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Abstract: The alternating method based on the fundamental solutions of the infinite 
domain containing a crack, namely Muskhelishvili’s solutions, divides the complex 
structure with a crack into a simple model without crack which can be solved by 
traditional numerical methods and an infinite domain with a crack which can be solved 
by Muskhelishvili’s solutions. However, this alternating method cannot be directly 
applied to the edge crack problems since partial crack surface of Muskhelishvili’s 
solutions is located outside the computational domain. In this paper, an improved 
alternating method, the spline fictitious boundary element alternating method (SFBEAM), 
based on infinite domain with the combination of spline fictitious boundary element 
method (SFBEM) and Muskhelishvili’s solutions is proposed to solve the edge crack 
problems. Since the SFBEM and Muskhelishvili’s solutions are obtained in the 
framework of infinite domain, no special treatment is needed for solving the problem of 
edge cracks. Different mixed boundary conditions edge crack problems with varies of 
computational parameters are given to certify the high precision, efficiency and 
applicability of the proposed method compared with other alternating methods and 
extend finite element method. 
 
Keywords: Spline fictitious boundary element alternating method, mixed boundary 
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1 Introduction 
Cracks exist in structures because of manufacture, usage, or the defects of material. 
Therefore, fracture mechanics plays an important role in engineering practice, such as 
aeronautics, astronautics and machinery manufacturing. Stress intensity factor is the most 
critical problem in fracture mechanics, but only a few cases can get the closed-form 
solution of stress intensity factor (SIF). So, numerical methods are the most common 
methods for solving crack problems. The finite element method (FEM) is widely used 
because of its strong adaptability, but more elements are set up at the crack tips due to the 
severe stress gradient, reducing the accuracy and efficiency of the method greatly. In 
order to solve the fracture problems efficiently, an improved finite element method, 
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extended finite element method (XFEM) [Pathak, Singh and Singh (2013)], is proposed. 
The extended finite element method does not need to mesh the geometric or physical 
interfaces inside the structure, so it can overcome the difficulties caused by the high-
density mesh generation at the crack tip. However, the shape function used by XFEM 
makes it easy to approach the linear correlation, which greatly increases the difficulty of 
the algebraic equation convergence. The boundary element method (BEM) [Wünsche, 
García-Sánchez, Sáez et al. (2010)] is also used commonly in the analysis of fracture 
mechanics as only the boundary needs to be discretized. However, it needs to add more 
elements close to the crack tips, which make it time-consuming. 
Compared with the above numerical methods which are conducted to solve one crack 
problem, the alternating method is proposed to solve crack problems effectively using the 
combination of two different simple problems. The principle of the alternating method is to 
decompose a finite problem with a crack into the problem without crack and the infinite 
problem with a crack, and after that those two different problems are solved, respectively. 
Without the crack tip processing, this method can greatly improve the solving efficiency. 
Applications of the alternating method in the fracture mechanics involves the multi-crack 
problem [Chen (2011); Chen and Wang (2012); Chen and Wang (2014); Chen (2014)], 
surface elliptical cracks in 3-D bodies [Shah and Kobayashi (1973); Thresher and Smith 
(1972)] and surface crack of pump shaft [Chen, Kuo and Shvarts (1993)]. 
The infinite problem with a crack can be solved by using boundary integral equation or 
the fundamental solutions with a crack (Muskhelishvili’s solutions). Compared with the 
Muskhelishvili’s solutions which are derived from the mathematical method, it is lower 
accurate to solve the infinite problem with a crack by the boundary integral equation 
which bring more numerical errors. On the other hand, the problem without the crack can 
be conducted by using the FEM or direct BEM. The finite element alternating method 
(FEAM) is widely used due to its good applicability, including prediction of fatigue crack 
growth life of 3D model [Wang, Haynes, Huang et al. (2015); Nikishkov, Park and Atluri 
(2001); Tian, Dong, Bhavanam et al. (2014); Tian, Dong, Phan et al. (2015)], surface 
crack analysis of cylinder [Kamaya and Nishioka (2005)], simulation of surface crack 
and full thickness crack propagation [Park and Nikishkov (2011)] and crack simulation 
and analysis of countersunk rivets [Shi and Li (2006)]. In addition, the direct BEM is 
applied to solve the problem without crack. The BEM is attractive since only the 
boundaries of the problem for this method need to be modeled and hence, modeling effort 
is considerably reduced. Rajiyah et al. [Rajiyah and Atluri (1988)] use the direct 
boundary element alternating method (BEAM) to solve the SIF and the weight function 
of the 2D mixed crack problem. Raju et al. [Raju and Krishnamurthy (1992)] carried out 
detailed calculation steps of the method and calculated the SIF of the 2D mixed crack 
problem. Ting et al. [Ting, Chang and Yang (1995); Ting, Chen and Yang (1999); Chen, 
Ting and Yang (2000)] apply this method to the analysis of the third kinds of multi crack 
problems and the analysis of two-dimensional plate with holes. 
In the edge crack problem, since the crack face tractions in Muskhelishvili’s solutions are 
defined on the entire embedded plane with the whole crack with two crack tips, it is 
necessary to define tractions over the entire plane, including the fictitious tractions on the 
crack face defined outside the finite domain, as shown in Fig. 1. However, the FEM and 
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the direct BEM, which are based on the finite domain, cannot calculate the fictitious 
tractions on the crack outside the finite domain, so the FEAM and the BEAM cannot be 
directly applied in edge crack problem. In order to overcome this difficulty, Rajiyah et al. 
[Rajiyah and Atluri (1988)] assumed that there is a mirror image between the outside 
fictitious tractions and the inside tractions, as shown in Fig. 1(a), namely mirroring 
method. Besides, constant tractions or linear tractions are arranged on the fictitious crack 
by Raju et al. [Raju and Krishnamurthy (1992)], as shown in Fig. 1(b), namely uniform 
stresses method. However, the selection of tractions is arbitrary, which will affect the 
convergence of the equations related to the accuracy of the results.  
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(a)                                                              (b) 

