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Abstract: A continuous-time Model Predictive Controller was proposed using Kautz 

function in order to improve the performance of Load Frequency Control (LFC). A 

dynamic model of an interconnected power system was used for Model Predictive 

Controller (MPC) design. MPC predicts the future trajectory of the dynamic model by 

calculating the optimal closed loop feedback gain matrix. In this paper, the optimal 

closed loop feedback gain matrix was calculated using Kautz function. Being an 

Orthonormal Basis Function (OBF), Kautz function has an advantage of solving complex 

pole-based nonlinear system. Genetic Algorithm (GA) was applied to optimally tune the 

Kautz function-based MPC. A constraint based on phase plane analysis was implemented 

with the cost function in order to improve the robustness of the Kautz function-based 

MPC. The proposed method was simulated with three area interconnected power system 

and the efficiency of the proposed method was measured and exhibited by comparing 

with conventional Proportional and Integral (PI) controller and Linear Quadratic 

Regulation (LQR). 

Keywords: Load frequency control, model predictive controller, orthonormal basis 

function, kautz function, phase plane analysis, linear quadratic regulator, proportional and 

integral controller, genetic algorithm. 

1 Introduction 

In large electrical power systems, the load changes cannot be determined due to which 

the deviations occur in real and reactive power towards an unstable condition. So there is 

a need for continuous regulation of electric power generation for an efficient and reliable 

power system operation. The change in real power causes a change in frequency whereas 

the change in reactive power causes a change in voltage magnitude. Load Frequency 

Control (LFC) is a control strategy to minimize the tie line power and frequency 

deviations while at the same time maintaining the frequency within accepted limits 

[Saadat (1999); Kothari (2003)]. 

Utilizing fixed controllers is observed as conventional method to solve LFC problem. 

Fixed controllers such as Integral controller (I), Proportional-Integral (PI) and 

Proportional-Integral-Derivative (PID) controller are widely used in process control. 
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However when the gain parameters are not properly selected, it often fails in achieving 

better output response [Mohamed, Bevrani, Hassan et al. (2011)]. The electrical power 

system is nonlinear in nature [Zhu (2009)]. So, the fixed controllers are not suitable for 

effective power system operation [Kumar and Suhag (2017)]. 

A number of investigations were conducted earlier suggesting various control techniques 

to solve LFC problem. A comparison of different controllers such as integral controller 

with the supervisor-selected weighting factors and the self-tuning regulator using 

recursive least square method for Load Frequency Control was performed in the literature 

[Agathoklis and Hamza (1984)]. A brief summary of controlling strategies in LFC 

problem using traditional control methods, various energy sources, and control 

techniques based on adaptive and artificial intelligence in a deregulated power system 

were presented by Pappachen et al. [Pappachen and Fathima (2017)]. 

Model-based Predictive Control (MPC) is one of the process control techniques widely 

used in chemical industries, petroleum industries, automobiles and power systems. MPC 

uses a deterministic model of the system under consideration to predict future outputs and 

to obtain optimal control input signal by minimizing a cost function while at the same 

time, satisfying the system constraints as well. Since the deterministic model is used for 

optimization, it is ideal to overcome the LFC problem [Avci, Erkoc, Rahmani et al. 

(2013)]. The MPC controller has the ability to manage multivariable constrained process 

in both supervisory level as well as in primary level control system [Wang (2009)]. 

Further, it has the advantage of solving nonlinear problems [Minh and Rashid (2012)].  

Recently, a number of researchers investigated the application of MPC to overcome LFC 

problem [Biyik and Husein (2018); Ersdal, Imsland, Uhlen et al. (2016); Zargar, Mufti 

and Lone (2017); Tang and McCalley (2016); Ma, Liu and Zhang (2017)]. In the 

literature [Shiroei, Toulabi and Ranjbar (2013)], an MPC controller design was proposed 

considering the multivariable nature of LFC in MIMO, nonlinear problems such as 

Generation Rate Constraint (GRC) and various uncertainty problems in the system. MPC 

model based on grey theory for optimizing Battery Energy Storage System (BESS) in 

LFC problem was presented in Khalid et al. [Khalid and Savkin (2012)]. An LFC 

problem for an interconnected power system of the Nordic power system was solved in 

one of the studies using MPC by considering power flow in tie-line power, maximum 

output power; generation limit, rate of change; in a generation, generator participation 

factors, tie-line power transfer margins through slack-variables and information on 

electricity pricing [Ersdal, Imsland and Uhlen (2016)]. 

Over the past few years, a number of attempts were made about the application of 

Orthonormal Basis Functions (OBF) in MPC control design. Some of the most 

commonly used OBFs are Laguerre and Kautz function. They are widely used in the field 

of applied mathematics, control theory, network synthesis, system identification and 

online parameterization [Kautz (1952)]. Laguerre function seems to be suitable for well 

damped system with real poles, whereas Kautz function has an advantage of 

approximating system which is oscillatory in nature and it has complex poles [Oliveira, 
Amaral, Favier et al. (2000)]. The purpose of LFC is to decrease oscillations in frequency 

deviations. So Kautz function is an apt solution for LFC problem. Only a limited number 

of studies were conducted regarding a combination of Kautz function with MPC 
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algorithm. Kautz functions in MPC controller to improve control and stability of the 

autonomous car vehicle trajectory [Yakub and Mori (2014)]. Discrete and continuous-

time MPC with both Laguerre and Kautz function was designed and explained with 

simple examples in the literature [Wang (2009)]. 

