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Abstract: Although pulsatile ECMO, as novel kinds of ECMO, has been attracted more 

and more attention, the differences of the hemodynamic effects of the pulsatile ECMO on 

the aorta, the cerebral perfusion, and left ventricular work were still under-investigated. 

The aim of this study was to clarify the hemodynamic differences of the cardiovascular 

system between the pulsatile and non-pulsatile VA ECMO. In this study, three ECMO 

support modes, named as “constant flow mode”, “co-pulse mode” and “counter pulse 

mode”, were designed. The computational fluid dynamics (CFD) study was carried out. 

The distribution of the oxygenated blood, the blood velocity vector, the oscillatory shear 

index (OSI), the relative residence time (RRT), the left ventricular external work (EW), 

the equivalent left ventricular afterload (EAL) and the energy loss of cardiovascular 

system (EL) were calculated to compare the hemodynamic differences. The simulation 

results demonstrate that the oxygenated blood under co-pulse mode was easier to perfuse 

into the three braches vessels than that under both other modes. In addition, the ECMO 

under counter pulse mode could also achieve lowest RRT (constant flow mode 220 vs. 

co-pulse mode 132 vs. counter pulse mode 93). Similarly, the ECMO under counter pulse 

mode could significantly reduce the left ventricular external work (co-pulse mode 1.51 w 

vs. constant flow mode 1.44 w and counter pulse mode 1.30 w), left ventricular afterload 

(constant flow mode 1.03 mmHg·s/ml vs. co-pulse mode 1.67 mmHg·s/ml vs. counter 

pulse mode 0.82 mmHg·s/ml) and energy loss of arterial system (constant flow mode 

0.18 w vs. co-pulse mode 0.50 w vs. counter pulse mode 0.16 w). In short, the ECMO 

under counter pulse mode could have advantages to the left ventricular unloading. In 

contrast, the ECMO under co-pulse mode has more benefit to cerebral oxygen perfusion. 

Keywords: pulsatile, non-pulsatile, VA ECMO, hemodynamics, CFD. 

1 Introduction 

Venoarterial Extracorporeal membrane oxygenation (VA ECMO) provided emergency 

mechanical circulatory assistance to patients with cardiogenic shock refractory to medical 

therapies [Extracorporeal Life Support Organization (2013)]. The pulsatile ECMO, which 

could generate pulsatile blood flow by changing the rotational speed of the blood pump, 

was attracted more and more attention, as it could potentially reduce systemic vascular 

resistance, protect the microcirculatory function, as well as improve the catecholamine 

response, splanchnic perfusion, cerebral perfusion, and myocardial blood flow [Guan, 
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Karkhanis, Wang et al. (2010); Trummer, Foerster, Buckberg et al. (2014)]. For instance, 

Adedayo et al. [Adedayo, Wang, Kunselman et al. (2014)] reported that pulsatile ECMO 

could provide more dynamic energy to the circulatory system than non-pulsatile ECMO. 

Wang et al. [Wang, Kunselman, Clark et al. (2015)] demonstrated that the novel pulsatile 

ECMO could achieve better hemodynamic energy transmission. Similarly, Wolfe et al. 

[Wolfe, Strother, Wang et al. (2015)] found that pulsatile flow improved the transmission 

of hemodynamic energy to the patient without significantly affecting the pressure drops 

across the circuit. Although the above-mentioned studies demonstrated that the pulsatile 

ECMO could achieve better performance on energy transmission, its precise hemodynamic 

effects on the aorta, the cerebral perfusion, and left ventricular work were still 

under-investigated.  

Computational fluid dynamic (CFD) has become an important method for clarifying the 

hemodynamic states of ECMO. For instance, Zhang et al. [Zhang, Gao and Chang (2018)] 

studied the distribution of the aortic oxygenated blood under VA ECMO. Gu et al. [Gu, 

Zhang, Gao et al. (2016)] compared the hemodynamic differences between the central 

ECMO and peripheral ECMO, by using CFD approach. Caruso et al. [Caruso, Gramigna, 

Serraino et al. (2015)] studied the influence of aortic outflow cannula orientation on 

aortic blood flow pattern during central ECMO, by using CFD method. Similarly 

Assmann et al. [Assmann, Gül, Benim et al. (2015)] evaluated the hemodynamic 

advantages of novel dispersive aortic cannulas on the distribution of aortic wall shear 

stress. Although CFD approach was widely applied to evaluate and optimize the 

hemodynamic state of ECMO, there was no study on the hemodynamic effects of 

pulsatile ECMO on the aortic hemodynamics, the cerebral perfusion, and the left 

ventricular work. 

