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Abstract: In coronary artery bypass grafting (CABG), graft’s poor instant patency may 

lead to an abnormal hemodynamic environment in anastomosis, which could further 

cause graft failure after the surgery. This paper investigates the graft hemodynamics with 

different instant patency, and explores its effect on graft postoperative efficiency. Six 

CABG 0D/3D coupling multi-scale models which used left internal mammary artery 

(LIMA) and saphenous vein (SVG) as grafts were constructed. Different types of grafts 

were examined in the models, including normal grafts, grafts with competitive flow and 

grafts with anastomotic stenosis. Simulation results indicated that comparing with SVG 

grafts, there was a greater difference between normal LIMA graft and non-patent LIMA 

graft. Also, the backflow occurred even in LIMA systolic flow. The wall shear stress 

(WSS) in the graft of the competitive flow LIMA model had an appreciable decrease 

comparing with the normal graft. In addition, the WSS in the stenosis region of the 

anastomotic stenosis LIMA model was much higher than its adjacent regions. In contrast, 

the WSS distributions in the SVG models were much smoother than in the LIMA models. 

For oscillatory shear index (OSI), there was little difference between normal LIMA and 

SVG. But when the graft had competitive flow or anastomotic stenosis, much higher OSI 

occurred in some regions in LIMA than SVG. There are significant differences in 

hemodynamics between normal grafts and non-patent grafts both in LIMA and SVG. The 

hemodynamic environment in a normal LIMA is better than that in a normal SVG. 

However, in the situation of the two types of non-patent grafts, the hemodynamics of 

SVG is better than LIMA. 
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1 Introduction 

Coronary artery bypass grafting (CABG) is a common surgery to cure coronary heart 

disease [Beck (1935); Vineberg (1948)]. The graft bypasses the coronary stenosis and 

supplies blood to the distal coronary. This surgery could decrease the risk of myocardial 

ischemia. However, as a common postoperative problem, the graft’s poor instant patency 
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will reduce the surgical effect and lead to a new revascularization. Instant patency means 

the graft’s ability to supply the blood when it is just anastomosed. Currently, surgeons 

use transit time flow-meter (TTFM) to measure every graft’s flow wave after the surgery 

to predict graft’s patency [Acipayam, Uncu, Taraktas et al. (2015); Handa, Orihashi, 

Nishimori et al. (2016); Lehnert, Møller, Damgaard et al. (2015)]. Low average flow rate, 

high pulsating index and low diastolic velocity time integral fraction would indicate a 

poor instant patency of a graft [Tokuda, Song, Ueda et al. (2007); Kim, Chang and Lim 

(2005); Papadopoulou, Spengos, Papapostolou et al. (2006)]. 

The causes of a graft’s poor instant patency could have two aspects; one is the anastomotic 

stenosis and the other is competitive flow [Sabik, Lytle, Blackstone et al. (2003); Pagni, 

Storey, Ballen et al. (1997)]. The anastomotic stenosis is often caused by operation errors, 

and can be corrected by removing the graft and redoing the surgery. The competitive flow 

happens because of non-severity stenosis on native coronary artery, which also has the 

ability to supply blood to distal coronary artery. The blood from the native coronary artery 

“competes” the blood from the graft and makes the graft flow decrease. The competitive 

flow will make the graft non-patency and cause so called “string phenomenon” if it is 

serious. The non-patency caused by competitive flow could not be corrected by redoing the 

surgery, and thus it requires choice of another surgery strategy [Villareal and Mathur 

(2000); Barner (1974); Seki, Kitamura, Kawachi et al. (1992)].  

Hemodynamics is the key factor to influence the graft patency. Graft failure is mainly 

caused by atherosclerosis and intimal hyperplasia [Whittemore, Clowes, Couch et al. 

(1981); Butany, David and Ojha (1998)], and risk hemodynamic factors are seen as the 

most important factor to trigger them [Bassiouny, White, Glagov et al. (1992); Hofer, 

Rappitsch, Perktold et al. (1996)]. In end-to-side anastomotic structure, researches show 

that intimal hyperplasia mostly occurs in the heel of anastomosis, the graft bottom and 

the toe of anastomosis where the disturbed flow is serious [Sottiurai, Yao, Batson et al. 