This paper presents continuous-time MPC using Kautz function to solve LFC (Load 

Frequency Control) problem in an interconnected power system. A phase plane constraint 

was included in the optimization problem to ensure the stability of the system during 

uncertain disturbances. The proposed method was simulated in three area hydro-thermal 

interconnected power system. The results were compared with a conventional PI 

controller and LQR controller to prove the effectiveness of the proposed method. 

2 Modeling of multi-area power system 

The electrical power system was divided into a number of different areas. Each area was 

interconnected with its neighboring area through transmission lines called ‘tie lines’. In 

an interconnected power system, the load deviation leads to frequency deviation and tie 

line power deviation. LFC was used to maintain the frequency and tie line power within 

the desired limits in each area. Thus, in order for the LFC to be efficiently controlled, the 

design of dynamic LFC model was formulated considering both frequency as well as tie 

line power. In the current research work, thermal, hydro and wind power plant were 

considered for the study purpose. The basic block diagrams of thermal and hydropower 

plants in an interconnected system are shown in the Fig. 1 and Fig. 2 [Kumar (2017); 
Shiroei (2014)]. The power system parameters considered for this study were listed in 

Appendix A.  

 

Figure 1: Block diagram of a Thermal power plant 

The mathematical equations for the dynamic model of both thermal and hydro plants are 

as follows [Kumar and Suhag (2017); Shiroei and Ranjbar (2014); Bangal (2009)]. 

Governor block (Thermal) is  
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∆Ṗg i = (
1

TGi
)∆Pc i − (

1

RiTGi
) ∆f i − (

1

TGi
) ∆Pg i         (1) 

 

Figure 2: Block diagram of a Hydropower plant 

Turbine block (Thermal) is  

∆Ṗm i = − (
1

TTi
) ∆Pm i + (

1

TTi
) ∆Pg i  (2) 

Stage 1 Governor Block (Hydro) is  

∆ṖG1 i = (
1

TG1i
) ∆Pc i − (

1

RiTG1i
)∆f i − (

1

TG1i
) ∆PG1 i  (3) 

Stage 2 Governor Block (Hydro) is 

∆ṖG2 i = −(
TG2i

RiTG1iTG3i
)∆f i + (

1

TG3i
)∆PG2 i + (

1

TG1i
− (

TG2i

TG1iTG3i
))∆PG1 i +

(
TG2i

TG1iTG3i
)∆Pc i  (4) 

Turbine block (Hydro) is 

∆Ṗm i = −(
2TG2i

RiTG1iTG3i
)∆f i − (

2

Twi
)∆Pm i + (

2

Twi
+

2

TG3i
)∆PG2 i + ((

2TG2i

TG1iTG3i
) −

2

TG3i
)∆PG1 i − (

2TG2i

TG1iTG3i
)∆Pc i  (5) 

The mathematical equations for frequency deviation and tie-line power flow are same for 

all the interconnected systems which are represented as follows: 

Frequency deviation is given by the equation 

∆ḟ  i = −(
1

TPi
)∆f i + (

KPi

TPi
)∆Pm i − (

KPi

TPi
)∆Ptie i − (

KPi

TPi
)∆PL i  (6) 

Tie line power flow is given by the equation 

∆Ṗtie i = ∑ (Tij∆f i − Tij∆f j)
N
j=1
j≠i

  (7) 
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To maintain area frequency and tie-line power exchange with neighboring areas within 

the preset values, a supplementary control with a linear combination of frequency and the 

net interchange power for each area ‘i’ known as the Area Control Error (ACE) is to be 

reduced. 

𝐴𝐶𝐸 𝑖 = ∆Ṗtie i + βi∆f 𝑖  (8) 

where 

TGi The speed governor time constant of the thermal power plant for area ‘i’ 

Ri Gain of speed droop feedback loop for area ‘i’ 

TTi The turbine time constant of the thermal power plant for area ‘i’ 

KPi Power system gain for area ‘i’ 

TPi Power system time constant for area ‘i’ 

∆Pg i The incremental change in governor position of the thermal power plant for area ‘i’ 

∆Pm i The incremental change in turbine power for area ‘i’ 

TG1i The stage 1 governor time constant of the hydropower plant for area ‘i’ 

TG2i The stage 2 governor reset time of hydropower plant for area ‘i’ 

TG3i The stage 2 governor time constant of the hydropower plant for area ‘i’ 

Twi The turbine time constant of the hydropower plant for area ‘i’ 

∆PG1 i The incremental change in stage 1 governor position of the hydropower plant for 

area ‘i’ 

∆PG2 i The incremental change in stage 2 governor position of the hydropower plant for 

area ‘i’ 

∆Pc i The incremental change in control input of area ‘i’ 

∆f i The incremental change in frequency deviation for area ‘i’ 

Tij The synchronizing constant between area ‘i’ and area ‘j’ 

βi The bias constant for area ‘i’ 

aij Synchronizing power coefficient 

∆Ptie i The incremental change in tie-line power 

∆PL i The incremental change in load demand for area ‘i’ 

𝐴𝐶𝐸 𝑖  Area control error of area ‘i’ 

3 Approximation and realization 

Some of the systems or network might be difficult to solve due to its nonlinear structure. 