In order to study the hemodynamic effects of pulsatile ECMO, numerical studies, based 

on patient-specific arterial geometric model with three different boundary conditions 

(named as “constant flow mode”, “co-pulse mode” and “counter pulse mode”, 

respectively), were conducted. The computational fluid dynamic (CFD) theory was 

employed to calculate the arterial hemodynamic states. The distribution of oxygenated 

blood and deoxygenated blood, the blood velocity vector, oscillatory shear index (OSI), 

relative residence time (RRT), the left ventricular external work (EW), the equivalent left 

ventricular afterload (EAL) and the energy loss of cardiovascular system (EL) were 

chosen as the indicators to evaluate the hemodynamic effect caused by pulsatile ECMO. 

2 Material and methods 

2.1 Arterial model reconstruction 

In order to evaluate the hemodynamic states, a patient-specific arterial model was 

established based on computed tomography angiography (CTA) data, obtained from a 

healthy volunteer. The volunteer was 26-year old healthy man, who was not suffered 

from any cardiovascular disease. The healthy volunteer was chosen to ensure the 

scalability of the study. The model consisted of the ascending aorta, aortic arch, 

brachiocephalic artery, left common carotid artery, left subclavian artery, descending 

aorta and femoral artery (Fig. 1A). Written informed consent was obtained from the 

volunteer for using medical images in the study. The 3D arterial geometric model was 
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constructed by using these data and by using commercial 3D reconstruction software 

MIMICS (Materialise, Belgium). And then, the model was transferred into the 

commercial software Geomagic (Geomagic, USA) to improve its surface quality (Fig. 

1A). 

 

Figure 1: The geometric model of artery system and boundary conditions of three modes. 

1A was the geometric model of arterial system. In the 1A, a denoted the ascending aorta, 

b represented the brachiocephalic artery, c was the left common carotid artery, d denoted 

the left subclavian artery, e and f represented the left and right femoral artery. 1B 

illustrated the boundary condition of constant flow mode; 1C showed the boundary 

condition of co-pulse mode, 1D illustrated the boundary condition of counter pulse mode 

2.2 Meshing generation  

The arterial geometric models were meshed by using the commercial package Hexpress 

(NUMECA, Belgium), which could generate high quality unstructured hexahedral grids, 

and then sent into CFD package FLUENT (ANSYS, Canonsburg, PA, USA). In order to 

determine the appropriate numbers of elements for this model, grid independency tests, 

targeting the blood velocity contour as measures, were conducted. The results confirmed 

that 2.4 million hexahedral elements are sufficient for this study. In order to obtain more 
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accuracy results, 12 boundary layers, in which the stretching ratio was 1.2, were 

employed (Fig. 2). 

 

Figure 2: The optimal mesh, nearly 2.4 million elements. 2A shows the hexahedral grids 

of the geometric model; 2B illustrated the boundary layers 

2.3 Numerical approaches 

The flow was governed by the mass and momentum conservation for incompressible 

fluid, known as the Continuity and Navier-Stokes Eqs.  (1) and  (2) [Kabinejadian, Chua, 

Ghista et al. (2010)]. 

                                        (1) 

                   (2) 

where uu  was blood velocity,  represented the time, and  denoted the blood pressure, 

 and  was the density and the dynamic viscosity of the blood, respectively. The Eqs.  

(1) and (2) were solved by ANSYS/Fluent 16.2, in which the finite volume-based 

pressure-correction algorithm and second-order upwinding scheme were selected. 

2.4 Boundary conditions 

According to the clinical practice, the hemodynamic states of artery under pulsatile and 

non-pulsatile ECMO were study. In all studies, the left femoral artery was chosen as the 

inlet, to where the outflow cannula of ECMO was inserted. And the diameter of the 

ECMO outflow cannula was assumed to be the same with that of left femoral artery. The 

non-pulsatile ECMO, which is the conventional ECMO used in the clinical practice, was 

used as the reference. In the non-pulsatile mode, the physiological velocity data (mean 

flow rate was 1 L/min) was used as the boundary of aortic root. And a constant flow rate, 

which was set as 3 L/min, was used as the inlet boundary condition of ECMO (Fig. 1B). 