(1989); Ojha, Cobbold and Johnston (1994)]. The hemodynamic risk factors include low 

wall shear stress (WSS), high wall shear stress gradient (WSSG) and high oscillatory 

shear index (OSI). Based on these facts, the objective of this paper is to study the 

hemodynamics in graft anastomosis with variable instant patency, and explore the effects 

to the postoperative graft efficiency. 

Due to the complex condition in realistic surgery, it is dangerous and not ethical to take the 

experiment in patients. For this reason, the present study is designed to construct CABG 

models and uses numerical calculation approaches. In order to focus on details of surgery 

spot and provide an accurate boundary condition at the same time, the multi-scale model is 

considered for this study [Sankaran, Esmaily, Kahn et al. (2012); Taylor, Fonte and Min 

(2013)]. The general approach of the multi-scale modeling is to couple different 

dimensional models, such as 0D and 3D models, which have been used in examining 

hemodynamics and its effectiveness previously by our group [Zhao, Liu, Li et al. (2015); Li, 

Liu, Zhao et al. (2016); Mao, Wang, Zhao et al. (2016); Wang, Mao, Wang et al. (2016)]. 

The left anterior descending branch (LAD) stenosis was chosen for modeling and left internal 

mammary artery graft (LIMA) and saphenous vein graft (SVG) were investigated. Based on 

the two grafts, three types of CABG models with different graft patency were constructed. 
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2 Method 

2.1 Construction of 3D CABG model 

In this study, a 3D model of a coronary system with an aortic arch was reconstructed 

from CT data. The CT data was from a 55 years old male patient whose cardiac output 

was 4.6 L/min, systolic pressure was 147 mmHg and diastolic pressure was 103 mmHg. 

The CT image had 460 slices, 512*512 pixels in each slice. The distance of two adjacent 

slices was 1mm. The Mimics software was used to complete the 3D reconstruction of CT 

images, and distinguish the coronary and aortic arch regions by thresholding 

segmentation. The Freeform software was used to smooth the model and complete the 

LIMA bypass grafting as well as the SVG bypass grafting. The LIMA diameter was set 

as 3 mm and the SVG diameter as 5 mm. The anastomosis position and angle of the 

LIMA and SVG grafts met the surgeon’s suggestion. Based on the two types of grafts, 

three types of models were built, including a normal model with LAD stenosis rate of 

90%, a competitive flow model with LAD stenosis rate of 50% and an anastomotic 

stenosis model with anastomotic stenosis rate of 50% according to a 90% stenosis in 

LAD. Finally, there are six reconstructed 3D models shown as Fig. 1 and Fig. 2. 

 
Figure 1: LIMA Bypass grafting models which include the Normal model, Competitive 

flow model and Anastomotic stenosis model 
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Figure 2: SVG Bypass grafting models which include the Normal model, Competitive 

flow model and Anastomotic stenosis model 

These six models were meshed by ANSYS ICEM CFD software. All of these models 

used the hexahedral meshing method and passed sensitivity analysis. Fig. 3 shows the 

meshes in one of these models, and the number of nodes and elements are listed in Tab. 1. 

In this simulation, the vessel wall was set up as rigid wall which was impermeable and 

non-slip. The blood material property was set up as incompressible Newtonian fluid, for 

which the density was 1050 kg/m3 and the dynamic viscosity was 0.0035 Pa s. 

                       Table 1: The nodes and elements numbers of the 3D models 

  Normal 

Competitive 

Flow Anastomotic Stenosis 

LIMA_Nodes 925067 903525 1045646 

LIMA_Elements 1213895 1185850 1371228 

SVG_Nodes 919067 893954 1017850 

SVG_Elements 1205731 1177347 1372429 

 2.2 The lumped parameter model 

Based on the similarity of blood vessel network and circuit network, the complex vessel 

system can be simplified as lumped parameter model. The solution of the lumped 

parameter model is based on solving the differential-algebraic equations controlled by 
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Kirchhoff’s law. In the construction of the lumped parameter model, blood pressure, 

blood flow, flow resistance, vessel elasticity and inertia are simulated by voltage, current, 

resistance, capacitance, and inductance in the circuit, respectively. Some special 

components, such as diode and variable capacitance, could simulate the heart valve and 

ventricular motion. The lumped parameter model overcomes the shortcomings of the 3D 

model and can simulate a wider range of blood circulation systems [Abdi, Karimi, 

Navidbakhsh et al. (2015); Taylor and Draney (2004)]. 

