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Abstract: A computer-aided tuning method that combines T-S fuzzy neural network (T-

S FNN) and offers improved space mapping (SM) is presented in this study. This method 

consists of three main aspects. First, the coupling matrix is effectively extracted under the 

influence of phase shift and cavity loss after the initial tuning. Second, the surrogate 

model is realized by using a T-S FNN based on subspace clustering. Third, the mapping 

relationship between the actual and the surrogate models is established by the improved 

space mapping algorithm, and the optimal position of the tuning screws are found by 

updating the input and output parameters of the surrogate model. Finally, the 

effectiveness of different methods is verified by an experiment with a nine order cross 

coupled filter. Experimental results show that, compared to a back propagation neural 

network method based on electromagnetic simulation and an SM method based on a least 

squares support vector machine, the proposed method has obvious advantages in terms of 

tuning accuracy and tuning time. 
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1 Introduction 

With the development of electronic technology and wireless communication techniques, 

the demand for frequency selection of microwave filters is increasingly expected [Hunter, 

Billonet and Jarry (2002)]. The methods for improving the inhibition ability of the 

microwave filter and reducing the loss capacity of the passband have attracted attention 

of engineers. However, in actual application, because of the differences between the 

mechanical error and the material characteristics of the microwave filter, the output 

response based on the electromagnetic design have fallen short of theoretical expectations 

[Xu, Yong and Zhang (2013)]. This is an urgent problem for wireless and satellite 

communications, the requirements for which are particularly strict. Because the 

manufacturing tolerance of the filter does not leave sufficient space for design allowance, 

the tuning has become critical. 
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Over the past few years, the tuning methods for filters have been mainly based on 

artificial tuning which not only consumes considerable time and effort but also affects the 

consistency of products [Michalski (2010)]. To improve the efficiency of production, an 

intelligent tuning method based on least squares support vector machine (LS-SVM) was 

presented [Zhou, Duan and Huang (2011)]. This method develops a means of tuning 

directions by combining the tuning model and optimization strategy. However, this 

method ignores the effect of parameter extraction on system performance. To solve this 

problem, a computer-aided tuning system for microwave filters was developed [Yu 

(2011)]. To its credit, the tuning device can be flexibly changed and screws can be fine-

tuned. However, this method is limited when it is used for microwave filters with different 

topologies. Subsequently, a neural network with SM optimization of microwave filters was 

proposed in Wang et al. [Wang, Yu, Kabir et al. (2012)]. This method not only applies the 

back propagation (BP) neural network to filter tuning, but also realizes computer-aided 

tuning through surrogate parameter optimization. However, it cannot be applied to actual 

filters. In Zhang et al. [Zhang, Su, Liang et al. (2013)], the Cauchy method was used for 

parameter extraction, but the initial value of both the optimization variables and 

convergence region was not considered, which means the system is hard to converge. 

In 2014, the improved time domain tuning method was proposed in Song et al. [Song, 

Zhang and Cao (2014)], where the resonant frequency and coupling coefficients could 

directly reflect the characteristic changes of output waveforms of microwave filters. This 

method can direct the tuning of the filter intuitively and quickly, however, it can hardly 

be applied to cross coupled and higher order filters. Therefore, a tuning based on the 

phase meant for coupled resonator filters was proposed [Ness (2015)]. Here, the tuning 

direction of the filters was directed by iterative optimization to minimize the error 

between the output phase of each tuning and the ideal phase responses. This method can 

avoid the convergence problem of optimizing the parameters, however, the tuning 

process is very complex. 

Multi-objective optimization methods based on Daubechies D4 wavelet transform, 

Hausdorff distance, and Frchet distance were proposed by Michalski et al. [Michalski, 

Gulgowski and  Kacmajor (2012); Kacmajor and Michalski (2012); Szwaba, Forest and 

Kacmajor (2016)], but these methods are difficult to apply to multi-order cross coupled 

microwave filters. To improve the efficiency of tuning, a multi-dimensional optimization 

method based on a surrogate model was proposed by Xia et al. [Xia, Ren and Choi 

(2017)]. This method realizes optimizes parameters successfully by employing the 

electromagnetic simulation model. In [Mohammed, Bouhafs and Rachid (2018)], an 

antenna optimization design and simulation experiments were conducted using the library 

function HFSS-MATLAB-API of MATLAB, and a 3D model was generated by HFSS 

software. To a certain extent, this approach is convenient for optimization design and 

theoretical simulation of the size of the microwave filter. However, uncertainties remain 

with the mechanism of electromagnetic simulation software. 