Figure 1:  Treatment of edge crack 

For solving the edge crack problems efficiently by the alternating method, an improved 
alternating method, the spline fictitious boundary element alternating method (SFBEAM) 
[Chen, Xu and Fan (2018)], based on an indirect BEM, spline fictitious boundary element 
method (SFBEM) [Su, Qin and Fan (2016); Xu, Su and Guan (2018)], and 
Muskhelishvili’s solutions is applied in this research. Firstly, a computational model for 
an edge crack problem based on an infinite domain is given and then divided into two 
infinite domain problems by alternating method including one without a crack and 
another with a crack. Then, the SFBEM is used to solve the first problem and 
Muskhelishvili’s solutions are introduced to conduct the other problem. Because the 
SFBEM and Muskhelishvili’s solutions are formulated in the infinite domain, no special 
treatments are needed for solving the problem of edge crack. In the process of numerical 
solution, considering the distribution characteristic of the load on the crack surface, the 
locally thickened technique is adopted to speed up the efficiency. Finally, the SFBEAM 
is applied to the edge crack problem with mixed boundary conditions. Compared with 
other alternating methods, SFBEAM shows the high precision. Compared with the 
XFEM, small computational amount is needed in SFBEAM. In addition, the application 
of mixed boundary conditions examples show the applicability of SFBEAM. 
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2 SFBEAM for solving edge crack problems 
2.1 Computational model of the edge crack problem based on infinite domain 
A finite edge crack domain Ω is shown in Fig. 2(a). The elastic modulus, Poisson’s ratio 
and thickness for Ω are E, υ and h, respectively. Assume the boundary of the finite 
domain (not including the crack surface) to be L0. The crack surface is denoted as Lc0, 
which has a known stress boundary conditions T0. The body forces are taken as Fl (l=1, 2).  

Lc

L0 L1 L2T0 T1 T2

F1
F2

F1
F2

F1
F2

L0

Lc0

T0
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Figure 2:  Superposition principle of alternating method 

The governing differential equations of the plane problem represented using the 
displacement functions is as follows  
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where  F1(x, y) and F2(x, y) are body force functions, u(x, y) and v(x, y) are displacements. 
The boundary conditions of this model including the stress boundary conditions on crack 
surface, the displacement boundary conditions and the stress boundary conditions in Ω 
are shown as below 
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where θs
+ , +

θt and θs
− , θt

− are stress on the upper and lower crack surfaces, respectively, 

yf + , xyf +  and yf − , xyf − are the known stress distribution functions on the upper and 
lower crack surfaces. θ represents that the stress is the value in the local coordinates of 
the crack surface. u and v are displacement value on L0, u  and v  are the known 