The structure of the lumped parameter model in this study was come up with Taylor 

[Taylor, Fonte and Min (2013)], and had been used often before. Based on the patient’s 3D 

model, this study constructed a lumped parameter model shown as Fig. 4. This model 

mainly contained three parts, including cardiac part, systemic vessel part and coronary part. 

 
Figure 3: The mesh in the LIMA_Normal 3D model  

As for cardiac part, a constant power source was used to simulate the left atrium pressure, 

two diodes were used to simulate mitral and aortic valves, the resistance and the 

inductance were used to simulate the blood resistance and inertia which flow through the 

valves. Variable capacitance C(t) was used to simulate the contraction of the left ventricle. 

The value is shown below: 

                                                                                                                         (1) 

Among the function (1), E(t) is a time-varying elastance which is calculated by:      
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                                                                           (2) 

In function (2), is a normalized time-varying elastance [Stergiopulos, Meister and 

Westerhof (1996)]. 

                                                                              (3) 

In the above function, , ,  is a cardiac cycle. In this study, 

it made the following settings: =2.0, = 0.002458, =0.8 s. The systolic period 

was 0~0.3s, the diastolic period was 0.3~0.8 s. 

 

Figure 4: The lumped parameter model which contains Cardiac part, Systemic vessel 

part and Coronary part. LAD represents Left anterior descending branch, LCX represents 

Left circumflex branch and RC represents Right coronary artery 

For the systemic vessel part, the proximal resistance represented arterial flow resistance, 

the distal resistance represented venous and microcirculation resistance, the capacitance 

represented the vascular elasticity. 

For the coronary part, in coronary trunk (LAD, LCX, RC), its resistance, inductance and 

capacitance represented the flow resistance, flow inertia and vessel elasticity in coronary 
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artery, respectively. While in coronary branch (a-n), its resistances from front to back 

represented coronary artery flow resistance, microcirculation resistance and coronary 

vein flow resistance. Its proximal capacitance represented coronary artery elasticity; 

distal capacitance represented the microcirculation elasticity. A power source whose 

value was linked to left ventricular pressure was connected to the distal capacitance. 

The values of this lumped parameter model’s components were chosen based on Kim’s 

study [Kim, Vignonclementel, Coogan et al. (2010)], and were adjusted using genetic 

algorithm to make the cardiac output, systolic pressure and diastolic pressure of the 

model match realistic data [Li, Wang, Mao et al. (2018)]. The blood flow in every 

coronary branch was adjusted to meet the two principles provided by Kim et al. [Kim, 

Vignonclementel, Coogan et al. (2010)]. Total coronary blood flow accounts for 4% of 

cardiac output, and the blood flow in every coronary branch is proportional to its 

diameter. 

2.3 0D/3D coupling multi-scale model 

After constructing the 3D model and lumped parameter model, the last step was to couple 

them together to form the multi-scale model. Part of the lumped parameter model which 

can be replaced by 3D model was deleted, and the remaining part to the entrance of the 

3D model was connected, as shown in Fig. 5. 

 
Figure 5: 0D/3D coupling multi-scale model 

This study used a specific coupling algorithm and interface conditions to couple the 

lumped parameter model and the 3D model. The 3D model was calculated by ANSYS-

CFX, the lumped parameter was calculated by FORTRAN subroutines based on CFX 
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Junction Box. The data transmission between lumped parameter model and 3D model 

was achieved using CFX User CEL Function. The lumped parameter model provided a 

flow in aorta and pressures in other arteries for 3D model, and the 3D model returned a 

pressure in aorta and flows in other arteries for the lumped parameter model. 

3 Results 

After completing the calculations, hemodynamics of the anastomotic site which is 

encircled by a red circle as shown in Fig. 6 were extracted. The flow waves in distal graft 

section, the WSS and OSI in anastomotic site were extracted. 

 
Figure 6: The anastomotic site which the Hemodynamics are extracted 

3.1 The comparison of flow waves in distal grafts 

The flow waves of distal grafts were extracted. The LIMA flow waves are shown as Fig. 7. 