A computer-aided tuning method that combines a T-S fuzzy neural network (T-S FNN) 

and improved space mapping (ISM) is developed in this study. The significance of this 

method is threefold: i) Coupling matrix ( M ) extraction in a non-ideal state is realized 

after initial tuning; ii) Surrogate modeling based on field tuning data can be applied to 
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microwave filters with different topologies, and data clustering and the self-learning of 

model parameters enhance the prediction accuracy of M ; and iii) Configurations of the 

convergence radius and update mode make the tuning process simple and fast. The 

remainder of this paper is organized as follows. Section II describes in detail the design of 

the tuning scheme. Section III presents the method of primary tuning through an 

optimization design. Section IV introduces the phase shift and extraction processes of 

coupling matrix. Section V describes the verification of the surrogate model and computer-

aided tuning through experiments. Finally, Section VI presents the conclusion to this study. 

2 Description of filter tuning 

2.1 Structure of the model 

The structure of the actual and the surrogate models are shown in Fig. 1. The left half of 

Fig. 1 shows the extraction process of the coupling matrix, which consists of three main 

parts: First, the scattering parameters (S-parameters) without phase shifts are collected 

and converted into admittance parameters (Y-parameters). Second, the poles and residues 

of Y-parameters are extracted by the vector fitting method. Third, the coupling matrix is 

extracted by comparing the expression of Y-parameters. The right half of Fig. 1 presents 

the realization of M to S-parameters. By establishing the mapping relationship between 

the surrogate and actual models, the screw height can be obtained through iterative 

optimization. 
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Figure 1: Surrogate and the actual models 

2.2 Tuning process of filter 

The core task of computer-aided tuning is to establish a surrogate model based on field 

data and realize parameter optimization. A thorny problem in this task is to extract the 

M from the S-parameters under non-ideal conditions. However, the coupling matrix 

cannot be extracted when the S-parameters curve is distorted. Therefore, the error of the 

output response should be adjusted to the allowable range by the initial tuning of the filter. 
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Fig. 2 shows the specific tuning process, which mainly includes four pieces of 

information: First, the zero-poles location optimization of the initial tuning is presented; 

Second, the coupling matrix is extracted by vector fitting in the presence of phase shift 

and cavity loss; Third, the T-S FNN is used to establish the surrogate model based on 

field data; Finally, the iterative optimization of ISM is used to find the optimal position of 

the screws. 
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Figure 2: Computer-aided tuning flow of the microwave filter  

3 Initial tuning of the filter 

The goal of initial tuning is to tune the S-parameters to a reasonable range to enable 

smooth extraction of M . To achieve this goal, optimizing zero-poles location is essential. 

The expressions of the transmission ( 12S ) and reflection functions ( 11S ) of the filter are 

given as follows: 
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where ( )P s  is a polynomial containing p  transmission zeros, 21kz represent transmission 

zeros, 11( )F s  is a polynomial containing N  reflection zeros, 11kz  denotes the reflection 

zeros, ( )E s  denotes the common denominator polynomial of the transfer function and 

the reflection function, kp  denotes transmission zeros,   is the ripple coefficient with a 
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value of 10=1 10 1RL − , The optimized objective function is designed as follows: 
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where RL  is the return loss; zN  and sN  are the number of zeros and poles, respectively; 