Such systems need to be approximated for obtaining desired response [Kautz (1954); 

Magni and Scattolini (2004)]. In approximation, the input function was approximated 

with some intermediate functions and then was optimized. Once the function was 
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approximated to the desired form, it was converted back to a physically-realizable 

function. The basic steps of approximation are as follows: 

Step 1: Simplification of function 

In approximation theory, the first step is to express in detail about the operation or 

response of a function (which are difficult to analyze) in the form of simpler functions. If 

an arbitrary response 𝑓(𝑡) is considered for a system which can be approximated by a 

Fourier series expansion over the interval (0, ∞) as 

𝑓(𝑡) = ∑ 𝒞𝑔𝜑𝑔(𝑡)
∞
𝑔=1    (9) 

where 𝜑𝑔(𝑡) denotes a set of exponentially-damped sinusoids and orthogonal  

𝒞𝑔     The coefficients of the expansion 

Then the arbitrary response of the first ‘n’ terms is 

𝑓∗(𝑡) = ∑ 𝒞𝑔𝜑𝑔(𝑡)
𝑛
𝑔=1  (10) 

Step 2: Determination of optimum pole locations 

The location of the poles and zeros gives an approximate understanding of the system’s 

response characteristics. The roots of the characteristic equation, also known as 

eigenvalues of the system is equal to the poles of the system response. The proper 

selection of pole locations guides to the simplified form of the coefficient 𝒞𝑔. 

Step 3: Orthonormal set 

The orthonormal condition for the function 𝜑𝑔(𝑡), 𝑔 = 1,2,.  over the interval (0, ∞) 

with unity weight is expressed as 

∫ 𝜑𝑖(𝑡). 𝜑𝑗(𝑡)𝑑𝑡
∞

0
= {
0      𝑖 ≠ 𝑗 
1      𝑖 = 𝑗

  (11) 

Step 4: Formulation of 𝒞𝑔 

The coefficient 𝒞𝑔  is formulated and evaluated in terms of orthonormal set 𝜑𝑔(𝑡).  

Step 5: Minimization of error 

The mean-squared error between 𝑓(𝑡) and 𝑓∗(𝑡) has to be minimized to find the optimal 

pole location and to approximate the given arbitrary function identical to the physical 

system. If the 𝑓(𝑡)  is assumed as a piecewise continuous function, the integral squared 

error in an orthonormal expansion is given by the following equation  

𝜉 = ∫ [𝑓(𝑡) − ∑ 𝒞𝑔𝜑𝑔(𝑡)
𝑛
𝑔=1 ]2𝑑𝑡

∞

0
  (12) 

When expanding the Eq. (12) and assuming the error as ‘0’ then, 

∫ 𝑓2(𝑡)𝑑𝑡 = ∑ 𝒞𝑔
2𝑛

𝑔=1
∞

0
  (13) 

The Eq. (13) can be written as 

∫ 𝑓2(𝑡)𝑑𝑡 < ∞
∞

0
  (14) 
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Thus the equation (14) becomes the condition to be satisfied for proper convergence of 

the desired response. 

4 Kautz function 

The orthonormal basis functions are mostly used for system approximation and 

identification. A dynamic model with OBF gives approximate knowledge about the 

dominant dynamics such as time constants and damping factors of the system which can 

be included in the system identification process [Akcay and Ninness (1999)]. Some of the 

orthonormal basis functions that are widely used are Laguerre base function and Kautz 

base function. Kautz functions are an extended generalization of Laguerre functions. 

Unlike Laguerre functions which only deal with identical real poles, Kautz functions 

possess the ability to approximate the system function with both real and complex poles. 

Thus Kautz function-based dynamic model can approximate the system in resonance.  

4.1 Real pole 

If all the poles are real, non-identical and all poles >0 whose pole locations lie at -𝑝1, -

𝑝2… -𝑝𝑘 …, -𝑝𝑁 , then the Kautz network can be represented as 

𝐾𝑘(𝑠) = √2𝑝𝑘
1

𝑠+𝑝𝑘
∏

𝑠−𝑝𝑖

𝑠+𝑝𝑖

𝑘−1
𝑖=1   (15) 

where 𝑘=2 … 𝑁 and ‘𝑁' is the maximum number of poles.  

If all the pole locations are identical, then this is called a Laguerre function. 