displacement functions on L0. xf  and yf  are the known stress distribution function on L0. 
l, m are the cosine for outer normal direction of the boundary L0, respectively. For the 
mixed boundary conditions, the displacement boundary conditions and stress boundary 
conditions exist simultaneously. 
Embedding the original problem into an infinite domain in which material properties and 
thickness are the same, as shown in Fig. 2(b), denoting as P0，in which the fictitious crack 
surface lies outside the domain Ω. The boundary conditions and constitutive relations of 
Ω are the same as the original problem. According to the uniqueness theorem of the 
solution, the two problems in Fig. 2(a) and Fig. 2(b) have the same answer. P0 can be 
decomposed into two problems including a problem embedded in an infinite non-cracked 
domain and an infinite cracked domain, as shown in Fig. 2(c) and Fig. 2(d), denoting as 
P1 and P2, respectively [Wang, Haynes, Huang et al.  (2015)]. It is noted that these three 
problems are all in the infinite domain, therefore the principle of superposition can be 
strictly satisfied. 
The boundary conditions in Ω of P1  is  L1, The stress response at the crack location Lc1 is  
T1. In the infinite domain of P2, the stress boundary condition at crack surface Lc2  is T2, 
and the response at the boundary location is L2. Their governing differential equations are 
as follows 
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where u1(x, y)and v1(x, y) are displacements of problem P1, u2(x, y) and v2(x, y) are 
displacements of problem  P2.  
The stress and displacement functions of problems P0, P1 and P2 satisfy the following 
relationships [Chen (2011)] 
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where ( , )x x ys , ( , )y x ys  and ( , )xy x yt  are stress functions in problem P0. The 
superscript 1 represents the problem P1 and the superscript 2 represents the problem P2. 
The relationship between the boundary conditions of three problems is as follows 
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2.2 SFBEM for solving infinite problem without crack 
The problem P1 is analyzed using the SFBEM. The SFBEM is a modified method for 
conventional indirect BEM. In SFBEM, nonsingular integral equations are first derived 
based on the fictitious boundary technique. Then spline functions are adopted as the trial 
functions for the unknown fictitious loads, and the boundary-segment-least-square 
technique is employed for eliminating the boundary residues. Because of these 
modifications, SFBEM is of high accuracy and efficiency in general. Assume that there is 
a fictitious boundary S outside Ω, and unknown fictitious loads Xl (l=1, 2) is applied 
along S, as shown in Fig. 3. The distance between the real boundary and fictitious 
boundary is d. Then, under the action of the fictitious loads Xl, the components of 
displacement and internal force at any point P0 in the infinite domain corresponding to Ω 
are as follows [Su, Qin and Fan (2016)]: 

 
Figure 3:  Finite domain and fictitious boundary 
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where Q∈S, Q0∈Ω, lu , lv , l

xs , l

ys  and l

xyt  are Kelvin’s solutions (fundamental solution 
without crack) [Banerjee and Butterfield (1982)].  
Substituting Eq. (9) into the boundary conditions along L1, one has 
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where H∈L1; k=1, 2 represents the two boundary conditions along boundary L for plane 
problems; and  Lk  is the known boundary conditions along L1, and Gk

l are the Kelvin’s 
solutions. Note that the singular and hyper-singular integrals can be avoided in numerical 
solution because, in SFBEM, the source points and field points are not coincided. 
Because closed-form solutions to Eq. (10) are not available, the integral equations should 
be solved using a numerical basis. Divide the fictitious boundary S into M divisions as Sm 

(m=1, 2, …, M). Then a set of B-spline functions are used to express the unknown 
fictitious  Xm

l(s)  as follow: 
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where s is the local coordinate along Sm, and Nm is the number of sub-divisions within Sm. 
xl

mn are the unknown spline node parameters and φn(s) are the third-order B-spline 
functions . 
Substituting Eq. (11) into Eq. (10), one has the residual functions Rk(H) along boundary 
L1 as follows 
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For eliminating boundary residues Rk(H), boundary L1 is divided into NL segments. Then 
let the integration of the residues along each segment equal zero, namely,  
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where ΔLd is the dth segment on boundary L1.  
Substitute Eq. (13) into Eq. (12), one yields 

1[ ]{ } { } { }A X F L+ =   (14) 

where {X} is the column matrix consisting of the unknown spline node parameters of the 
fictitious loads along S; and [A] is the influence matrix of {X} corresponding to the 
boundary L1; and {F} and {L1} are the known column matrices depending on the body 
forces within Ω and the boundary conditions along L1, respectively. 
After determining the spline node parameters {X}, the response of stress at the crack 
location {T1} can be solved as follows 

1} ]{{ [ }+{ }T K X F=   (15) 

where [K] is the influence matrix of {X} related to the crack location. { }F  is the known 
body force column matrices. Since Eq. (9) is the solution to any points for the infinite 
domain, the response stress {T1} includes the stress response at the actual crack location 
and the stress response at the fictitious crack location. 

2.3 Muskhelishvili’s solutions for solving infinite cracked domain  
The problem P2 is analyzed by using Muskhelishvili’s solutions. Assume an infinite 
cracked domain with the crack ab  [Wang and Atluri (1996)] subjected to the 
concentrated loads fy

+ and fxy
+ at point Q+=d+i0+  at the upper crack surface and  fy

- and  
fxy

- at point  Q- =d+i0-  at the lower crack surface as shown in Fig. 4.  
y
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Figure 4:  Crack of arbitrary length in an infinite domain 

The Muskhelishvili’s solutions are used to remove the crack-face cohesive stress 
obtained from the SFBEM solution for the alternating method. Therefore, according to 
Newton’s third law of traction reciprocity, the concentrated load fy and fxy are the same 
for the upper crack surface and the lower crack surface, i.e. fy

+=fy
-，fxy

+=fxy
-. With this 

assumption, the stresses σx, σy and τxy and displacement u and v at any point, z=x+iy, can 
be expressed using complex functions. 
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The response at the boundary location in problem P2 can be determined by using 
Muskhelishvili’s solutions as follows 
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where Q2∈Lc2, N∈L2, kL is the stress and displacement response, and l

k
G  is the 

Muskhelishvili’s solutions.  
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Discretizing the integral equations Eq. (20). Non-uniform partition is used as the stress 
change is much more severe close to the crack tip, as shown in Fig. 5. 