1k , 2k  and 3k  are weights, and the position of the zeros and poles are patched by a 

greedy algorithm. Here, 11kz , 21kz  and kp  are set as optimization variables. The 

optimization target is realized when the value of f approaches zero [Sujatha, 

Ramakrishnan and Duraipandian (2014)]. To avoid the system falling into local extremum 

and precocity, this study integrates individual, social and excellent individual knowledge in 

quantum updating [Yang, Peng and Cao (2014)]. The expression is as follows: 
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Figure 3: Comparison of the fitness of different algorithms 

where  0 1 1,2,3ir i      = ; k

qj , k

vj  and k

bj  represent quantum angles of quantum, 

excellent quantum and optimal quantum in the k  generation, respectively. 1c , 2c  and 3c  

are learning coefficients, and    is the inertia coefficient. The specific parameters are set 

as follows: The population size =30N , the quantum coding length 50l = , =0.7 , 

1 2 3= = =0.7c c c , the maximum iterations are =50T ; and the maximum and minimum 

inertia coefficients of PSO are set as max =0.95  and min =0.45 , respectively. The 

population size and maximum iteration number are the same as those set by the quantum 
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greedy algorithm, and the training precision is 0.001. 

 

Fig. 3 shows the number of iterations and error precision curve of the network are shown 

in Fig. 3. As shown, the precision of the quantum greedy algorithm can reach 0.232 after 

eight times of training. When the traditional PSO algorithm is used, 13 times of training 

can reach 0.896. The quantum greedy algorithm is obviously better than the traditional 

PSO algorithm. 

 

Figure 4: Iterative error of the 11S  

Fig. 4 and Tab. 1 present the iteration error of 
11S , where ( 1,2, ,7)ip i =  represents the 

characteristic error. As the number of iterations increases, the error of 11S  between the 

extracted and ideal indices becomes smaller, but approach zero is difficult. Therefore, the 

filter requires further tuning to meet performance requirements. 

Table 1: Extracted error characteristics of 11S  

Iterations 1 ( )P dB  2 ( )P dB 

 
3 ( )P dB  

4 ( )P dB  
5 ( )P dB  

6 ( )P dB  7 ( )P dB  

Iteration 2 27.12  47.12  15.11 6.95 7.02 -38.91 -18.16 

Iteration 4 19.23 -34.12 -12.46 9.74 -20.56 -30.59  32.86 

Iteration 6 -5.55  28.85  5.745  18.62 -19.87 -16.68  22.37 

Iteration 8 -0.93 -0.79 -3.22 -1.81 8.63 -25.94 -0.05 

4 Extraction of coupling matrix 

The physical structure of the filter is generally designed with resonators and coupling 

cavities, where each cavity is equivalent to a parallel resonator circuit. Fig. 5 shows the 

one-to-one correspondence between the coupling matrix and tuning screws. Here, we can 
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see that when the tuning magnitude and direction of the screws are changed, both the 

value of the coupling matrix and the S-parameter produced by the coupling matrix are 

changed. Therefore, the extraction of the coupling matrix is an essential part of filter 

tuning. The specific extraction process is described as follows. 

nd1nd −2d1d

11m 12m
1nm nnm

1V

 

             Figure 5: Corresponding relationship between M and tuning screws 

4.1 Removal of phase shift 

Unlike the ideal filter designed using HFSS software, the S-parameters of the actual filter 

contains a phase deviation be produced by the transmission line, cavity loss and high 

order mode. If this phase deviation cannot removed effectively, it will affect the 

extraction of the poles and residues, which in turn affects the synthesis of the coupling 

matrix and the establishment of the later surrogate model. Therefore, the phase deviation 

must be removed, it is the expression for which is as follows [Macchiarella (2010)]: 

1 01 1 2 02 2 ,l l     = +       = +                                                                                                 (4) 

It is assumed that the phase loading and length of the transmission line at the two ports 

are equal, or in other words: 01 02 = , 1 2=l l . Thus, the phase deviation 2 l−   of 

11S  must be removed. Based on Zhang et al. [Zhang, Su and Wu (2013)], the phase 

expression of 11S  is as follows: 
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where nc  and ne  are the polynomial coefficients of the numerator and denominator, 

respectively. When  →  is satisfied, the formula can be translated as follows: 
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where a  and b  are proportional constants. The phase and group delay of 11S  after the 

phase is removed is as follows: 
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Figure 6: Amplitude of 21Y  before and after phase removal 

     

Figure 7: Phase of 21Y  before and after phase removal 

Based on the aforementioned expression, the scaling factor can be calculated by curve 

fitting. After fitting is completed, the phase loading of ports 1 and 2 are 56.24  and 
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61.02 respectively. In addition, the transmission line length is 3.1462e-9 m and 4.0112e-