4.2 Complex pole 

Let the non-identical complex poles are denoted as −𝛼𝑖 ± 𝑗𝛽𝑖 for 𝑖 = 1,2, … , 𝑛 where 

−𝛼𝑖 > 0 for all 𝑖. Then Kautz networks with complex poles are represented as 

𝐾2𝑛−1(𝑠)

𝐾2𝑛(𝑠)
} = √2𝛼𝑛

[(𝑠−𝛼1)
2+𝛽1

2]⋯[(𝑠−𝛼𝑛−1)
2+𝛽𝑛−1

2]

[(𝑠−𝛼1)2+𝛽1
2]⋯[(𝑠−𝛼𝑛)2+𝛽𝑛

2]
(|𝑠𝑛| ± 𝑠)   (16) 

where 𝑠𝑛 = −𝛼𝑖 − 𝑗𝛽𝑖, 𝑛 =
𝑁

2
 and ‘𝑁' is the maximum number of terms 

4.3 State space form 

Kautz functions can be expressed in a state space form as follows 

�̇�(𝑡) = 𝐴𝑘𝐹(𝑡) + 𝐵𝑘𝛿(𝑡)  (17a) 

𝐾(𝑡) = 𝐶𝑘𝐹(𝑡)   (17b) 

where 𝐹(𝑡), 𝛿(𝑡) and 𝐾(𝑡) are the state vector, the unit impulse function and the Kautz 

network terms respectively. 𝐴𝑘,  𝐵𝑘 and 𝐶𝑘 are matrices determined by the locations of 

the poles. 

5 Model predictive controller (MPC) 

Model Predictive Controller (MPC) has the ability to solve multivariable problem and 

handle complex system constraints. These advantages make MPC a well suited option for 
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power system and to overcome LFC problem [Shiroei, Toulabi and Ranjbar (2013)]. 

MPC uses the explicit model to predict the future response of the system. It calculates the 

controller input by solving objective function with constraints through optimization. 

Once the optimal trajectory of the future response of the system was calculated, only the 

first input sample of the control signal would be taken for system processes based on 

Receding Horizon Control (RHC) whereas the remaining input samples are ignored. This 

optimization is performed again for next time instant with a new set of system 

information.  

State space model is the most common type of MPC structure used to represent the 

dynamical system. The mathematical model of a linear time-invariant multivariable 

system with 𝑖𝑝-input,  𝑜𝑝-output,  𝑑-disturbances and  𝑛-states can be expressed in a state 

space form as follows: 

𝑥𝑖𝑝̇ (𝑡) = 𝐴𝑖𝑝𝑥𝑖𝑝(𝑡) + 𝐵𝑖𝑝𝑢(𝑡) + 𝐹𝑑𝑤(𝑡)  (18a) 

𝑦𝑖𝑝(𝑡) = 𝐶𝑖𝑝𝑥𝑖𝑝(𝑡)  (18b) 

where 𝑥𝑖𝑝(𝑡), 𝑦𝑖𝑝(𝑡), 𝑢(𝑡) and 𝑤(𝑡)are state vector, output vector, control vector, and 

disturbance vector respectively. The matrix coefficients 𝐴𝑖𝑝, 𝐵𝑖𝑝,  𝐹𝑑 and 𝐶𝑖𝑝are system 

matrix, the input matrix and disturbance matrix respectively. The number of output 𝑜𝑝 

should be less than the number of input 𝑖𝑝. 

6 Kautz function-based MPC (K-MPC) 

The modeling and implementation of the Kautz function-based MPC controller for 

continuous-time application are described here as per the literature [Wang (2009)]. The 

K-MPC method was designed by describing system model in continuous-time while 

computations of the optimization problem were performed in discrete time (in off-line) 

[Minh and Rashid (2012); Magni and Scattolini (2004)]. The optimization problem for 

control trajectory included manipulated variables whereas its optimal tuning using GA is 

explained below. 

6.1 Modeling trajectory of the future control signal 

The moving time window of the optimization process is assumed to be between 𝑡𝑖 ≤ 𝑡 ≤
𝑡𝑖 + 𝑇𝑝. ‘ 𝑡𝑖’ is considered as the current time and ‘𝑇𝑝’ as the maximum duration of the 

moving time window. The Eq. (14) stated that, for a stable closed loop system, the 

control trajectory 𝑢(𝑡) should converge exponentially to zero when there is a transient 

state response due to load disturbance. If the disturbance is continuous, then the control 

trajectory 𝑢(𝑡) converges to a specific constant value, instead of zero. So, it is wise to 

optimize derivative of the control trajectory �̇�(𝑡). The derivative of the control trajectory 

 �̇�(𝑡) is expressed as follows 

�̇�(𝑡) ≅ ∑ 𝒞𝑔𝜑𝑔(𝑡)
𝑛
𝑔=1 ≅ 𝔏(𝑡)𝑇𝔜  (19) 

where 𝔏(𝑡)is set of OBF’s and 𝔜 is the vector of coefficients. 
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6.2 Augmented state space model 

As the Eq. (19) concludes, there is a need for integral action occurs once the derivative of 

the control trajectory was obtained. So the design of system state space model need to be 

modified to an augmented state space form. With an assumption that 𝑧(𝑡) = 𝑥𝑖𝑝̇  is the 

augmented state space form of (18a) and (18b) with �̇�(𝑡) as control input, this can be 

defined as follows.  