 
Figure 5:  Non-uniform partition of crack 

Let the crack Lc2 be divided into I divisions, denoted as Lc2,i, then  
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Written in the form of matrix: 

2 2{ } [ ]{ }L K T=   (22) 

where {T2} is the column matrix containing the crack stresses. [ ]K  is the influence 
matrix of {T2} related to the boundary location and {L2} is the column matrix containing 
the unknown stress and displacement response. 

2.4 Solution of SIF by SFBEAM 
An equation set consisting of Eqs. (8), (14), (15) and (22) is established. Solving this 
equation set, one yields 

0 0{ } [ ]{ } [ ]{ } { } ([ ] [ ][ ]){ }L K F K T F A K K X+ − − = −   (23) 

The unknown spline node parameters column matrix X can be solved from Eq. (23). Then 
the crack surface loading {T2} can be obtained. After that, the SIF can be solved directly 
using Muskhelishvili’s solutions. Non-dimensional SIF can be solved as follow 

I,II

I,II

0

K
F

aσ π
=   (24) 

where σ is are the uniform tensile stresses at far filed, a0 is the crack length. 
It should be noted that the crack must be at x-axis when solving the infinite problem with 
a crack by using Muskhelishvili’s solutions. If the global coordinate is not the same as the 
local coordinate system, the coordinate transformations are required. In this study, the 
origin of the local coordinate system O′, whose coordinate in the global coordinate 
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system is (x0, y0), is established at the intersection point of crack and finite domain, as 
shown in Fig. 6, and the included angle between the x-axis of the local coordinate system 
and the global coordinate system is θ (the positive rotation is counter-clockwise). 

2a

x'y'

θ

x

y

O'(x0,y0)

 
Figure 6:  Transformation of overall-local coordinate 

After the stress σx、σy and τxy of the uncracked body under global coordinate system are 
obtained from Eq. (15), a stress transformation needs to be done to change the global 
stress into local stress  σ′x, σ′y and τ′xy, as shown below. 

[ ]
'

' =

'

x x

y y

xy xy

σσ

σσ

ττ

   
   
   
   
   

λ   (25) 

where [λ] is a transposed matrix as follow 

[ ]

2 2

2 2

  cos             sin            sin 2  

=   sin              cos        sin 2

sin cos     sin cos      cos 2

θ θ θ

θ θ θ

θ θ θ θ θ

−

−

 
 
 
 
 

λ   (26) 

The stresses and displacements on all the boundaries of Ω are obtained from Eq. (22). 
Since [ ]K  is established under the local coordinate system, so the global coordinate of  L2 
must be transformed into local coordinate as follow  

0

0

' cos      sin

' sin    cos

x xx

y y y

θ θ

θ θ

−
=

− −

    
         

  (27) 

where (x, y) is the global coordinate and (x′, y′) is the local coordinate. After Eq. (22) 
being solved, the stress and displacement under local coordinate system are obtained. A 
transformation needs to be done to change the local stress into global stress as follow 
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[ ]-1

'

'

'

x x

y y

xy xy

σσ

σσ

ττ
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   
   
   
   
   

λ   (28) 

cos      -sin '

sin      cos '

u u

v v

θ θ

θ θ
=

     
         

   (29) 

3 Numerical examples 
3.1 Rectangular plate with a slant single-edge crack 
In practical engineering, the cracks are more likely to be appeared as mixed-mode cracks, 
so in this section, a rectangular plate with two opposite edges loaded, subjected to a 
uniformly distributed load of σ=1, as show in Fig. 7, is analyzed. The plate thickness is 
taken to be t=1 and Poisson’s ratio of the material is assumed to be ν=0.2. The modulus 
of elasticity is taken as E=1000 and width and height of plate are W×H=10×25. There is 
a slant edge crack with length a above the bottom edge of plate with a height of H1. The 
included angle between the crack and vertical edge of plate is β. 

