystal plasticity to prescribe the response of individual crystals 
in a perfectly bonded polycrystalline aggregate. The theoretical development of CP is 
described in Taylor et al. [Taylor (1934); Kroner (1961); Bishop and Hill (1951b,a); Mandel 
(1965)] and the computational aspects in reviews [Dawson (2000); Roters, Eisenlohr, 
Hantcherli et al. (2010)].
Specifically, for the crystal elasticity, we employ a St. Venant stress rule formulated with
the second Piola-Kirchhoff stress mapped to the current configuration

T =
1

detF
F (CEe)FT (26)

where the elastic modulus tensor C = C11K+C12(I−K)+C44(J−2K) has cubic crystal
symmetries with C11, C12, C44 = 204.6, 137.7, 126.2 GPa, and Ee = 1

2

(
FTe Fe − I

)
is the

elastic Lagrange strain. Here [I]ijkl = δijδkl, [J]ijkl = δikδjl + δilδjk, [K]ijkl = δijδklδik
(no sum implied), δij is the Kronecker delta, and CEe =

∑
k,l [C]ijkl [Ee]klEi⊗Ej . Plastic

flow can occur on any of 12 face-centered cubic (FCC) slip planes. Each crystallographic
slip system, indexed by α, is characterized by Schmid dyads Pα = sα ⊗ nα composed of
the allowed slip direction, sα, and the normal to the slip plane, nα. Given the set {Pα}, the
plastic velocity gradient is constructed via:

Lp =
∑
α

γ̇αPα , (27)

which is inherently volume preserving in the (incompatible) intermediate/lattice
configuration. Finally, the slip rate γ̇α is related to the applied stress through the resolved
shear (Mandel) stress τα = M ·Pα, for that slip system. We employ a common power-law
form for the slip rate relation

γ̇α = γ̇α0

∣∣∣∣ταgα
∣∣∣∣1/m τα , (28)

where γ̇α0 = 122.0 (MPa-s)−1 is a reference strain rate, m = 20 is a rate sensitivity
exponent, and gα = 355.0 MPa is a hardness value. These parameters are representative
of steel.
With this model, we simulate the polycrystalline response using a uniform mesh 20 × 
20 × 20 with the texture assigned element-wise and strict compatibility enforced at the 
voxelated grain boundaries. Ten realizations with 15, 15, 17, 18, 18, 19, 19, 20, 20, 21, 
22 grains were sampled from an average grain size ensemble and each grain was assigned 
a random orientation. Minimal boundary conditions to apply the various loading modes
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(tension, shear, etc.) were employed on the faces and edges of the cubical representative 
volumes. Also, we limit samples to a single, constant strain rate 1.01/s.
The simple visco-plastic (VP) model consists of a St. Venant stress rule in the current 
configuration with Almansi strain:

T = Cee , (29)

where C = λI + µJ with isotropic parameters λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) , Young’s
modulus E = 200 GPa and Poisson’s ratio ν = 0.3, together with a simple (associative)
power law for the flow rule:

Dp = c‖s‖ps , (30)

where c = 0.001 MPa−(1+p)-s−1 and p = 0.1 are material constants.

3.2 Neural network representation and machine learning algorithm

A typical NN, such as the representation of each component of Eq. (18), is a two-
dimensional feed-forward, directed network consisting of an input layer, output layer and
L intervening hidden layers where neighboring layers are densely connected. Each layer `i
consists of N nodes (ij). The vector of outputs, yi, of the nodes (ij), j ∈ (1, N) of layer
`i is the weighted sum of the outputs of the previous layer `i−1 offset by a threshold and
passed through a ramp-like or step-like activation function a(x):

xi = a(yi) with yi = Wixi−1 + bi , (31)

where Wi is the weight matrix for the inputs of (hidden) layer `i of the state/output of
nodes of the previous layer xi−1 and bi is the corresponding threshold vector. In our
application the input layer consists of the NI invariants I and the NB elements of the
tensor basis B. The elements of I form the arguments of the coefficient functions, each
having a L × N neural network representation, while the elements of B pass through
the overall network until they are combined with the coefficient functions according to
Eq. (17) to form the output via a merge layer that does the summation of the coefficient
functions and the elements of the tensor basis. After exploring the C0 step- and ramp-like
rectifying activation functions commonly used, we employ the ramp-like (C1 continuous)
Exponential Linear Unit (ELU) [Clevert, Unterthiner and Hochreiter (2015)] activation
function:

a(x) =

{
exp(x)− 1 if x < 0

x else
(32)

to promote smoothness of the response and limit the depth of the network necessary to
represent the response relative that necessary with saturating step-like functions.
Training the network weights Wi and thresholds bi is accomplished via the standard back-
propagation of errors [Werbos (1974); Rumelhart, Hinton and Williams (1986)] which, in
turn, drives a (stochastic) gradient-based descent (SGD) optimization scheme to minimize
the so-called loss/error, E. We employ the usual root mean square error (RMSE)