[
�̇�(𝑡)

�̇�(𝑡)
]

⏞  
�̇�(𝑡)

= [
𝐴𝑖𝑝 𝑂𝑛×𝑜𝑝
𝐶𝑖𝑝 𝑂𝑜𝑝×𝑜𝑝

]
⏞        

𝐴

[
𝑧(𝑡)

𝑦𝑖𝑝(𝑡) − 𝑟(𝑡)
]

⏞          
𝑥(𝑡)

+ [
𝐵𝑖𝑝
𝑂𝑞×𝑚

]
⏞    

𝐵

�̇�(𝑡) + [
𝐹𝑑
𝑂𝑞×𝑚

]
⏞    

𝐵𝑑

𝜛(𝑡)     (20a) 

𝑦(𝑡) = [𝑂𝑜𝑝×𝑛 𝐼𝑜𝑝×𝑜𝑝]⏞          
𝐶

[
𝑧(𝑡)

𝑦𝑖𝑝(𝑡) − 𝑟(𝑡)
]

⏞          
𝑥(𝑡)

  (20b) 

Where   𝐼  an identity matrix 

𝑂  A zero matrix 

�̇�(𝑡) A derivative of the control trajectory 

𝜛(𝑡) Continuous-time integrated zero-mean white noise 

𝑟(𝑡) A constant vector of a reference signal 

The dimension of the augmented state space is 𝑛2 = 𝑛 + 𝑜𝑝. 

6.3 Selection of poles 

Kautz function requires the optimal selection of poles. The poles can be calculated from 

the priori information of Linear Quadratic Regulator (LQR) using the augmented state 

space model of the system to be solved. The closed-loop eigenvalues of the system are 

calculated by solving the characteristic equation 

𝑑𝑒𝑡 (𝜆𝐼 − (𝐴 − 𝐵𝐾𝑙𝑞𝑟)) = 0  (21) 

where 𝐴 and 𝐵  are matrix coefficients of an augmented state space model, 𝜆 is the 

eigenvalues of system matrix(𝐴 − 𝐵𝐾𝑙𝑞𝑟), 𝐼 is an identity matrix and 𝐾𝑙𝑞𝑟 is a gain 

matrix obtained by minimizing the cost function of LQR over a finite time horizon. 

Assuming 𝑄 = 𝐶𝑇𝐶, the quadratic cost function of the LQR is expressed as: 

𝐽(𝑥(𝑡), �̇�(𝑡)) = ∑ {𝑥(𝑡)𝑇𝑄𝑥(𝑡) + �̇�(𝑡)𝑇𝑅𝑙𝑞𝑟�̇�(𝑡)}
𝑇𝑝
𝑡=0   (22) 

where 𝑅𝑙𝑞𝑟 = 𝑟𝑙𝑞𝑟𝐼𝑖𝑝×𝑖𝑝, 𝐶 is a matrix coefficient of augmented state space model of the 

system, 𝑟𝑙𝑞𝑟 is a constant multiplier and 𝐼𝑖𝑝×𝑖𝑝 is an identity matrix. 

6.4 Computation of Kautz function 

The optimal poles (eigenvalues), obtained by solving the Eq. (21), was used for the 

computation of Kautz network. Then this Kautz network terms again were used for 
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calculating the state space parameters of (17a) and (17b). Kautz function, using state 

space parameters, is defined as 

𝐾𝑖(𝑡) = 𝐵𝑘(𝑒
𝐴𝑘𝑡)𝐶𝑘  (23) 

where 𝑖 = 1,2,⋯ , 𝑖𝑝 

When substituting (23) in (19), it gives the derivative of the control trajectory  �̇�(𝑡) in 

terms of Kautz function as 

�̇�(𝑡) = 𝐾(𝑡)𝑇𝔜  (24) 

where 𝐾(𝑡)is a Kautz function and 𝔜 is the vector of coefficients. 

6.5 Design of optimal controller 

The main objective of the K-MPC is to design an optimal control trajectory for MPC by 

minimizing the quadratic cost function. The optimal control trajectory �̇�(𝜏) is designed 

using a controller gain matrix 𝐾𝑚𝑝𝑐. Assuming that there is a time ‘𝜏’ which lies within 

the interval 0 ≤ 𝜏 ≤ 𝑇𝑝and 𝑄 = 𝐶𝑇𝐶, the optimal cost function of a system is expressed 

as: 

𝐽 = {[𝔜 + Ω−1Ψ𝑥( 𝑡𝑖)]
𝑇Ω[𝔜 + Ω−1Ψ𝑥( 𝑡𝑖)] − 𝑥( 𝑡𝑖)

𝑇Ψ𝑇Ω−1Ψ𝑥( 𝑡𝑖)} +

𝑥( 𝑡𝑖)
𝑇[∫ {𝑒𝐴

𝑇𝜏𝑄𝑒𝐴𝜏}𝑑
𝑇𝑝

0
𝜏]𝑥( 𝑡𝑖)  (25) 

where  

Ω = ∫ {𝜙(𝜏)𝑄𝜙(𝜏)𝑇}
𝑇𝑝

0
𝑑𝜏 + 𝑅𝔏  (26) 

Ψ = ∫ {𝜙(𝜏)𝑄𝑒𝐴𝜏}𝑑𝜏
𝑇𝑝

0
  (27) 

 𝑅𝔏 is a diagonal matrix and each diagonal element of  𝑅𝔏 is a real matrix 𝑅𝐾 with 

dimension ‘𝑛2 × 𝑛2’. 
As the first term of (25) is negligible and it is the only term in the cost function dependent 

on 𝔜, the optimal 𝔜 is 

𝔜 = −Ω−1Ψ𝑥( 𝑡𝑖)  (28) 

6.6 Computation of Coefficient vector 𝔜  

The cost function Eq. (25) clearly states that the coefficient vector 𝔜 plays a vital role in 

the design of the control trajectory. The vector of coefficients 𝔜 is calculated from the Eq. 