9 m, respectively. From the amplitude of 21Y  in Fig. 6 and the phase of 21Y  in Fig. 7, we 

can clearly see that the curve after phase removal can be approximately centrally 

symmetric, and expression of transmission and reflection characteristics after the phase 

deviation is removed is as follows: 

11 11 1

21 12 21 1 2

22 22 1
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= exp( ( )
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ext

ext
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S S j

S S S j
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                                                                                                      (8)  

where 1  and 2  are the phase shift caused by the transmission line; ext

ijS  and ijS  are the 

S-parameters before and after phase shift removal. The Y-parameters can be obtained by 

the new S-parameters. Once the poles and residues of the Y-parameters are calculated by 

vector fitting, the coupling matrix can be easily synthesized. 

4.2 Calculation of poles and residues 

After the phase deviation of S-parameters is removed, the poles and residues of Y-

parameters can be calculated by vector fitting. In this study, to avoid the dependence of 

the fitting process on initial poles and residues, the initial poles are obtained by least 

squares before the vector fitting. The formula for converting the S to Y-parameters is 

given as follows [Meng and Wu (2016)]: 
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The advantage of using vector fitting is that it not only avoids the problem of high power 

in the polynomial coefficients extraction, it merely iterates the previous poles and 

remainders to the next step. Thus, the process is relatively simple and rapid. The 

expressions of the Y-parameters shown by the poles and residues are as follows [Goay, 

Goh, Ahmad et al. (2018)]: 
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where k , 
( )kr  and K  are the poles, residue and highest power coefficient of the Y-

parameters, respectively. 
( )

1
( )= ( ) 1

n k

kk
s q s 

=
− +  is a loss factor, and ( )kq  is its 

residue. The following formula can be obtained by substituting ( )s  in (10): 
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In the formula, n  and k  are the number of the order and sampling points, respectively. 

To obtain the poles and residues, the formula must be further converted as follows: 
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Formula (12) is treated as a form of k kA x b= , and the unknown element 

( ) ( )

21 21 22 22  k k

kx r K r K q


 =            containing the poles and residues must be solved. When the 

value of ( )s  approximates 1, the poles and residues can be calculated. Tab. 2 shows the 

results. 

Table 2: Extracted poles and residues of the Y-parameters 

     k  21r  
22r  

k  

1 -0.1456+0.0024 j   0.1794+0.0012 j  0.0591-0.2123 j 

2 0.1433+0.0032 j 0.1313+0.0025 j -0.5114-1.1005 j 

3 0.1264+0.0001 j 0.1171+0.0011 j 0.5581-0.4211 j 

4 -0.0542+0.0002 j   0.0678+0.0002 j     0.4346-0.2160 j 

5   0.1462+0.0011 j 0.1305+0.0013 j   -0.5592-0.1702 j 

6 -0.1466+0.0003 j 0.1319+0.0020 j 0.5625-0.3134 j 

7    0.1581+0.0005 j   0.1298+0.0006 j  -0.5582-1.0203 j 

8  -0.1583+0.0001 j   0.1679+0.0013 j   0.5906-1.2035 j 

9    0.1069+0.0003 j   0.0965+0.0003 j  -0.5276-1.1019 j 

10  -0.1235+0.0002 j   0.1478+0.0032 j  -0.5609-0.1027 j 

4.3 Coupling matrix synthesis 

When the adjustable variables of the microwave filter are large, a single optimization method 

is considerably dependent on the initial value. Therefore, the analytical method based on 

vector fitting is crucial for the extraction of the initial M . Considering that the number of 

transmission zero points is far less than the order of the microwave filter, the formula 

0 0SLK M= = . From the synthesis of the Chebyshev function and the equivalent circuit of 

the coaxial cavity filter, we can derive the following formula [Wang, Li and Peng (2015)]: 
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Table 3: Extracted M  of the nine order cross-coupled filter 