For the LIMA graft, graft flow rate of the normal model was higher than anastomotic 

stenosis model, but their wave shapes were similar. However, the graft flow shape of 

competitive flow model had a significant difference with the normal model. Except for an 

obvious decrease in diastolic flow, there was even backflow in systolic period. 

The SVG flow waves are shown as Fig. 8. 



 

 

 

The Study of the Graft Hemodynamics with Different Instant Patency                     237 

 

Figure 7: The flow waves in LIMA with different Instant patency 

 

 

Figure 8: The flow waves in SVG with different Instant patency 

For the SVG graft, the graft flow of anastomotic stenosis model was slightly lower than 

the normal model. The graft flow of competitive flow model was similar to the above two 
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in diastolic period, while in systolic period and the interval between systole and diastole 

the flow was significantly different. The peak flow in systolic period was significantly 

lower than that in the normal and the anastomotic stenosis. But in the interval between 

systole and diastole the flow was much higher. Different from the LIMA, there was no 

backflow in the SVG. 

The results for comparing the average flow rates in these six models are shown in Tab. 2. 

It could be seen that the difference between non-patent graft and normal graft in LIMA 

was larger than in SVG. Especially in LIMA competitive flow model, the flow rate 

reduced 38 ml/min compared with the normal model. 

Table 2: The comparison of average flow rate 

  Normal Competitive Flow Anastomotic Stenosis 

LIMA 77 ml/min 39 ml/min 67 ml/min 

SVG 84 ml/min 78 ml/min 78 ml/min 

3.2 The WSS in anastomotic site 

The WSS in anastomotic site were extracted and shown in Fig. 9 and Fig. 10. Based on 

the time corresponding to the graft flow of the normal model, the WSS contours were 

depicted. According to Malek’s studies [Malek, Alper and Izumo (1999)], hemodynamic 

environment is harmful in the region where WSS<0.4 Pa (low WSS region) or WSS>7 Pa 

(high WSS region), it is appropriate in the region where 1 Pa<WSS<7 Pa (appropriate 

WSS region) and it is a transition region where 0.4 Pa<WSS<1 Pa. 

For LIMA, in systolic peak flow time, the normal model graft’s heel was at low WSS 

region while the graft bottom and toe were at appropriate WSS region. In competitive 

flow model, its distal graft was at low WSS region, and its heel and toe had some high 

WSS regions. In anastomotic stenosis model, there was a significant high WSS region in 

stenosis part, and other parts in this model were at appropriate region or transition region. 

In the interval between systole and diastole, the normal model graft’s heel was at low 

WSS region while other parts were at transition region. In competitive flow model, heel, 

graft bottom and toe all had some low WSS regions. In anastomotic stenosis model, 

stenosis part was at high WSS region while other parts were at low WSS region or 

transition region. 

In diastolic peak flow time, the normal model’s WSS distribution was similar to the 

above two models. In competitive flow model, there was a high WSS region in the toe. In 

anastomotic model, it was also similar to the above two models. 

For SVG, in systolic peak flow time, the normal model’s distal graft was at transition 

region, the heel was at low WSS region and there were some high WSS regions in the toe 

part. In competitive flow model, its distal graft was at low WSS region while the toe had 

some high WSS regions. In anastomotic stenosis model, its heel was at low WSS region 

while the toe had some high WSS regions. 

In the interval between systole and diastole, the normal model was at low WSS region. In 

competitive flow model, the heel was at appropriate region while other parts were at 
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transition region. In anastomotic stenosis model, the stenosis part and the toe were at 

transition region, other parts were at low WSS region. 

In diastolic peak flow time, the normal model’s WSS distribution was similar to the 

corresponding one in systolic peak flow time. In competitive flow model, its distal graft 

was at transition region, the heel was at low WSS region and the toe had some high WSS 

regions. In anastomotic stenosis model, WSS distribution was similar to the 

corresponding one in systolic peak flow time. 

 

Figure 9: WSS contours at different times in LIMA 
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Figure 10: WSS contours at Different times in SVG 

3.3 The OSI in anastomotic site 

OSI is an important hemodynamic factor influencing graft patency. High OSI could lead 

to atherosclerosis and intimal hyperplasia. The function of OSI is shown below: 

                                                                                                                 (4) 

n means WSS. 