E =
1

2ND

∑
(xk,dk)∈D

‖y(xk)− dk‖2 , (33)
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where D is the set of training data composed of inputs xk = {Ik,Bk} and corresponding
output dk. The gradient algorithm relies on: (a) The change in E with respect to each
weight Wi

∂E

∂Wi
=
∂E

∂xi

∂xi
∂yi︸ ︷︷ ︸

∆i

∂yi
∂Wi

= xi−1 ⊗∆i (34)

and (b) Each threshold bi

∂E

∂bi
=
∂E

∂xi

∂xi
∂yi︸ ︷︷ ︸

∆i

∂yi
∂bi

= ∆i , (35)

where

∆i =
(
WT
i+1∆i+1

)
� a′(yi) for i 6= L with ∆L =

∑
(xk,dk)∈D

(y(xk)− dk)� a′(yL) (36)

Here a′ is the derivative of weight function, [a ⊗ b]ij = aibj is the tensor product, and [a � 
b]i = aibi element-wise Hadamard-Schur product.4 The gradient defined by these 
expressions is evaluated with random sampling of subset of training data D called 
minibatches. Also, search for a minimum along this direction is governed by a step size 
called the learning rate in the ML community. These standard constructions are trivially 
generalized to the TBNN structure since the inputs B are not directly related to Wi nor bi, 
and are merely scaled by the coefficient functions to form the output y, refer to Fig. 1. For 
more details of the SGD algorithm see Nielsen [Nielsen (2015)].
To begin the training, the unknown weights, {Wi}, and thresholds, {bi}, are initialized 
with normally distributed random values to break the degeneracy of the network and 
enable local optimization. Since multiple local minima for training are known to exist, 
choosing an ensemble of initial weights which are then optimized improves the chances of 
finding a global minimum and the distribution of the solutions indicates the robustness of 
the training. Also, the full set of input data is divided into a training set D, used to generate 
the errors for the back-propagation algorithm; a test set T , for assessing convergence of the 
descent algorithm; and a third set V for cross-validation, to estimate the predictive 
capability of the trained network. Ensuring that the errors based on T are comparable to 
those on V reduces the likelihood over-fitting data with a larger than necessary NN. We 
chose to divide the available data in a T : D : V = 20:72:8 ratio. In addition, we sample 
individual stress-strain curves produced by the CP and VP simulators so as to maintain 
approximate uniform density of data along the arc-length of the stress-strain curve (vs. a 
uniform sampling over the strain range) to resolve high-gradient (elastic) and transition 
(yield) regimes. Also, it should be noted that we allow ourselves to train on inputs derived 
from the plastic deformation gradient, Fp, despite the fact that this quantity is difficult to 
observe directly in experiments. A critical part of the training algorithm is normalizing the 
data so that the NN maps O(1) inputs to O(1) outputs since having Wi, bi ∼ O(1) will 
achieve better SGD convergence. We also shift and scale the scalar invariants I so that they 
have a mean zero, variance one distribution. We normalize the other set of inputs, the 
tensor basis B, using the maximum Frobenius norm of the basis generators, e.g. bp and σ,

4 The recursion seen in Eq. (36) gives back-propagation its name.
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Basis:

Inputs:

Outputs:

Merge:

A

I B = {B0, B1}

I0 I1 I2

a(y00) a(y01) a(y02) a(y03)

a(y10) a(y11) a(y12) a(y13)

a(y20) a(y21) a(y22) a(y23)

c0 c1

M =
∑

i ciBi

Figure 1: TBNN structure for M(A) =
∑

i ci(I)Bi with 3 invariants I = {I0, I1, I2},
a 3 × 4 NN, 2 coefficient functions {c0(I), c1(I)}, and 2 tensor basis elements B =
{B0,B1}. The linear transformation yi = Wixi−1 + bi of the outputs xi−1 of layer i− 1 to
the inputs yi of layer i is denoted by the arrows connecting the nodes of layer i− 1 to those
of layer i. The nonlinearity of the activation functions a(yi) is represented by a(yij) where
yij are the components of yi. The scaling operations described in Section 3.2 are omitted
for clarity
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over the training set D. During training, the output tensors are normalized similarly based
on their maximum norms over D, so that

f =
∑
i

1

sf
f̄i(Ī)sBi︸ ︷︷ ︸
fi(I)

Bi , (37)

where sf is the scaling of output f ; sBi
is the scaling of basis element Bi based on the

powers of principal generator (e.g. if Bi = basb then sBi
= sabs

b
s where sb is the scaling

of b); and Ī = sIiIi is the set of scaled and shifted invariants. These scales have the
added benefit of coarsely encoding the range of training data so the extrapolation during
prediction can be detected.
Convergence is assessed by averaging the error with respect to T over previous iterations
of the SDG (in this work we average over the last 4-10 iterations) and terminating when
this average converges, but not before performing a minimum number of iterations (1000
in this work). More discussion of the training approach can be found in Ling et al. [Ling,
Jones and Templeton (2016)], although in that work the learning rate was held fixed rather
than decaying as the training proceeds, as in this study.