σ=1

σ=1

y

x

W=10

a

β

H
1

H
2

H
=2

5

 
Figure 7:  Rectangular plate with a slant single-edge crack 

Firstly, results from the experiment [Hedan, Valle and Cottron (2010)] are used to 
demonstrate the accuracy of the SFBEAM. H1 and H2 are both taken as 12.5. β and a/W 
are assumed as 90° and 2.25, respectively. In the SFBEAM, 320 boundary segments, 160 
fictitious boundary elements and 800 crack segments are used, as shown in Fig. 8. The 
non-dimensional SIF by Eq. (24) using the SFBEAM is 1.425 while the result from the 



 
 
 
Spline Fictitious Boundary Element Alternating Method for Edge                          419 

experiment in literature [Hedan, Valle and Cottron (2010)] is 1.436. The relative error 
compared with the experimental result is 0.77%, which indicates that the SFBEAM is of 
high accuracy. 
Then, influence of the crack angle and crack length on SIF is investigated. Let H1=10 and 
H2=15, different lengths of crack with a/W=0.3~0.6 and different angles of crack with 
β=45°, β=67.5° and β=90° are considered. In order to compare the accuracy, the elements 
and segments of “mirroring method” and “Uniform stresses method” are the same. For 
the former method, the loads on the fictitious crack are symmetric with the loads on the 
real crack obtained by SFBEM. For the latter method, the loads on the fictitious crack are 
supposed to be 1. Reference solutions from Chinese Aeronautical Establishment [Chinese 
Aeronautical Establishment (1981)] are used. The non-dimensional SIFs calculated by Eq. 
(24) with a0=a is shown in Tab. 1, Tab. 2 and Tab. 3. 
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Figure 8:  Layout of fictitious boundary 
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Table 1: Non-dimensional stress intensity factor FI and FII with different crack lengths 
when β=45° 

Non-
dimensional 

SIFs 
a/W Reference 

solutions SFBEAM 
Relative 

error 
(%) 

Mirroring 
method 

Relative 
error 
(%) 

Uniform 
stresses 
method 

Relative 
error 
(%) 

FI 

0.30 0.880 0.880 0.030 0.920 4.545 0.914 3.864 
0.35 0.940 0.943 0.295 0.959 2.021 0.960 2.128 
0.40 1.010 1.016 0.612 1.002 0.792 1.005 0.495 
0.45 1.100 1.102 0.192 1.052 4.364 1.051 4.455 
0.50 1.190 1.203 1.065 1.107 6.975 1.095 7.983 
0.55 1.310 1.321 0.809 1.162 11.298 1.135 13.359 
0.60 1.439 1.459 1.422 1.212 15.775 1.168 18.833 

FII 

0.30 0.443 0.442 0.160 0.283 36.025 0.554 25.056 
0.35 0.473 0.469 0.848 0.301 36.364 0.573 21.142 
0.40 0.504 0.500 0.817 0.319 36.706 0.593 17.659 
0.45 0.536 0.535 0.118 0.338 36.901 0.615 14.739 
0.50 0.571 0.576 0.888 0.358 37.303 0.637 11.559 
0.55 0.612 0.623 1.766 0.379 38.072 0.660 7.843 
0.60 0.664 0.677 1.907 0.399 39.910 0.681 2.560 

Table 2: Non-dimensional stress intensity factor FI and FII with different crack lengths 
when β=67.5° 

Non-
dimensional 

SIFs 
a/W Reference 

solutions SFBEAM 
Relative 

error 
(%) 

Mirroring 
method 

Relative 
error 
(%) 

Uniform 
stresses 
method 

Relative 
error 
(%) 

FI 

0.30 1.440 1.411 2.008 1.340 6.944 1.260 12.500 
0.35 1.580 1.563 1.106 1.451 8.165 1.314 16.835 
0.40 1.780 1.748 1.811 1.573 11.629 1.359 23.652 
0.45 2.010 1.975 1.718 1.700 15.418 1.392 30.746 
0.50 2.280 2.258 0.969 1.829 19.781 1.412 38.070 
0.55 2.620 2.613 0.270 1.946 25.725 1.418 45.878 
0.60 3.070 3.067 0.095 2.037 33.648 1.411 54.039 

FII 

0.30 0.341 0.334 2.082 0.225 34.018 0.442 29.619 
0.35 0.370 0.364 1.622 0.241 34.865 0.456 23.243 
0.40 0.403 0.400 0.821 0.257 36.228 0.470 16.625 
0.45 0.442 0.442 0.050 0.272 38.462 0.484 9.502 
0.50 0.494 0.493 0.119 0.286 42.105 0.498 0.810 
0.55 0.565 0.556 1.604 0.297 47.434 0.510 9.735 
0.60 0.657 0.634 3.531 0.304 53.729 0.522 20.548 
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Table 3: Non-dimensional stress intensity factor FI with different crack lengths when 
β=90° 

Non-
dimensional 

SIFs 
a/W Reference 

solutions SFBEAM 
Relative 

error 
(%) 

Mirroring 
method 

Relative 
error 
(%) 

Uniform 
stresses 
method 

Relative 
error 
(%) 