(28). The computation of 𝔜 requires Ω and Ψ. 

6.6.1 Computation of matrices 𝛺 and 𝛹 

The matrices 𝛺 and 𝛹can be evaluated using the Eqs. (26) and (27) in discrete form as 

they do not rely on current time 𝑡𝑖. By dividing time 𝜏 in discrete as 𝜏 = 0, ℏ,⋯ ,𝑀ℏ, 

such that 𝑇𝑝 = 𝑀ℏ, the matrices 𝛺 and 𝛹can be evaluated as follows: 

𝛺 = ∑ 𝜙(𝑘ℏ)𝑄𝜙(𝑘ℏ)𝑇ℏ𝑀
𝑘=0 + 𝑅𝔏  (29) 

𝛹 = ∑ 𝜙(𝑘ℏ)𝑄𝑒𝐴𝑘ℏℏ𝑀
𝑘=0   (30) 
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where ℏ is a constant step size.  

6.6.2 Convolution integral  𝜙�̂�(𝜏)
𝑇 

The matrices Ω and Ψ are the functions of  𝜙(𝜏). So 𝜙(𝜏) has to be calculated first 

followed by 𝜙(𝜏)  can be calculated by computing  �̂�(𝜏)𝑇 . The 𝑖 -th input of the 

convolution integral �̂�(𝜏)𝑇 is obtained by solving the linear algebraic equation 

𝐴𝜙�̂�(𝜏)
𝑇 − 𝜙�̂�(𝜏)

𝑇𝐴𝑘
𝑇 = [−𝐵𝑖𝐵𝑘𝑖

𝑇(𝑒𝐴𝑘𝜏)𝑇 + 𝐵𝑖𝐵𝑘𝑖
𝑇𝑒𝐴𝜏]  (31) 

Above equation is solved in discrete form to obtain optimal  𝜙�̂�(𝜏)
𝑇 . After 𝜙�̂�(𝜏)

𝑇 is 

calculated, 𝜙𝑖(𝜏)
𝑇can be calculated by substituting 𝜙�̂�(𝜏)

𝑇in  

𝜙𝑖(𝜏)
𝑇 = 𝜙�̂�(𝜏)

𝑇𝐶𝑘
𝑇
  (32) 

6.6.3 Implementation of control signal 

According to Receding Horizon Control (RHC), the first signal of �̇�(𝑡)  alone is 

considered for the control input of the system. Assuming a random time ‘ 𝑡 ’, the 

derivative of the optimal control is   

�̇�(𝑡) = −𝐾𝑚𝑝𝑐𝑥(𝑡)  (33) 

where   

𝐾𝑚𝑝𝑐 = 

[
 
 
 
 
𝐾1(0)

𝑇 𝑜2 ⋯ 𝑜𝑖𝑝

𝑜1 𝐾2(0)
𝑇 ⋯ 𝑜𝑖𝑝

⋮ ⋮ ⋱ ⋮
𝑜1 𝑜2 ⋯ 𝐾𝑖𝑝(0)

𝑇]
 
 
 
 

𝛺−1𝛹  (34) 

�̇�(𝑡)can be again defined by splitting 𝐾𝑚𝑝𝑐 into state and output component as, 

�̇�(𝑡) = −[𝐾𝑥 𝐾𝑦] [
𝑥�̇�(𝑡)

𝑦(𝑡) − 𝑟(𝑡)
]  (35) 

where 𝐾𝑥 and 𝐾𝑦 are the gain matrices for state variables and system output.  

𝐾𝑦is a diagonal matrix with each diagonal values, a gain value of the integral controller. 

Finally, the control trajectory was obtained by integrating the derivative of the control 

trajectory. Therefore,  

𝑢(𝑡) = ∫ �̇�(𝜏)𝑑𝜏
𝑡

0
  (36) 

Substituting the Eq. (35) in (36), the control trajectory in terms of state variables is given 

by 

𝑢(𝑡) = −𝐾𝑥𝑥𝑚(𝑡) − 𝐾𝑦 ∫ [𝑦(𝑡) − 𝑟(𝑡)]𝑑𝜏
𝑡

0
  (37) 

where 𝑟(𝑡) is a reference signal.  

 



 

 

 

180   Copyright © 2018 Tech Science Press          CMES, vol.117, no.2, pp.169-187, 2018 

7 Evaluation of system response 

To evaluate the response of a closed loop system, the root of the characteristic equation 

of the closed-loop system is required. To find the response of the system, the derivative 

of the control trajectory (33) is substituted in (20 a). Then, (20a) and (20b), 

�̇�(𝑡) = 𝐴𝑥(𝑡) − 𝐵𝐾𝑚𝑝𝑐𝑥(𝑡) + 𝐵𝑑𝜛(𝑡)  (38a) 

𝑦(𝑡) = 𝐶𝑥(𝑡)  (38b) 

Solving (38 a) and (38 b) using Laplace transformation, 

𝑌(𝑠) = 𝐶[𝑠𝐼 − (𝐴 − 𝐵𝐾𝑚𝑝𝑐)]
−1𝐵𝑑�̅�(𝑠)  (39) 

The Eq. (39) is the system output response of the closed loop feedback system in ‘𝑠’ 

domain. By taking the inverse Laplace transform of the Eq. (39) results in the differential 

equation of the system is obtained in time domain. This differential equation is used as 

the input for the objective function for optimization in the following section. 