3.3 Integration algorithm

We need a time-integration scheme to solve the differential-algebraic system Eq. (10)
and Eq. (11). We assume it is deformation driven so that F = F(t) is data. To
form a numerical integrator, we rely on the well-known exponential map for the plastic
deformation [Fp]n+α ≡ Fp(tn+α):

[Fp]n+α = exp
(
α∆t [Dp]n

)
[Fp]n (38)

which is an explicit/approximate solution to Eq. (11). In Tab. 1, we outline an adaptive
scheme based on this update and the interpolation of the (full) deformation gradient
Fn+α = exp(α log ∆F)Fn by similar means via logFn+α = (1−α) logFn+1 +α logFn
= logFn + α log ∆F, with ∆F = Fn+1F

−1
n . Since we do not rely on the NN models

of stress Eq. (10) and flow (11) being directly differentiable,5 we use a simple relaxation
scheme to enforce consistency of the rate Dp(bp,σ) using a residual based on the unknown
[Fp]n+1 updated at each iteration given [Fp]n. If any step has an increase in the residual,
the step size is cut; conversely, when a sub-step converges, the remainder of the interval is
attempted.

4 Results
In this section we cover our investigations of: (a) Optimal network size, inputs, and
representation basis; (b) Influence of training data on error and stability; and (c) The
robustness and accuracy of the model predictions. As mentioned, we employ data from
an unknown-form CP model (Eq. (26) and Eq. (27)) and known-form VP model (Eq. (29)
and Eq. (30)). (Recall that we designate the CP model an unknown-form model since the
response of the polycrystalline aggregates has no closed form.) Training with the data

5 This relaxation could be improved by using the derivatives already computed by the back-
propagation algorithm in a Newton solver with a trust region based on the bounds of the training
data.
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For step n+ 1

• Initialize Fp = [Fp]n, and ∆F = Fn+1F
−1
n

• Sub-step: while α < 1, try α = 1 with F ≡ Fn+α = exp (α log (∆F)) Fn
Relaxation: at fixed α, initialize [Fp]

∗
k=0 = [Fp]n+α with iteration indexed by k:

1. b∗
p =

[
FpF

T
p

]∗
k

and b∗
e = F

[(
FTp Fp

)−1
]∗
k
FT

2. T∗ = T(b∗
e) and σ∗ = dev

(
[Fp]k F

−1T∗F−T [Fe]
T
k

)
3. [Dp]

∗
k = f(b∗

p,σ
∗)

4. Update [Fp]
∗
k+1 = exp

(
α∆t [Dp]

∗
k

)
Fp

5. If Rk ≡
∥∥∥[Dp]

∗
k − [Dp]

∗
k−1

∥∥∥ < ε
∥∥[Dp]

∗
0

∥∥ then α += ∆α, converged at tn+α,
else if Rk > Rk−1 then cut step α = 1/2α, diverging,
else continue.

• Update Tn+1 = T∗ and [Fp]n+1 = [Fp]
∗

from the CP model illustrates the NN model’s ability to represent and homogenize the 
response of a complex system and the VP model is particularly useful for exploring NN 
representations since we know the true response and generating samples is computationally 
inexpensive.

4.1 Constructing and training the neural networks

We begin our numerical investigations with: (a) A survey of the possible representations 
for the models of stress and flow, and (b) Optimizing the structure and meta-parameters of 
the NN representations. To assess improvements in performance we used the traditional 
metric for evaluating NN performance, cross-validation error, where the training dataset D 
is replaced by the validation dataset V in evaluating the RMSE formula, Eq. (33).
For this study we use data from the CP model to train the stress and flow TBNNs. In 
particular, we collect data using 3 tension and 6 simple shear loading modes averaged 
over 570 random textures for each of the 10 polycrystalline realizations. As mentioned 
in the Methods section, we give ourselves access to the (average) plastic state variables 
of the CP simulations and so we train the stress and flow TBNNs independently (and 
not simultaneously). The trajectory for each realization is computed over a sequence of 
100 uniformly spaced strains and then averaged. As stated in Section 3.2, interpolation 
between points in the elastic and elastic-plastic transition regimes is used to increase the 
density of training data in these regions. This results in approximately 2000 data points 
with 6 strain and 6 stress components per point, which are then split between training, 
test, and cross-validation datasets. This dataset is typical of experimental datasets used 
to calibrate traditional models but compared to typical big-data applications of neural 
networks, this is a relatively small dataset. It is likely that other surrogate representations, 
such as Gaussian Processes (GPs), would do as well at emulating the data as measured by