 1 2 3 4 5 6 7 8 9 

1 -0.638 -0.802 0 0 0 0 0 0 0 

2 -0.802 -0.134 -0.576 0 0 0 0 0 0 

3 0 -0.576 -0.123 0.580 0 0 -0.010 0 0 

4 0 0 0.580 -0.439 -0.473 -0.041 0.177 0 0 

5 0 0 0 -0.473 -0.415 -0.681 0 0 0 

6 0 0 0 -0.041 -0.681 -0.569 -0.307 0.506  

7 0 0 -0.010 0.177 0 -0.307 -0.205 -0.580  

8 0 0 0 0 0 0.506 -0.580 -0.433 -0.771 

9 0 0 0 0 0 0 0 -0.771 -0.011 
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                                                                            (13) 

where 0k uf Bw Q =   is the resonator loss of the filter, k  is the eigenvalue of the 

coupling matrix, and ijr  is the corresponding residue under the eigenvalue. We can 

extract Re( )kk k kM  = − + , 22lkM r= , 21 22skM r r=  from (13). After the similar 

transformation of initial M , the extracted M  is generated, as shown in Tab. 4, where 

diagonal elements represent self-coupling, and non-diagonal elements represent cross 

coupling. The S-parameters expressed by the extracted M  are as follows [Zhao and Wu 

(2018)]: 
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where    1 2,0, 0,R diag R R= , 0 0 0( )i if Bw f f f f = − ,  ext kM M j = − , I  is the 

unit matrix, and    1 2,0, 0,diag  = . Compared to the ideal S-parameters, the S-

parameters generated by the M  can meet the performance index. 

5 Surrogate model and the computer-aided tuning 

The FNN based on the T-S model combines the advantages of the fuzzy reasoning ability 

and the self-learning of a neural network [Zhang, Jiang, Yin et al. (2018)]. In this study, 

the T-S FNN is used to build a coupling matrix prediction model. The prediction value is 

then fed into the ISM. Finally, the optimal tuning position of the screws is found by 

iterative update of the input and output parameters of the surrogate and actual models. 
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Figure 8: Membership function of 1d  before and after clustering 

  

Figure 9: Membership function of 2d  before and after clustering 

Compared to the tuning method based on the 3D model built using HFSS software, the 

method has faster convergence speed and higher prediction accuracy. 
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5.1 Fuzzy clustering 

To improve the effectiveness of empirical data, the fuzzy C-means clustering (FCM) is 

used to partition the input space of FNN based on the T-S model, and the cluster centers 

are calculated through subtractive clustering based on the density around each data point. 

To reduce the influence of different dimensions on the model, the input and output data 

must be normalized to  0 1   [Castro, Fronza and Alves (2017)]. The fuzzy clustering is 

realized by the following procedure. 

  

Figure 10: Membership function of 
3d  before and after clustering 

Step 1: According to the subtractive clustering formula, the density index of data points 

at ix  is 
1
exp( )

m

i j
 

=
=  , where ( )

2 2
= 2i j ad d r − , ar  is the neighborhood radius of 

the data point, and the density index of every data point can be updated by using the 

following formula. Where ix  is the density index at the center data point, and to avoid a 

near clustering center, we set ( )
2 2

1 1exp 2i i c i c bd d r    = −  −
 

. 

Step 2: Based on the FCM criterion, the minimum cost function is transformed into the 

following equation. 
2

1 1
+ ( 1),

c cr r

ij j k ijk k
f d V k 

= =
=  −  −                                                                                 (15) 

where kj  is the membership of the sample data j  belonging to the class k  and kV  is the 

center data of the class k . The optimal conditions for the aforementioned equation are as 

follows. 
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Figure 11: Structure of T-S FNN 
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Step 3: The number of the clustering and initial clustering center are obtained by 

subtraction clustering by the following equation: 

1 1

2

1 1

( ) ( )

( ) .

m mr r

k kj j kjj j

m m

k kj j k kjj j

v d

d v

 

  

= =

= =

=

= −

 

 
                                                                                               (17) 

Step 4: If an inequality 
+1j jU U −   is established, the iteration is terminated or else 

takes 1j j= +  back to Step 2. 

The subdivision of input data before and after clustering is shown in Figs. 8-10. The real 

and dashed lines in the graph represent the membership functions of input data before and 

after clustering, respectively. Clearly, the data after processing can truly reflect the tuning 

rule of the system. It provides considerable help for modeling the tuning system. 