8 Constrained optimization problem 

In this paper, to obtain an optimal controlled response, one of the well-known 

performance criteria was used as an objective function. An Integral Absolute Error (IAE) 

is a performance measure which integrates absolute of error over time. Let  𝐽𝑚𝑖𝑛 be the 

objective function to be solved. The objective function is given by  

𝐽𝑚𝑖𝑛 = ∫ ∑ |𝐴𝐶𝐸 𝑖(𝑡)|
𝑜𝑝
𝑖=0 𝑑𝑡

∞

0
 (40) 

Subject to,   

𝔻 > 0 and 𝜆 < 0   (41) 

where  

𝔻 = Determinant of (𝐴 − 𝐵𝐾𝑚𝑝𝑐) 

𝜆 = Eigenvalues of (𝐴 − 𝐵𝐾𝑚𝑝𝑐) 

To ensure the stability of the system, the Eq. (41) was implemented into the system cost 

function as a penalty factor. Stability constraints were applied as a penalty factor in the 

cost function of MPC problem [Magni and Scattolini (2004)]. Inserting stability 

constraints in optimization problem for uncertainty is described in the literature as well 

[Bemporad and Morari (1999)].  

9 Phase-plane analysis of eigenvalues 

In this paper, a new technique was proposed by implementing the constraints using 

penalty factor in the cost function, by phase plane analysis, in order to determine an 

optimal solution in MPC such that the system remains stable.  

Phase plane analysis is an analysis method to observe the features of a dynamic system in 

a graphical manner. To observe the system behavior, the solution of the system at 

equilibrium is to be determined which is called a ‘critical point’ and the vector plane that 

represents the behavior of the system is known as ‘phase portrait’. The path of the 

solution in phase portrait is viewed as a moving particle in a curve or line. Eigenvalues 
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and eigenvectors are the most convenient ways of representing the differential equation 

for phase plane analysis. Depending on whether the eigenvalues are real or complex and 

positive or negative, the system behavior can be determined as stable or not. This kind of 

analysis is well suitable for oscillatory systems.  

10 Optimal tuning of 𝑲𝒎𝒑𝒄 

The eigenvalues of the system matrix (𝐴 − 𝐵𝐾𝑚𝑝𝑐) are the poles of the given system. The 

gain matrix 𝐾𝑚𝑝𝑐 has to be selected optimally for a stable operation of the system.  The 

optimal 𝐾𝑚𝑝𝑐 ensures the derivative of the control trajectory to exponentially decay to zero. 

For optimal 𝐾𝑚𝑝𝑐, the parameters such as 𝑟𝑙𝑞𝑟, ℏ, 𝑇𝑝, 𝑅𝐾 and 𝐾𝑦 have to be fine tuned. 

There are several optimization algorithms available for finding optimal solution for the 

given optimization problem. If the optimization problem is a multimodal type, then 

conventional iterative type algorithm cannot guarantee an optimal solution. As the multi-

area power system is a complex and nonlinear problem, which is difficult to optimize 

with conventional methods, a meta-heuristic algorithm such as the Genetic Algorithm 

was applied to the proposed methodology for optimal tuning. 

10.1 Genetic algorithm  

Genetic Algorithm (GA) is an Evolutionary Algorithm (EA) based on Charles Darwin 

theory of natural evolutionary process in biological systems. GA is a prominent 

optimization algorithm which can hold large search space and has a greater chance of 

determining the global best solution for an optimization problem [McCall (2005)]. GA 

also has the capability to handle multiple variables which makes it suitable for solving 

both constraint and unconstraint optimization problems.  

The standard procedure of GA consists of biologically-inspired operators known as 

selection, crossover, and mutation [Rao, Rao and Dattaguru (2004)]. GA starts with the 

initialization of the population and the population consists of individuals whom are 

randomly generated. Each individual of the population is represented as ‘real value’ or 

‘strings’. At each generation, the potential of every chromosome is evaluated with a value 

known as ‘fitness’ by solving the objective function. Once the fitness of each 

chromosome is evaluated, GA chooses healthier chromosomes among all the 

chromosomes based on fitness value. Crossover is a recombination of chromosomes from 

the selection process to form a new set of chromosomes. In mutation process, every gene 

position, in an individual chromosome of a newly-produced chromosome, is interchanged 

with randomly generated numbers to form a new population for next generation. The 

whole process is repeated again with the new population produced after mutation until 

the best solution is reached or a stopping criterion is reached. 

10.2 Algorithm steps for the proposed methodology 

The proposed methodology to tune 𝐾𝑚𝑝𝑐 with GA algorithm is summarized in the 

following steps:  
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Step 1 Initialize GA parameters such as search space 𝕊, number of chromosomes ℂ, 

number of generations 𝔾, crossover rate 𝒞ℛ and mutation rate ℳℛ.  

Step 2 Initialize populations ℙ for search parameters 𝑟𝑙𝑞𝑟, ℏ, 𝑇𝑝, 𝑅𝐾 and 𝐾𝑦 with random 

values and set generation counter as 0. 