Table 1: Time integration algorithm with adaptive time-stepping. Note,   is a convergence tolerance
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cross validation error. Nevertheless, this work will demonstrate that appropriately sized 
NNs can represent the abrupt transition between the elastic and plastic regimes, which can 
lead to errors with other methods, e.g. global polynomials [Rizzi, Khalil, Jones et al. 
(2018)]. The proposed TBNN architecture is designed to enforce the underlying physical 
invariants and constraints in the system exactly, which few other surrogate models can 
achieve, e.g. GPs [Salloum and Templeton (2014)]. While less relevant for reducing 
overall representation error, respecting these invariants is crucial in forward integration of 
the model [Arnold (2013)] and also has benefits in understanding how the model is making 
its predictions in the context of classical constitutive theory. In order to optimize the 
dimensions of the NN to the amount of available data, the influence of the breadth and 
depth of the network architecture on prediction error was explored and will be discussed 
shortly. Since these meta-parameters can be tailored in a straightforward manner to 
optimize representation accuracy and avoid over-fitting, NNs appropriate to the physical 
problem and available data size can be constructed and evaluated for additional properties 
necessary for the application at hand.
Fig. 2 and Fig. 3 shows typical training data for the I3 stress and IF flow representations 
(refer to Tab. 2 and Tab. 3) with 3 × 4 and 5 × 8 NNs, respectively. The left column of 
Fig. 2 and Fig. 3 show the tension response and the right columns show the shear response. 
The upper panels show the (input) invariants and the (output) coefficient functions. In 
general, the inputs and outputs are smooth and correlated, and all coefficient functions 
contribute. The notable exception is the stress model in shear in which only the coefficient 
function of the linear basis element ee appears to contribute. Note that all invariants are 
arguments to each coefficient function. Also, in Fig. 3 the zero invariant, tr σ ≡ 0, that 
becomes noise upon the input scaling described in Section 3.2. Apparently, the NN training 
learns to ignore this input since the outputs are smooth and regular. The lower panels show:
(a) The correspondence of the model (lines) and the data (points), and (b) The error as a 
function of strain. The errors for each of the components are of comparable magnitude and 
tend to have an irregular pattern in the elastic region of the loading. Note that with a C0 
activation function (e.g. the Rectifying Unit a(x) = max(0, x)) we observed distinct 
scallops and cusps in error curves (not shown for brevity). Also it is remarkable that the 
errors of the flow model in shear are distinctly linear, which, perhaps, is related to the fact 
only the linear basis element is active.
These results are typical for a wide range of NN structures and (meta) training parameters.
Fig. 4 shows the cross-validation errors of the stress and flow (scaled by sT and sDp

,
respectively) using the full representations I3 and IF (refer to Tab. 2 and Tab. 3,
respectively). As Schwartz-Ziv and Tishby [Shwartz-Ziv and Tishby (2017)] remark, trying
to interpret the behavior of network from a single training tends to be meaningless; hence,
we evaluate parametric and structural changes with an ensemble of at least 30 replicas
models Mk ∈ M in this and the following studies. (The replicas are obtained by using
different random seeds to produce the initial weights and thresholds.) The insets show that
the (initial) learning rate can have a strong effect on the errors, but once a small enough
(< 10−3) rate is selected the final errors are relatively insensitive to this parameter. The
main panels show the typical trends in errors ranging from under-representation (too small
a network) to over-fitting (too large a network).6 For the stress TBNN, N=4 nodes appears

6 As mentioned, we require that in the training procedure that the error on the training D and
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to be an optimum even for relatively shallow networks (N < 4) but the optimal number of
nodes is relatively insensitive for L > 4. The flow TBNN shows analogous behavior but
with a trade-off between nodes and layers, e.g. for L > 6, N=4 appears to be best, while
N > 4 is better for shallower networks. These findings are somewhat obscured by the noise
in the trend lines, which persists despite using the average of 150 replica networks. Also,
the convergence window (described in Section 3.2) is an important meta parameter. We
obtained these results with a 4 iteration convergence window; a longer convergence window
(e.g. 10 iterations) shifts the best cross-validation to smaller networks, but also induces
larger variance in error between replicas. Since we want reliable error from each replica,
we use a 4 iteration convergence window throughout the remainder of this work. Lastly,
we do not believe cross-validation is sufficient for determining completeness of network;
however, these results indicate that optimal number of nodes is less than the number of
input invariants for flow but greater than this matrix rank-based criterion for the stress
representation. Apparently, the NN is compressing the input for the flow network; and,
hence, we conjecture that the NN is forming lower dimensional set of (alternate) invariants
internally with respect to the training data.
Fig. 5 shows cross-validation error for the CP training data for various basis representation
of the stress and flow functions (refer to Tab. 2 and Tab. 3 for the definition of the
labels). For the stress TBNNs, all (overall) errors are comparable with the exception of the
component-based representation and the one term E1 representation (with tensor basis B =
{ee}). Clearly, the E1 basis is not sufficient since it is akin to a one parameter Navier model
of stress. From the results of the two truncated bases, I2 and ID, it appears that correlated
inputs, B = {I, ee} (I2), train comparably to linearly independent inputs, {I,dev ee} (ID,
which uses a volumetric/deviatoric split). Also, the upper panel of Fig. 5a shows that the
representations without embedded satisfaction of the zero-stress at zero-strain constraint,
Eq. (12), generally violate this constraint by about 1% of the maximum stress. For the flow
TBNNs, all (overall) errors are comparable with the exception of the reduced scalar and
tensor basis representation S1. Also the other reduced representations (R3,R1,T3,T1) have
slightly higher average errors than the full representations (UF,IF,IR,SF,DS,DS,DR,DZ)
albeit with reduced variance. The consistency of the representations with the zero-flow-at-
zero-stress condition Eq. (12) generally follows whether powers of ee are included or not.
Clearly, cross-validation based on this limited dataset is not sufficient for decisive model
selection but it does eliminate some representations. By comparison, the component-based
representations, Eij and CM, display higher errors, larger variance in the performance
and poor zero-input-zero-output results. Beyond the fundamentally different functional
representation, these models are likely suffering from an insufficiency of data to learn the
necessary properties (the ones embedded in the generalized TBNN framework) accurately,
as demonstrated in Ling et al. [Ling, Jones and Templeton (2016)]. Lastly, as discussed
in the Theory section, we have embedded a number of properties in the representations,
e.g. symmetry, deviatoric flow, dissipation, and, generally, the violation of the learned
properties is on par with what we illustrate with the zero-stress and zero-flow conditions.
In preliminary studies we also trained networks with different inputs and outputs. In
general, the cross-validation errors were comparable over a variety of choices, for example