FI 

0.30 1.680 1.651 1.749 1.604 4.524 1.203 28.393 
0.35 1.880 1.852 1.496 1.786 5.000 1.234 34.362 
0.40 2.130 2.102 1.305 2.005 5.869 1.256 41.033 
0.45 2.450 2.416 1.368 2.265 7.551 1.269 48.204 
0.50 2.825 2.817 0.290 2.568 9.097 1.272 54.973 
0.55 3.300 3.337 1.121 2.911 11.788 1.269 61.545 
0.60 4.030 4.031 0.016 3.272 18.809 1.264 68.635 

It can be seen from above that, the calculation results are very far from the reference 
solutions when using the uniform stresses to simulate the fictitious crack loads. The 
results by using mirroring method is better than those by using uniform stresses method, 
but the maximum error of FI is still up to 18.809% and the error of FII is even up to 
53.729%, which means that the accuracy of the mirroring method has not been reached 
expected. The maximum error of results calculated by SFBEAM are only 2.008%, most 
of which are below 1%, proving the advantages of SFBEAM. In addition, it can be found 
that the relative errors of the two methods increase with the increase of the crack lengths, 
while the results of SFBEAM agree well with the reference solutions. What is more, it is 
obviously that when the length of the crack increases, the value of non-dimensional SIFs 
FI and FII will increase, and when the crack length remains unchanged and the angle β 
increases, FI will increase and FII will decrease until FII to be zero when β=90°. 
After discussing the influence of crack angle and crack length on the SIF, the position of 
the crack becomes another interesting topic. Suppose the length and angle of crack are 
a=4, β=45° and β=67.5°, respectively. H1 is changed from 5 to 20 with an interval of 2.5. 
The above three methods are also used to solve the problem. The results are shown in 
Tab. 4 and Tab. 5.  
It can be seen from to Tab. 4 and Tab. 5 that, the values obtained by SFBEAM agree well 
with those of reference solutions, while the results obtained by mirroring method and 
uniform stresses method have large difference. When H1<15, the values of non-
dimensional SIFs FI and FII almost show no change，but when H1>15, the values of FI 

increase sharply as H1 increases, while the values of FII decrease as H1 increases. 
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Table 4: Non-dimensional stress intensity factors with different crack position when 
β=45° 

Non-
dimensional 

SIFs 
H Reference 

solutions SFBEAM 
Relative 

error 
(%) 

Mirroring 
method 

Relative 
error 
(%) 

Uniform Relative 
error 
(%)[3] 

stresses 
method 

FI 

5.00 1.018 1.016 0.149 0.996 2.115 1.047 2.898 

7.50 1.018 1.016 0.149 1.001 1.623 1.044 2.603 

10.00 1.018 1.016 0.149 1.005 1.230 1.002 1.525 

12.50 1.019 1.018 0.063 0.997 2.125 1.053 3.373 

15.00 1.037 1.036 0.122 1.004 3.207 1.092 5.277 

16.25 1.075 1.074 0.093 1.025 4.651 1.150 6.977 

17.50 1.174 1.173 0.044 1.083 7.713 1.268 8.052 

18.75 1.418 1.419 0.071 1.197 15.585 1.542 8.745 

20.00 2.106 2.118 0.564 1.333 36.708 2.153 2.226 

FII 

5.00 0.509 0.503 1.159 0.594 16.723 0.337 33.779 

7.50 0.506 0.500 1.091 0.592 17.109 0.337 33.335 

10.00 0.506 0.500 1.091 0.593 17.306 0.319 36.896 

12.50 0.505 0.500 1.036 0.590 16.778 0.338 33.100 

15.00 0.502 0.497 0.966 0.585 16.569 0.339 32.449 

16.25 0.496 0.491 1.008 0.577 16.331 0.336 32.258 

17.50 0.483 0.478 1.024 0.564 16.783 0.325 32.705 

18.75 0.450 0.445 1.098 0.538 19.571 0.291 35.325 

20.00 0.340 0.336 1.236 0.508 49.321 0.182 46.503 
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Table 5: Non-dimensional stress intensity factors with different crack position when 
β=67.5° 

Non-
dimensional 

SIFs 
H Reference 

solutions SFBEAM 
Relative 

error 
(%) 

Mirroring 
method 

Relative 
error 
(%) 

Uniform Relative 
error 
(%) 

stresses 
method 

FI 

5.00 1.760 1.759 0.072 1.387 21.205 1.631 7.344 
7.50 1.755 1.749 0.337 1.373 21.762 1.652 5.864 

10.00 1.755 1.748 0.394 1.359 22.560 1.573 10.366 
12.50 1.756 1.749 0.385 1.352 22.996 1.659 5.511 
15.00 1.762 1.756 0.323 1.353 23.198 1.694 3.842 
16.25 1.779 1.773 0.347 1.358 23.672 1.739 2.258 
17.50 1.826 1.820 0.344 1.365 25.258 1.820 0.344 
18.75 1.948 1.937 0.572 1.378 29.266 1.983 1.789 
20.00 2.258 2.257 0.027 1.382 38.785 2.263 0.239 