OSI contours were extracted from these six models, shown in Fig. 11. 
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Figure 11: OSI contours. The above is LIMA Anastomotic site, the below is SVG 

Anastomotic site 

For LIMA, the normal model’s heel was at high OSI region, the competitive flow 

model’s graft bottom had some high OSI regions and the anastomotic stenosis model’s 

toe had some high OSI regions. For SVG, the normal model and the anastomotic stenosis 

model only had high OSI regions in their heel. But in competitive flow model, except for 

heel, there was also a little high OSI region in graft bottom. 

4 Discussion 

4.1 The model selection 

This patient’s model has been often used in the author’s group to study the CABG topic 

[Zhao, Liu, Li et al. (2015); Li, Liu, Zhao et al. (2016); Mao, Wang, Zhao et al. (2016)]. 

In order to maintain consistency of these series of studies, the patient’s model is been 

used again. The LAD is one of the most possible branches that the stenosis could occur 

and can be bypassed by LIMA or SVG, so the LAD is chosen to set the stenosis. 

According to the surgeon’s suggestion, the anastomosis position and angle of the LIMA 

and SVG grafts are set as Fig. 1 and Fig. 2. 

4.2 The distal graft flow 

In a normal situation, both LIMA and SVG graft flows present a double peak flow 

waveform in systole and diastole. Because of the difference in graft diameter and proximal 

anastomosis location, the flow rate of SVG graft is higher than that of LIMA graft. 
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When the graft is not patent, whether due to competitive flow or anastomotic stenosis, the 

decrease of flow rate in LIMA is more than that in SVG. This reflects that the resistance 

to adverse condition in SVG is better than LIMA. It also should be noted that the 

competitive flow influence in LIMA is more significant. Not only the LIMA graft flow 

rate has an obvious decrease, but also the backflow occurs in its systolic period. The 

occurrence of backflow in graft reveals that risk hemodynamics exist in anastomosis, 

which will greatly reduce the life of the graft. 

4.3 WSS in anastomotic site 

By comparing the normal model’s anastomosis WSS in LIMA and SVG, it can be found 

that the whole anastomotic site is at appropriate WSS region except the heel at the time of 

two peak flow. The heel is at anastomosis upstream and its hemodynamics has little 

influence for graft blood supplying. But for SVG, the distal graft WSS is at transition 

region and the toe has some high WSS regions. This means from the perspective of WSS, 

the SVG hemodynamic environment is worse than LIMA when the anastomosis is in 

normal situation. 

However, when the graft instant patency is adverse, the situation has changed. In both of 

the situations which the graft is non-patent, the SVG’s WSS distribution is similar to the 

normal. But for LIMA, when the competitive flow exists, there is a high WSS region in 

the toe at the times of peak flow. And at the time of systolic peak flow, the graft has a big 

area of low WSS. This means when the competitive flow occurs, the whole graft is liable 

to be influenced by adverse hemodynamics, and lead to the graft failure. If there is an 

anastomotic stenosis, the stenosis part may have an obvious high WSS region, which 

could lead to thrombus formation and block the anastomosis. 

In summary, although LIMA’s WSS environment is better than SVG in normal situation, 

the SVG has a better ability to avoid the risk WSS environment when the instant patency 

is adverse. 

4.4 OSI in anastomotic site 

In normal situation, the LIMA and the SVG’s high OSI regions exist in the heel which 

has little influence for graft blood supplying. When the competitive flow exists, LIMA 

graft bottom has a big area of high OSI, while SVG graft bottom only has a small area of 

high OSI. And in anastomotic stenosis situation, there is high OSI region in the toe of 

LIMA, while there is not in SVG. These results also show that when the instant patency 

is adverse, SVG has a better ability to avoid risk OSI environment than LIMA. 

5 Conclusion 

It is found that there are significant differences in hemodynamics between a normal graft 

and non-patent grafts both in LIMA and SVG. In the normal graft, the LIMA 

hemodynamic environment is better than that in SVG. But in non-patent graft, SVG has a 

better ability to avoid the adverse hemodynamic environment. 

These results suggest that surgeries should be performed carefully to avoid instant non-

patency of LIMA. Meanwhile, when the coronary artery has a moderate stenosis, SVG 
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should be used as the graft to avoid the influence of competitive flow. 
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