the testing T data be comparable as failure to achieve parity in the errors is indicative of bad
predictions and over-fitting.
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scalar tensor
Eij component [ee]ij component ei ⊗ ej
I3 full {tr ee, tr e2e, tr e3e} full {I, ee, e2e}
E3 full {tr ee, tr e2e, tr e3e} full, shifted {ee, e2e, e3e}
I2 full {tr ee, tr e2e, tr e3e} reduced {I, ee}
ID full {tr ee, tr e2e, tr e3e} reduced, independent {I,dev ee}
E1 full {tr ee, tr e2e, tr e3e} reduced {ee}

Table 2: Stress representations: Those with I in their tensor basis do not satisfy the zero
stress condition intrinsically, and those with less than three basis elements are not complete

using a symmetrized Mandel stress for the driving stress input to the flow rule. We

considered the rate
˙

C−1
p of the inverse of the plastic right Cauchy-Green deformation tensor

Cp = FTpFp (as in Simo et al. [Simo and Hughes (1998)]) as the output of the flow
rule and obtained similar cross-validation (and prediction) performance. Also noteworthy,
we employed both the elastic and the full left Cauchy-Green stretch tensors as history
inputs and the full Cauchy stress as a driving stress input. These inputs resulted in similar
cross-validation except when we paired the elastic Cauchy-Green stretch with the highly
correlated Cauchy stress where we observed slightly higher errors (and less variance among
the errors).
Fig. 6 and Fig. 7 show the response of the NN coefficient functions to tension and shear, for
stress and flow, respectively. In these plots, each coefficient is scaled according to Eq. (37)
so that coefficient functions of higher order terms can be plotted on par with those of lower
order terms. First, we notice that the E3 basis achieves zero-stress at zero-strain satisfaction
exactly at the expense of a more complex, larger magnitude per component response than
I3, as the higher order term e3

e apparently needs compensation by the component functions,
refer to Eq. (21). Also, we see more evidence that the truncated representations, I2 and ID,
have almost indistinguishable response despite ID having a linearly independent tensor
basis. For the flow representation we only compare the DZ and T1 representations for
clarity. Note that T1 is much simpler in form (one tensor basis element versus ten) than
DZ, which has a complete basis, and its response is simpler while achieving comparable
cross-validation error to DZ. Also evident from both tension and shear response, DZ builds
a similar response to T1 by letting all/most components contribute. Also significant, the
coefficient of σ2, C2, is essentially zero throughout the shear trajectory but not the tension,
which implies that the NN may not be learning dissipation is an important property. This
is in contrast with the DR representation (not shown) where the corresponding coefficient
is essentially zero for both tension and shear. For both the stress and flow models, the
coefficient responses generally resemble the trends in the stress and flow data, with large
changes up to the elastic-plastic transition at strain > 0.002 followed by relatively constant
values in the plastic regime. This is consistent with the expectation that in fully developed
plastic flow (in a constant direction with negligible hardening) the elastic state and the
plastic flow are constant.

4.2 Validation

Our validations studies include tests of: (a) Completeness of representation and training
data, and (b) Continuity/robustness to perturbation.
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CM component basis
UF full: {trbp, trb2

p, trb
3
p, trσ, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
unsymmetric,full: {I,bp,σ,b2

p,σ
2,bpσ,σ

2bp,bpσ
2}

IF full: {trbp, trb2
p, trb

3
p, trσ, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
full: {I,bp,σ,b2

p,σ
2, symbpσ, symσ2bp, symbpσ

2}
IR no trσ: {trbp, trb2

p, trb
3
p, trσ, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
full: {I,bp,σ,b2

p,σ
2, symbpσ, symσ2bp, symbpσ

2}
SF full {trbp, trb2

p, trb
3
p, trσ, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
shifted, full {bp,σ,b2