FII 

5.00 0.427 0.424 0.724 0.501 17.305 0.278 34.909 
7.50 0.406 0.402 1.107 0.482 18.574 0.274 32.595 

10.00 0.404 0.400 0.911 0.470 16.430 0.257 36.335 
12.50 0.404 0.399 1.159 0.470 16.430 0.270 33.115 
15.00 0.398 0.394 1.084 0.465 16.741 0.267 32.968 
16.25 0.388 0.383 1.258 0.459 18.335 0.261 32.711 
17.50 0.360 0.355 1.299 0.444 23.446 0.241 32.994 
18.75 0.294 0.290 1.341 0.414 40.844 0.194 34.001 
20.00 0.146 0.144 1.644 0.370 152.720 0.091 37.845 

3.2 Eccentric tension square plate with an edge crack 
A square plate is subjected to two uniformly distributed loads of σ=1, as show in Fig. 9. 
The plate thickness is assumed to be t=1. Poisson’s ratio of the material and the modulus 
of elasticity are taken as ν=0.2 and E=1000, respectively. The width and height of plate 
are 2b × 2H=20 × 20. There is a horizontal middle edge on the plate left edge. The 
distributing length of uniform loads is d.  
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Figure 9:  Eccentric tension square plate with an edge crack 

The length of the uniform force distribution is considered to be d/2b=0.7 and d/2b=0.3. In 
each situation, different lengths of crack a/2b=0.1~0.8 are considered. For the purpose of 
investigating the efficiency of SFBEAM, the XFEM is also used, and the CPU time 
elapsed by the two methods is recorded respectively. Reference solutions from Chinese 
Aeronautical Establishment [Chinese Aeronautical Establishment (1981)] are used. Non-
dimensional SIF can be solved as follow 

I
I

/ 2

K
F

d a bσ π
=   (30) 

In SFBEAM, 160 boundary segments, 80 fictitious boundary elements and 800 crack 
segments are used, as shown in Fig. 10. In XFEM, 800×800 4-node quadrilateral 
elements are used. The results are shown in Tab. 6. 

a

20 elements

20
 e

le
m

en
ts

20 elements

20
 e

le
m

en
ts

40 segments

40
 se

gm
en

ts

40 segments

40
 se

gm
en

ts

d=0.5

 
Figure 10:  Layout of fictitious boundary 
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Table 6: Non-dimensional stress intensity factor FI with different length of the uniform 
force distribution 

d/2b a/W Reference 
solutions SFBEAM 

Relative 
error 
(%) 

Computing 
time (s)  

XFEM 
Relative 

error 
(%) 

Computing 
time (s)  

0.7 

0.1 1.950 1.948 0.113 10.957 1.954 0.197 43.425 
0.2 2.310 2.306 0.182 10.964 2.309 0.054 45.044 
0.3 2.820 2.816 0.146 10.966 2.817 0.124 47.295 
0.4 3.480 3.479 0.030 10.986 3.475 0.132 49.345 
0.5 4.400 4.410 0.230 11.007 4.400 0.006 52.294 
0.6 5.920 5.933 0.219 10.972 5.910 0.164 54.994 
0.7 8.880 8.914 0.380 10.961 8.863 0.196 56.314 
0.8 16.200 16.261 0.377 10.985 16.146 0.334 59.494 

0.3 

0.1 4.090 4.072 0.432 10.985 4.083 0.160 43.275 
0.2 4.430 4.423 0.162 10.955 4.426 0.085 44.974 
0.3 4.920 4.928 0.160 10.975 4.926 0.118 46.991 
0.4 5.520 5.571 0.919 10.955 5.572 0.947 49.571 
0.5 6.570 6.585 0.222 10.947 6.564 0.094 52.082 
0.6 8.390 8.415 0.303 10.962 8.377 0.156 54.867 
0.7 12.200 12.245 0.371 10.982 12.168 0.266 57.028 
0.8 21.800 21.896 0.441 10.950 21.734 0.303 59.782 

Tab. 6 shows that the results obtained by these two methods agree well with reference 
solutions. The maximum error of XFEM is 0.947%, while that of SFBEAM is 0.919%. 
But the computing time of SFBEAM is about 11 s, while that of XFEM is more than 43 s. 
Besides, with the change of crack length, the computing time changes very small, shows 
little effect by the crack length. The XFEM has low efficiency, and the computing time 
increases as the crack length increases, which means the calculation time is greatly 
influenced by the crack length. 