Step 3 Calculate eigenvalues using LQR with parameter 𝑟𝑙𝑞𝑟. 

Step 4 Calculate Kautz state space matrices 𝐴𝑘 , 𝐵𝑘and 𝐶𝑘with eigenvalues. 

Step 5 Calculate Kautz function 𝐾(𝑡). 

Step 6 Calculate convolution integral 𝜙(𝜏). 

Step 7 Calculate matrices 𝛺 and 𝛹 with parameters ℏ, 𝑇𝑝and 𝑅𝐾. 

Step 8 Calculate the feedback gain matrix 𝐾𝑚𝑝𝑐 with parameter 𝐾𝑦. 

Step 9 Evaluate the system response using (𝐴 − 𝐵𝐾𝑚𝑝𝑐). 

Step 10 Evaluate the fitness value for each chromosome in the current generation. 

Step 11 For each population, the parent chromosomes are selected based on fitness values.  

Step 12 Parent chromosomes are assigned with random numbers ‘𝑟𝑝 ’. If  𝒞ℛ > 𝑟𝑝 , 

crossover takes place and new children are produced. Else no children are 

produced. 

Step 13 The child chromosomes are assigned with random numbers ‘𝑐𝑝’. If ℳℛ > 𝑐𝑝, 

mutation takes place and the new population is produced.   

Step 14 Increment the counter and repeat the steps 3 to 12 till the stopping criterion is 

reached.  

 Step 15 The final solution is the parameters to form optimal 𝐾𝑚𝑝𝑐. 

11 Simulation results and discussion 

The three area power system examples from the literature [Bangal (2009)] were used for the 

simulation. Area 1 and Area 2 were two identical thermal non-reheat power plants whereas 

Area 3 was a hydropower plant. The dynamic system for MPC was designed assuming that 

all the areas would be provided with load change. The experiment was conducted using two 

case studies. In Case 1, a step load was applied to area 1 and area 2 alone whereas in the 

Case 2, step load change was applied to all areas. In both the cases, step load change with 

magnitude 0.1 pu was applied at a time instant of 10 s. The system responses were compared 

with conventional PI controller, LQR and Kautz function-based MPC (K-MPC).  

Case 1: The output responses for the case study 1 are shown in the Fig. 3. In case 1, all 

three controller performances were found to be almost identical. As area 3 was not 

applied with step load change, the oscillations in both frequency deviation and tie line 

power of area 3 alone were much lesser when compared to other two area frequency 

deviation and tie line power. Oscillations in area 2 responses were more. All controller 

outputs were stable even if the system was modeled assuming all areas would have the 

same load. But none of the controller performances seem to be optimal for all the three 
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areas. Area 1 system output for LQR was better than both K-MPC and PI. Area 2 system 

output for K-MPC was better than both LQR and PI. PI controller showed much lesser 

performance than both K-MPC and LQR.   

 

(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 3: Output responses of case study 1 

Case 2: In this case, all the areas were provided with step load change. The output 

responses for case study 2 are shown in the Fig. 4. It is evident from the comparison of 
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output responses that the proposed method exhibited optimal performance when 

compared to other two controllers. The responses of the PI controller were better than 

LQR unlike as in Case 1. LQR struggled to maintain the stability of system response.  

 

(a) 
 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 4: Output responses of case study 2 
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12 Conclusion 

A Kautz function-based MPC (K-MPC) with phase plane stability was proposed for the 

optimal control of LFC problem. For simplicity, the design of the MPC used in this 

problem is of a centralized type. GA was presented to optimize the parameters of K-MPC. 

To prove the efficiency and robustness of the proposed method, it was examined on a 

multi-area interconnected power system problem that consisted of two thermal non-reheat 

power plants and a hydropower plant through simulation. Simulations were carried out 

using MATLAB\Simulink. The experiment was conducted as two case studies by 

including and excluding the load in the hydropower plant. The K-MPC is basically a PI 

controller. So, the proposed method was compared with both LQR and the conventional 

PI controller. The simulation results inferred that when the stability constraint is included 

in the cost function, the proposed method is able to provide reliable and stable closed 

loop output, even in case of any uncertainties present in the system. If the proposed 

method is implemented in the system without uncertainties, it is predicted to have better 

performance than other methods.  
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Appendix A.  System data 

Area 1 Area 2 Area 3 Tie-line  

B1=0.425 

pu.MW/Hz 

R1=2.4 Hz/pu.MW 

Tg1=0.08 s 

Tt1=0.4 s 

Kp1=120 Hz/pu.MW 

Tp1=20 s 

 

B2=0.425 pu.MW/Hz 

R2=2.4 Hz/pu.MW 

Tg2=0.08 s 

Tt2=0.4 s 

Kp2=120 Hz/pu.MW 

Tp2=20 s 

 

B3=0.425 pu.MW/Hz 

R3=2.4 Hz/pu.MW 

T1=48.7 s 

T2=0.5114 s 

T3=10 s 

Tw=1 s 

Kp3=120 Hz/pu.MW 

Tp3=20 s 

T12=0.4442 

pu.MW 

T13=0.4442 

pu.MW 

T23=0.4442 

pu.MW 

a12=-1 

a13=-1 

a23=-1 

 