p,σ
2, symbpσ,b

3
p, symσ2bp, symbpσ

2}
SR no trσ: {trbp, trb2

p, trb
3
p, trσ, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
shifted,full: {bp,σ,b2

p,σ
2, symbpσ,b

3
p, symσ2bp, symbpσ

2}
DS full: {trbp, trb2

p, trb
3
p, trσ, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
deviatoric,shifted,full: {devbp,devσ,devb2

p,devσ2,dev symbpσ,
devσ3,dev symσ2bp,dev symbpσ

2}
DR no trσ: {trbp, trb2

p, trb
3
p, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
deviatoric,shifted,full: {devbp,devb2

p,devσ,devσ2,
devσ3,dev symbpσ,dev symσ2bp,dev symbpσ

2}
DZ no trσ: {trbp, trb2

p, trb
3
p, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
deviatoric,dissipative: {devσ,devσ2,

devσ3,dev symbpσ,dev symσ2bp,dev symbpσ
2}

R3 full: {trbp, trb2
p, trb

3
p, trσ, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
reduced, dissipative: {σ,devσ3}

R1 full: {trbp, trb2
p, trb

3
p, trσ, trσ

2, trσ3, trσbp, trσb
2
p, trσ

2bp, trσ
2b2

p}
reduced, dissipative: {σ}

T3 no trσ: {trbp, trb2
p, trb

3
p, trσ

2, trσ3, trσbp, trσ
2bp, trσb

2
p, trσ

2b2
p}

reduced, dissipative: {σ,σ3}
T1 no trσ: {trbp, trb2

p, trb
3
p, trσ

2, trσ3, trσbp, trσ
2bp, trσb

2
p, trσ

2b2
p}

reduced, dissipative: {σ}
S1 reduced: {trbp}

reduced, dissipative: {σ}

Table 3: Flow representations: All but UF have a symmetric tensor basis, those with I or bp 
in the tensor basis do not satisfy the zero flow constraint intrinsically, those with tr σ 
include this noise invariant, those with dev applied to the tensor basis generate 
incompressible flows, and those with only odd powers of σ  in the tensor basis are designed 
to be dissipative
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Figure 2: Stress training data: (a) Tension and (b) Shear stress evolution with strain for
CP model. Top panels: Scaled input invariants. Second panels: Scaled trained tensor basis
coefficient functions. Third panels: Stress T response (lines: model, points: data). Bottom
panel: Error as function of strain scaled by sT

As we already have indications that a training set composed of only tension and shear
may be insufficient, we computed the (E3) TBNN and (Eij) component-based NN stress
models’ response to bimodal stretch ee(ε1, ε2) = ε1M1 + ε2M2, where the modes are the
CP (tension) training modes Mi(ε) = ε (ei ⊗ ei − ν (I− ei ⊗ ei)). Hence, the (tension)
training data aligns with axes and here the models represent the data well. Fig. 8 shows
that the model responses are significantly different away from the training data, the limits
of which are denoted by the white box outline on the contour plots. In particular, the
component model does not give a symmetric response, compare Fig. 8a and Fig. 8b, which
is to be expected since each component is independently (and imperfectly) trained. Both
models have regions of negative stress and large stresses outside the training limits. Fig. 8c
shows expectation for the stress from the crystal elasticity underlying the response of the
polycrystalline aggregate. The TBNN response has more complex trends likely due to its
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Figure 3: Flow training data: (a) Tension and (b) Shear flow evolution with strain for CP
model. Top panels: Scaled input invariants. Second panels: Scaled trained tensor basis
coefficient functions. Third panels: Flow Dp response (lines: model, points: data). Bottom
panel: Error as function of strain scaled by sDp

formulation on invariants and the 11-stress response of the component model arguably
represents the expected stress best, albeit with a distinct error in the gradient. This
result illustrates that acceptable cross-validation errors along limited training data does
not necessarily lead to comparably acceptable interpolation, nor extrapolation, with NNs.
To further investigate how much data and what variety of data is needed to sufficiently
train the constitutive models, we employed the simple VP underlying model to generate
data for loading modes that are symmetric and monotonic: F(t) = t

∑3
i=1 λiei ⊗ ei. In

particular, the training datasets Dn are comprised of n trajectories with 100 state points
each. The λi for each trajectory were uniformly sampled on the 2-sphere (using minimum
energy quadrature points [Sloan and Womersley (2004)]).7 The testing dataset T consisted