For pulsatile ECMO, there are two types, named as co-pulse mode and counter pulse 

mode, were designed. For co-pulse mode, the blood flow from ECMO synchronized with 

the physiological blood flow jetted from aortic root (Fig. 1C). In addition, the blood flow, 

jetted from counter pulse ECMO, has 180 degree phase delay with the physiological 

blood flow, pumped from aortic root (Fig. 1D). In three studies, the physiological blood 

flow was derived from a lumped parameter model, of which the accuracy is validated by 
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clinical data [Gao, Chang, Xuan et al. (2013)]. To mimic the physiological condition of 

patient, supported by ECMO, the mean value of blood flow, imposed at the aortic root, 

was reduced to 1 L/min. Under co-pulse ECMO case, the blood flow, jetted from ECMO, 

was denoted as the Eq. (3). 

            (3) 

Where  was the blood flow, whose unit was L/min.  represented the 

cardiac cycle,  was the time step. The second mode was named as counter pulse mode. 

In this mode, the blood flow, jetted from ECMO, had 180 degree phase delay with the 

blood flow pumped from aortic root. It was denoted as the Eq. (4). 

            (4) 

Where  was the blood flow, jetted from ECMO. It unit was L/min. The 

third mode was named as constant flow mode, in which the blood flow, jetted from 

ECMO, was set at 3 L/min. Moreover, the constant blood pressure, used as the boundary 

conditions, was imposed at the outlet of three branch vessels (80 mmHg) and the left 

femoral artery (70 mmHg) [Yu, Liu, Wong et al. (2016)]. And the cardiac cycle was set 

to 0.8 s. 

2.5 Calculation settings 

The blood was assumed as the incompressible, homogeneous and Newtonian fluid, of 

which the viscosity and density is set 0.0035 Pa•s [Khalafvand, Ng, Zhong et al. (2012)] 

and 1050 kg/m3 [Zhao, Liu, Bai et al. (2012)], respectively. The cardiac cycle was set to 

be 0.8 s and the time step was 0.01 s. According to the geometric size of the geometric 

model, the blood density and the peak systolic velocity of blood, the peak systolic 

Reynolds number Re was larger than 3500. Hence, the SST k-w turbulence model, which 

was confirmed to fit for illustrating the turbulence flow states in the aorta [Cheng, Tan, 

Riga et al. (2010)], was used in this study. The backward Euler implicit time integration 

algorithm was employed with a fixed time step (0.01 s). 5 cardiac cycles were calculated 

to eliminate the effect of initial conditions and the hemodynamic parameters in the 5th 

cardiac cycles were extracted for hemodynamic analysis. The convergence criterion in 

this study was set to be 10-3. 

2.6 Hemodynamic analysis 

In order to evaluate the hemodynamic differences between pulsatile and non-pulsatile 

ECMO, OSI, RRT, EW, EAL and EL were calculated in this study. The EW was an 

important factor for quantifying the left ventricular load [Gao, Chang, Xuan et al. (2013)]. 

It was described as the Eq. (5)   

            (5) 

Where  was the external work of the left ventricle (watts),  represented 

the pressure at the aortic root (mmHg),  denoteed the cardiac output (L/min). 

According to Moscato’s work, the left ventricular EAL, which was an important factor 
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for evaluating the left ventricular afterload, was the ratio of the instantaneous aortic 

pressure and cardiac output. It denoted as the Eq. (6) 

              (6) 

Where  was the equivalent afterload of the left ventricle (mmHg·s/ml),  

represented the cardiac cycle (s),  denoted the instantaneous aortic pressure 

(mmHg),  was the instantaneous cardiac output (ml/s). 

Energy loses (EL) was a very important factor, which reflected the efficiency of energy 

transmission. According to the theory of conservation of hemodynamic energy, the EL 

was described as the equation  

     (7) 

Where  represented the energy lose (watts),  represented the pressure at the 

aortic root (mmHg),  denoted the cardiac output (L/min),  described the 

pressure at the inlet of left femoral artery (mmHg),  represented the blood flow at the 

inlet of left femoral artery (L/min),  and  were the pressure (mmHg) and blood 

flow (L/min) of three branches vessel and left femoral artery,  included the brachiocephalic 

artery, left common carotid artery, left subclavian artery and left femoral artery. 