5.2 Structure of T-S FNN 

The T-S FNN is mainly composed of forward and post networks. The primary aim of the 

front network is to match the fuzzy rule, and the aim of the post network is to produce the 

fuzzy rule [Le and Hai (2016)]. Fig. 11 shows the structure and relevant parameters of the 

network. 
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The input layer of the forward network is  1 2= , , nx d d d , and the Gauss type function 

2 2exp ( ) 2
iA i i id c = − −  is adopted as the membership function layer. The number of 

fuzzy rules is equal to the number of central values of the network, where 

1 21 2( ) ( ) ( )
ni A A A nd d d   =  . The outputs of the last two layers is ' =j j j    and 

' '

1

m

j j jj
  

=
=  , respectively. The purpose of taking 1 1x =  in the first layer of the 

post-network is to calculate the constant term. The post parameters of each rule are 

calculated on the second layer, and the output values of the last two layers are k

k p d =   

and k

k kM p d   =  = , respectively. 

5.3 Parameter identification of T-S FNN 

To strengthen the effectiveness of the surrogate model, adaptive learning is conducted for 

parameter identification of the forward and post networks [Djelloul, Sari and Latreche 

(2018)]. The updating formula of the weight value is as follows. 

( )

( )

'

1

'

( 1) ( ) ( )

( ) 1 ( 1)

=

q q q

ji ji ji

m
q q

ji jiq
j ji

q qj

ji ji j uiq q

ji q qj ji

p n p n p n

e
p n p n

p

Me e
M M d

p M p

  






=

+ = + 


 = − − +  −



  
   = − −  

   

                                                                     (18)  

where i , q and m  are the number of input variables, output variables and training 

samples, respectively. Here, 0.85 =  is a weighting coefficient selected in accordance 

with training and test errors. The following formula shows the online self-learning 

method of the central value: 

1 1

1

( 1) ( ) ( )

( ) (1 ) ( 1)

( ) (1 ) ( 1).

st st st

m r

st st

j q sj

m

st st

j sj

c n c n c n

e
c n c n

c

e
c n c n

c

 

 

= =

=

+ = + 


 = − +  −


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                                                                                    (19) 

The width value of membership functions can be identified online by the following 

iteration. 
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where 
im  is the number of membership functions for the i th input, ( 1)si t +  and ( )si t  

are the width of membership functions corresponding to 1t +  moments and t  moments, 

respectively. ( )si t  is the width change of the membership function. Similarly, the 

objective function of the network training is designed as follows. 

 

Figure 12: Prediction value of the coupling matrix by T-S FNN 

( ) ' 2 2
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where qM  and '

qM  are the predicted and true values of the M , respectively,   

represents the weighting coefficient selected based on training and testing errors, i  

denotes the parameter values that must be adjusted in the front and rear parts of the T-S 

fuzzy neural network. As Fig. 12 shows, compared to the conventional BP neural 

network method, the extraction precision of M  is more accurate, and the purpose of 

prediction can be achieved when the initial tuning of the filter is completed. 

5.4 Computer-aided tuning 

Traditional tuning is normally achieved by optimizing of its own parameters. Traditional 

tuning has slow tuning speed, is sensitive to the initial value, and is particularly powerless 

to high order filters.  For these reasons, the space mapping algorithm is used to establish 

relations between the surrogate and actual tuned models. Obtaining the best tuning 

position of the screws by optimizing the parameters of the surrogate model is easy. 

Because of the number of variables in the system, the radius of the confidence domain 

and the initial Jacobian matrix are improved on the basis of the space mapping algorithm.  