7 Note the uniform sampling points nest, in the sense that a larger set Dm contains all the points of
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Figure 6: Stress tensor basis coefficients in shear and tension using different bases

a smaller set Dn, m > n.
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Figure 7: Flow Tensor basis coefficients in shear and tension using DZ and T1 bases

of 10 trajectories given by random samples on the 2-sphere. Fig. 9 shows the change in
accuracy of the model relative to the random sample test T set and the information gain
with increasing the size of the trainingDn dataset. The decreasing errors in Figs. 9a and 9b
with more training suggests completeness of the representation, and the slightly higher rate
of convergence for the larger network indicates the complexity of the underlying function.
Also the variability of the models is decreasing with more data, which gives context for the
variability of the models trained only with the CP data. The decrease rate is modest,∼ n−a,
where a ∈ [0.2, 0.5] and n is the number of trajectories that each contain 100 points, but
the variability in response is also decreasing with more data.
To measure of how much information has been gained by training the NN relative to its
untrained state, we use the Kullback-Leibler (KL) divergence:

gj(Dn) =

∫
p(T |Dn) log

p(T |Dn)

p(T )
dyj (39)

evaluated with the assistance of standard kernel density estimators. Here Dn is a training
set, T is the independent test data, and p(T |Dn) is the probability density function (PDF)
of the predictions yj using an ensemble of models Mk ∈ M and the (fixed) data inputs xj ,
j indexes the state and prescribed strain, and p(T ) ≡ p(T |D0). In Fig. 9c,d we see that: (a)
Both the stress and flow models are steadily differentiating themselves from their untrained
state with increased training data, (b) The largest changes appear to occur in the initial
increases in training data and yet convergence of the KL divergence is not reached even
with D64, and (c) The stress is gaining more information from the low strain data and the
flow model is gaining the most information from the post-yield data, which is physically
intuitive.
As a prelude to studying the dynamic stability of our plasticity TBNN model, we test the
TBNN formulations’ sensitivity to noise by randomly perturbing the inputs by 1% using
the CP training data. The response to the perturbations is fairly uniform over the range
strains (not shown). As Fig. 10 shows, the output variance for most of the models is on-par
with the input variance, the exceptions being tied to the presence of the noisy invariant trσ.
Clearly, pruning ill-conditioned invariants is crucial for stability.
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Figure 8: Stress response of (a),(b) component Eij , (c) underlying crystal, and (d) TBNN
E3 models to bimodal stretch. The TBNN 11-stress (c) and 22-stress (not shown) responses
are symmetric across the diagonal. Note white box outlines limit of training data which lies
along the axes

4.3 Prediction

Generally speaking, errors in the predictions of the proposed TBNN plasticity models come
from: errors in the elastic model, those in the flow rule, and those engendered by the
integration scheme. In preliminary work, we integrated the rate given by training data to
tune the tolerances of the integration scheme and ensure the integrator error is negligible.
In Fig. 11 we show Lyapunov-like stability tests using a 3×4 E3/5×8 T1 TBNN model
trained on aD64 dataset from the known closed-form VP model. First, we perturb the initial
conditions of state Fp(0) for a random (monotomic) loading mode F(t) and compare the
response of the underlying model (gray lines) to that of an analytic stress (Eq. (29))/TBNN
flow model hybrid (colored) for this ensemble of initial conditions. The TBNN response is
on par with that of the true model, albeit with a distinct bias toward higher stress. Second,
we compare the same models with a Fp(0) = I initial condition but with an imperfect
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Figure 9: Error as a function of training data span and network size (a,b), and model
information content relative to an uninformed/untrained model (c,d). Note each training
set/trajectory has 100 state samples from the VP (known underlying) model and the
convergence rates are reported in terms of number training sets (not number of state
samples). Also, the error bars reflect the variance in the training errors across the ensemble
of NN
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model. Here again, the TBNN response is on par with the true model and yet artifacts in the
trajectories are clearly present. Third, we repeated the first investigation with at TBNN with
both a ML flow and a ML stress model. The results are largely similar to the response of the
TBNN with the true stress model albeit with additional artifacts in trajectories. Lastly, we
explore the sensitivity of the trajectory errors to flow model network size. Fig. 11d shows
that the trajectory errors for the flow model trained on VP data are relatively insensitive to
the NN dimensions. Also, since the variance of the results does not increase with strain, the
errors are apparently primarily due to the stress representation in this loading mode. The
inset of Fig. 11d demonstrates the necessity of sufficient variety of training data. Here we
plot the fraction of the models that stably reach double the training strain. Apparently, in
this application, training on at least 25 trajectories is necessary to achieve robust predictions
outside the training data.
Lastly, we return to models trained on the tension and shear CP data. Fig. 12 shows the
predictions of a TBNN 3×4 E3 stress model with NN flow models of various sizes. Fig. 12a
and 12b demonstrate that the predictions are essentially self-consistent with the training
data. Also the fanning out of the trajectories is generally consistent with accumulation of
errors from integrating an imperfect model. It appears that, as the plastic flow develops,
non-smooth transitions occur which make some trajectories jump to paths neighboring the
true/training path. Fig. 12c and 12d show the results for bona fide predictions: (c) Illustrates
a combined simple shear and tension loading mode, where [F(t)]11 = (1 + t), [F(t)]21 =
1/2t, and the other directions have traction-free boundary conditions; and (d) Illustrates a
non-monotonic tension-then-compression mode at a different rate, [F(t)]11 = (1 + 3t) for
t ∈ [0, 0.02] and [F(t)]11 = (1.06 − 3t) for t ∈ [0.02, 0.06]. For these modes the results
are considerably less stable, especially in the mixed tension-shear mode which points to the
stress model being the main issue (as discussed in the previous section). Even the tension
phase of the non-monotonic loading leads to decreased stability and accuracy compared to
the tension only case, apparently due to the change in strain rate. Lastly, in these modes
none of the larger 5×12 network flow models tested were stable, which gives more evidence
that the main issue is a lack of sufficient variety in the training data.