OSI was defined as the equation  

              (8) 

RRT [Rikhtegar, Knight, Olgac et al. (2012)] was defined as the Eq. (9)   

  
(9)   

3 Results 

In order to evaluate the hemodynamic differences between pulsatile ECMO and 

non-pulsatile ECMO on artery system, the distribution of OSI, RRT and the change in 

EW and EL respect time steps were shown in Figs. 3-7. Four special time points (0.10 s, 

0.15 s, 0.2 s and 0.60 s) were chosen to evaluate hemodynamic states. 0.10 s was the time 

point, when the blood begins to jet from the aortic root. 0.15 s was the time point, when 

the left ventricle output reached its maximum value. 0.20 s was the time, when the blood 

flow, from co-pulse mode of ECMO, reached its peak value. Similarly, 0.60 was the time 

point, when the co-pulse ECMO output velocity reached its minimum values. 

3.1 The distribution of oxygenated and deoxygenated blood 

Fig. 3 illustrated the change in the distribution of oxygenated (the light gray streamline) 

and deoxygenated (the dark gray streamline) blood under support of three modes, during 

the whole cardiac cycle. It was found that before ejection phase, the oxygenated blood 

flow, under co-pulse mode ECMO support, easier entered into the brachiocephalic artery, 

left common carotid artery and left subclavian artery than that under conventional 
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constant mode (region a, at 0.1 s). In contrast, under counter pulse mode, the oxygenated 

blood flow from ECMO was difficult to flow into the three branches vessel. During the 

ejection phase, the deoxygenated blood flow, entering into the three branches vessel, 

gradually increased. At the peak systole (t=0.15 s), three braches vessels were totally 

perfused by deoxygenated blood flow under three modes. And then the percentage of 

oxygenated blood, flowing into the three braches vessels, was gradually increased under 

co-pulse ECMO mode, as the increase of ECMO flow rate. At the peak time of ECMO flow 

rate under co-pulse mode (t=0.2 s), the three braches vessels was perfused by the mixed 

blood (oxygenated blood and deoxygenated blood) under co-pulse mode (region b), while 

they were perfused by deoxygenated blood under other two modes. In the diastolic phase, 

the three braches vessels were totally perfused by oxygenated blood, from ECMO, as the 

blood flow, pumping from left ventricle, was reduced appropriate to 0 L/min (region c). 

3.2 The aortic flow pattern 

The blood flow pattern under three modes was demonstrated in Fig. 4. At the beginning 

of the ejection phase, the oxygenated blood from ECMO and the deoxygenated blood 

from the left ventricle were mixed at the aortic arch (region a, at 0.1 s). And the stagnant 

area was observed at the inner wall of the aortic arch under all modes. At the peak time of 

ECMO flow rate under co-pulse mode (t=0.2 s), the oxygenated blood from co-pulse 

ECMO could retrograde from femoral artery to aorta (region b). And during the diastolic 

phase, the turbulence flow and vortex were observed at the ascending aorta (region c). 

3.3 The distribution of OSI and RRT 

Fig. 5 illustrated the distribution of OSI under three modes. It was seen that the peak 

value of OSI were observed at the inner wall of the aortic arch and descending aorta 

(region a: Constant flow mode 0.44 vs. co-pulse mode 0.46 vs. counter pulse mode 0.45; 

region b: Constant flow mode 0.39 vs. co-pulse mode 0.44 vs. counter pulse 0.45). In 

addition, the area of high OSI under counter pulse mode was smaller than that under 

co-pulse mode ECMO (region a and b). Fig. 6 showed the distribution of RRT under 

three modes. It is seen that the high RRT region were observed at the inner wall of aortic 

arch (region a: Constant flow mode 220 vs. co-pulse mode 132 vs. counter pulse mode 

93), the outer wall of the beginning of the descending aorta (region b: Constant flow 

mode 21 vs. co-pulse mode 27 vs. counter pulse mode 19) and the inner wall of the 

descending aorta (region c: Constant flow mode 19 vs. co-pulse mode 36 vs. counter 

pulse mode 18). Among the three modes, RRT, obtained from co-pulse mode, was much 

higher than that obtained from constant flow mode and counter pulse mode (region a, b 

and c). Moreover, at aortic arch, the area of the high RRT region at co-pulse mode was 

significantly larger than that under constant flow mode and counter flow mode (region a). 
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Figure 3: The distribution of oxygenated blood flow and deoxygenated blood flow at 

aortic arch 

 

Figure 4: The distribution of blood velocity vector under three modes 
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Figure 5: The distribution of OSI under three modes

 

Figure 6: The distribution of RRT under three modes 
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3.4 The changes in EW, EAL and EL 

Fig. 7 illustrated the comparison results of EW, EAL and EL under three ECMO modes. 