For convenience of operation, the input variables are represented as 
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( ) ( ) ( ) ( )

11 12 89( , , )k k k km m m m =  and ( ) ( ) ( ) ( )

1 2( , , )k k k k

n nd d d d =  in the surrogate and actual 

models, respectively. The corresponding S-parameters are expressed by 
( ) ( )k

ijS sur and ( ) ( )k

ijS acu  respectively, where, n  is the order of the filter and k  is the 

number of iterations. 1,2i = , 1,2j = . Using the improved algorithm, we could find the 

appropriate position of screws that meets the performance index. The solution of the 

location of the screws is transformed into the following optimization problem [Wang and 

Zhang (2012)]: 

( )

2 2
( 1) ( ) ( )

1 1

argmin ( ) ( ) ,
k

k k k

ij ij
d

freq i j

d S acu S sur+

= =

= = −                                                             (22) 

where ( 1)kd + is the 1k +  times of screws tuning, ( ) ( )k

ijS sur  and ( ) ( )k

ijS acu  are the output 

S-parameters of the surrogate and actual models. The process of computer aided tuning is 

given as follows. 

Step 1: Obtain the optimal coupling matrix ( ) ( ) ( ) ( )

11 12 89( , , )m m m m    =  under the best S-

parameters of the nine order coaxial cavity filter. Set the value of the initial Jacobian 

matrix.  

Step 2: Measure the height (1)

nd  of the first screws tuning and the corresponding S-

parameters (1) ( )ijS acu . Let (1) (1)( )= ( )ij n ijS d S m , where the value of (1)m  is calculated 

through the vector fitting. 

Step 3: Calculate the error between (1)m  and ( )m  , if (1) ( )m m −   exists , the solution 

for the system is derived from the height of the screws obtained at this time. Otherwise, 

execute the next step. 

Step 4: If the error is not within the allowable range, update the tuning height of the 

screws using the formula ( 1) ( ) ( )k k k

n nd d h+ = + , where 
( )kh  is obtained by combining of  

( ) ( ) ( ) ( ) ( ) ( )1 1
T T

j j j j k k
B B f h h h

+ +
= +  and ( ) ( ) ( )k k k

B h f= − . 

Step 5: Set the radius   of the confidence region. Let 
( )kh  . If the value of the 

equation ( 1) ( ) (*)k kf m m+ = −  is less than or equal to  , terminate the tuning program. 

Step 6: Update the iteration number 1k k= + . Then perform the following iteration in the 

same manner until the iteration precision approximates the permitted value. 
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Figure 13: Comparison of S-parameters before and after tuning 

Table 4: Extracted performance parameters of different methods 

Method min ( )IL dB  ( )LR dB  ( )RR dB  
max ( )RL dB  

min ( )RL dB  ( )aveIL dB  

BP-ES -6.734 -90.920 -104.712 -25.947 -58.561 -42.973 

LS-SVM-

SM 
-3.421 -87.481 -114.681 -36.092 -69.801 -51.722 

T-S FNN-

ISM 
-0.492 -82.174 -121.059 -44.221 -82.236 -65.079 

Measured -0.245 -81.785 -122.711 -44.141 -83.391 -66.124 

A comparison of S-parameters when using different the methods are presented in Fig. 13 

and Tab. 4, where minIL  represents minimum insertion loss; LR  and RR  represent left 

and right restraints outside the band, respectively; and maxRL , minRL  and aveRL  represent 

the maximum, minimum and average return loss, respectively. We observe that the error 

of S-parameters made when combining the BP neural network and electromagnetic 

simulation (ES) is relatively large. The methods based on LS-SVM and SM make 

achieving the desired index requirements difficult as well. However, following several 

iterations by T-S FNN and ISM, the transmission attenuation of the passband in 2.06-2.14 

GHz is less than l dB, the fluctuation is less than 0.5 dB, the reflection coefficient of the 

port is less than -40 dB, and the output response of the proposed method is in good 

agreement with the ideal curve. 

6 Conclusion 

Considering the difficulty and complexity of the tuning process, a computer aided tuning 

method based on T-S FNN and ISM was developed in this study. We showed that this 
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method is effective at avoiding the inaccuracy of parameter extraction when the filter 

detuning is large, and it can overcome the effects of phase shift and cavity loss on the 

accuracy of M extraction. In addition, the reliability of modeling was greatly improved 

by data clustering analysis and the self-learning of model parameters. In addition, the 

convergence speed of the optimization algorithm was obviously improved by setting the 

radius of the confidence region and initial value. The experiment of the nine order coaxial 

cavity filter showed that this method has good practical significance for the auxiliary 

tuning of filters. 
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