5 Discussion
In this work we generalized the TBNN framework to fully take advantage of classical
representation theory. By embedding constraints and properties directly in the structure
and formulation of the NNs for stress and plastic flow, we were able to reduce the
amount of training required for valid models compared to current component-based NN
models. The constraints of plasticity phenomenology and the trade-offs between learning
and embedding the properties lead to a variety of models and hence to a model selection
process. We showed that traditional cross-validation errors are not sufficient for the down-
selection process and, for example, stability with respect to perturbation needs to be
considered for a viable model. We also illustrated the facts that: Given limited data, the
formulations are insensitive to a number of meta-parameters and variables, in particular the
selected functional inputs; and, there are trade-offs between model complexity and property
preservation, such as preserving zero-stress-at-zero-strain. Using a known underlying
data model, we demonstrated that the enhanced TBNN framework can provide robust
and accurate predictions given sufficient data. This also supports the speculation that
richer training sets may enhance the ability to discriminate between model representations.
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Figure 11: Lyapunov bundle of trajectories for models on VP (known model) data: (a) A
perfect stress model and a NN flow model with perturbed initial conditions, (b) Imperfect
stress models (modulus E random) and a NN flow model, (c) A NN stress model and a NN
flow model with perturbed initial conditions. (d) Ensemble of (unperturbed) NN stress and
NN flow models. Deviation is with respect to an unperturbed trajectory, gray lines: Exact
model, colored lines: TBNN. Inset of (d) shows the fraction of the models that reach the
double duration of the training data as a function of the amount of training data to illustrate
the models’ stability in extrapolation

In addition, we demonstrated that the tension (and shear) experiments traditionally used
in model calibration are likely insufficient to fully train a NN model, as formulated in
the TBNN framework or via a component formulation that generally displayed worse
performance. Some other practical findings of this work:

• formulation of NNs based on invariants, such as the TBNN, reduce the required
amount of training data but also impose non-linear relations between the components
of the inputs and output,

• an ensemble of trained models give a truer indication of the performance of a given
NN formulation and architecture than a single calibrated model,

• cross-validation errors generally do not discriminate between functionally equivalent
constitutive formulations given limited data,
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Figure 12: Prediction of TBNN with ML stress and ML flow models trained on CP tension
and shear data: (a) Tension, (b) Shear, (c) Combined tension and shear, (d) Tension and
then compression. Note loading in (d) is at a different rate from training data

• Good cross-validation error based on a given dataset does not ensure stability since
predictions typically visit neighboring trajectories,

• Cross-validation indications of over-fitting by overly large NNs are corroborated by
instabilities in predictions,

• Pruning badly conditioned invariants is crucial for stability when neighboring inputs
are sampled but inclusion of these inputs does not always affect overall cross-
validation errors,

• Enforcing zero-output at zero-input with a higher order basis results in more
complex coefficient functions,

• Apparently, training a general invariant formulation on limited data does not result
in simplicity in the component functions,

• Rank considerations, such as using the same number of network nodes as input
invariants, should only be a starting point since limited data can lead to NN to
compress the required number of invariants internally,
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• A reduced basis can perform well if the data complexity and coverage is low and is
similar to the prediction regime,

• Metrics, such as the KL divergence of the NN weights, can be used to indicate what
data is helping inform the particular constitutive functions, and what is not, thus
leading to adaptive sampling schemes and design of experiments,

• Common experimental data, e.g. tension tests, are likely insufficient to train robust
NN models, even accounting for over-fitting, since these tests explore a small
fraction of the input space.

Given these results and the lack of a distinctly optimal formulation and network
architecture, our best recommendation, given tension and shear data, is to employ a 3×4 E3
stress model that has the same number of inputs as invariants and satisfies the zero-output
condition intrinsically, together with a 3×8 T1 flow model which is apparently compressing
the space of input invariants but requires depth to fully represent the phenomenology.
We speculate a profitable next step would be to use dropout layers and other pruning
methods, such as compressive sensing/L1 regularization, to reduce the model complexity
and hopefully increase stability for a given network’s dimensions. Such an approach may
also help identify better performing representations by eliminating weak connections and
their associated basis coefficients. Along the same lines, the present work indicates that
assessing which coefficient functions are informed by the data, and how the addition of
more complex trajectories that fill the input space affects training, may lead to more optimal
representations. The source of this additional data could be multi-axial experiments or
full-field data, such as from digital image correlation. Lastly, developing an implicit
time integrator based on derivatives of the neural network is another logical step in the
development of viable NN based constitutive models.
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