3.3 Square plate with an edge crack under complex boundary conditions 
The accuracy of SFBEAM to solve the crack problem with mixed boundary conditions is 
considered in this example. A square plate with left edge fixed and right one slide-
supported, subjected to a uniformly distributed load of σ=1 on top edge, as shown in Fig. 
11, is analyzed. The plate thickness is taken to be t=1 and Poisson’s ratio of the material 
is assumed to be ν=0.2. The modulus of elasticity is assumed as E=1000 and the size of 
plate is 2W=20. There is a horizontal edge crack with length a at the middle of right edge 
of plate. 
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Figure 11:  Square plate with an edge crack under complex boundary conditions 

The length of crack is a/W=0.1~0.7. In SFBEAM, 200 boundary segments, 100 fictitious 
boundary elements and 1200 crack segments are used, as shown in Fig. 12. Abaqus is 
conducted to obtain the reference solutions of the problem, 1/4 singularity elements are 
used close to the crack tip and 7492 elements are taken for calculation. The results are 
shown in Tab. 7. 
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Figure 12:  Layout of fictitious boundary 
Table 7: Non-dimensional stress intensity factor FI with different crack lengths 

a/W Reference solutions SFBEAM Relative error (%) 

0.1 0.519  0.518  0.245  
0.2 0.536  0.535  0.123  
0.3 0.563  0.562  0.042  
0.4 0.598  0.598  0.042  
0.5 0.640  0.640  0.008  
0.6 0.686  0.686  0.072  
0.7 0.736  0.736  0.008  

Tab. 7 shows that the difference of values of the SIF obtained by the two methods is very 
small, which proves the effectiveness of SFBEAM in solving the problems with complex 
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boundary condition. And high accuracy can be achieved with small degrees of freedom in 
SFBEAM. Therefore, the proposed method is superior to solve the crack problem than 
conventional FEM with lots of freedom of degrees. It can be found that, due to the 
constraint of the boundary displacement, the values of SIF increase slowly with the 
increase of the crack length. 

3.4 Circular plate with a side crack subjected to uniform load 
There is the horizontal edge crack loaded by constant normal σ=1 or constant shear 
traction τ=1 on the left of a circular plate, as shown in Fig. 13. The plate thickness is 
taken as t=1 and Poisson’s ratio of the material is assumed to be ν=0.2. The modulus of 
elasticity is assumed as E=1000 and the size of plate is R=10. The length of crack is a.  

x

y
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a

σ=1

τ=1

 
Figure 13:  Circular plate with a side crack subjected to uniform load 

In SFBEAM, 204 boundary segments, 102 fictitious boundary elements and 800 crack 
segments are used, as shown in Fig. 14. The results with different length of crack are 
obtained, and reference solutions from references [Chinese Aeronautical Establishment 
(1981)] and [Fett (2002)] are used. The results are shown in Tab. 8 and Tab. 9.  
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Figure 14:  Layout of fictitious boundary 

 
 



 
 
 
428  Copyright © 2018 Tech Science Press           CMES, vol.116, no.3, pp.407-431, 2018 

Table 8: Non-dimensional stress intensity factor FI when σ=1 

a/R Reference 
solutions SFBEAM Relative error (%) 

0.125 1.230 1.228 0.195 
0.250 1.368 1.360 0.585 
0.375 1.530 1.523 0.464 
0.500 1.720 1.719 0.088 
0.625 1.960 1.960 0.006 
0.750 2.260 2.263 0.150 

Table 9: Non-dimensional stress intensity factor FII when τ=1 

a/R Reference 
solutions SFBEAM Relative error (%) 

0.125 1.127 1.128 0.248 
0.250 1.143 1.156 1.148 
0.375 1.167 1.183 1.375 
0.500 1.199 1.213 1.194 
0.625 1.237 1.247 0.810 
0.750 1.282 1.287 0.358 

Comparing the results obtained by different methods, it is found that the maximum error 
of FI is only 0.585%, and the maximum deviation of FII is only 1.375%, which shows that 
the SFBEAM has high accuracy and is applicable to the problems with loads on the crack.  

4 Conclusion 
In this paper, the spline fictitious boundary element alternating method (SFBEAM) for 
solving the edge crack problem is presented with the combination of the SFBEM and the 
Muskhelishvili’s solutions based on the infinite domain. Compared with other alternating 
methods, Because the SFBEM and Muskhelishvili’s solutions are formulated in the 
infinite domain, no special treatments are needed for solving the problem of edge crack. 
Besides, with the locally thickened technique close to the crack tip meshes, the solving 
efficiency is improved. The SIF solutions of a rectangular plate with a slant single-edge 
crack and an eccentric tension square plate with an edge crack are discussed. The 
advantage of high precision of the SFBEAM is verified compared with other two 
alternative methods and the advantage of high efficiency of SFBEAM is verified 
compared the extended finite element method using their CPU results. In addition, the 
method is also applied to solve a square plate with an edge crack under mixed boundary 
conditions and a circular plate with a side crack subjected to uniform load on the crack 
surface, and the results show that the method is of high accuracy and have the strong 
adaptability to the mixed boundary conditions edge crack problems. 
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