Fig. 7A illustrated the change in EW under three cases. It was seen that, under three 

ECMO modes, EW significantly increased in the ejection phase. And then, it reduced to 

zero during the diastolic phase, as the flow rate through the aortic root is zero. In addition, 

the peak value of EW, under co-pulse ECMO support was the highest one than other two 

modes (co-pulse mode 1.51 w vs. constant flow mode 1.44 w and counter pulse mode 

1.30 w). Moreover, EW, under counter pulse mode, slightly reduced compared with 

constant flow mode. Fig. 7B showed the EAL under three modes. The EAL, under 

counter pulse ECMO support, achieve the minimum value (constant flow mode 1.03 

mmHg·s/ml vs. co-pulse mode 1.67 mmHg·s/ml vs. counter pulse mode 0.82 

mmHg·s/ml). The change in EL of three modes was demonstrated in Fig. 7C. It was 

found that the EL was changed along with the left ventricular motion. When the left 

ventricle contracted to pump the blood into the aorta, the EL of the circulatory system 

was significantly increased, while it rapidly reduced during the diastolic phase. Among 

the all modes, co-pulse mode could achieve the highest EL (constant flow mode 0.18 w 

vs. co-pulse mode 0.50 w vs. counter pulse mode 0.16 w) at peak systole (t=0.13 s). 

 

Figure 7: The changes in EW, EAL and EL under three ECMO modes. 7A shows 
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changes in the left ventricular external work during the whole cardiac cycle; 7B 

illustrates the difference of EAL between three modes; 7C is the changes in EL 

respecting with time under three modes 

4 Discussion 

In this study, we analyzed the hemodynamic changes caused by pulsatile ECMO and 

non-pulsatile ECMO. Both pulsatile and non-pulsatile ECMO resulted in the 

enhancement of OSI and RRT. Moreover, the co-pulse mode ECMO achieved higher OSI, 

RRT, EW, EAL and EL, compared with other two modes. This was the first study that 

comparing the hemodynamic differences between conventional constant flow ECMO, 

co-pulse mode ECMO and counter pulse mode ECMO. 

VA-ECMO became an alternative method for life threatening circulatory failure with or 

without respiratory failure [Lindfors, Frenckner, Sartipy et al. (2017)]. Arterial 

desaturation in the upper body was frequently seen in patients with VA-ECMO [Alwardt, 

Patel, Lowell et al. (2013)]. The reason of this phenomenon was assumed that blood 

leaving the ECMO was fully saturated with oxygen, but usually only reaches the 

descending aorta and the distal aortic arch [He and Ku (1996)]. This hypothesis could be 

proven by the results of this study. In this study, the mixture of deoxygenated blood from 

left ventricle and the oxygenated blood from ECMO was observed (Fig. 3). At the 

beginning of ejection phase, the deoxygenated blood and oxygenated blood was mixed at 

the aortic arch. And the three braches was perfused by the mixture blood, in which the 

oxygen saturation was reduced. And then, along with the increase of deoxygenated blood 

flow, the percentage of deoxygenated blood, flowing into the three braches vessels, was 

gradually increased. At the peak systole, the three braches vessels were totally perfused 

by deoxygenated blood flow. Among the three different modes, the perfusion pattern is 

totally different from each other. Compared with co-pulse mode, the deoxygenated blood, 

under counter pulse mode, easier flow into the ascending aorta (Fig. 4 0.2 s). In contrast, 

during the diastolic phase, under counter pulse mode, much more oxygenated blood flow 

entered into the three braches vessels (Fig. 4 0.6 s). This was due to the oxygenated blood 

flow rate increased during diastolic phase. In addition, the duration of diastolic phase was 

longer than systolic phase; hence, the ECMO under counter pulse mode could provide 

better perfusion performance than that under co-pulse mode and constant flow mode.  

Hemodynamic factors were believed to play important roles in the vascular dysfunction. 

OSI was an important hemodynamic factor that highlighted areas where the wall shear 

stress vector presents directional changes over the cardiac cycle [He (1996)]. Many 

studies supported that OSI could strong effect on vascular functions. For instants, Wen et 

al. [Wen, Yang, Tseng et al. (2010)] reported that the over high OSI value tended to 

cause the dysfunction of endothelial cell of arterial system. Similarly, Goubergrits et al. 

[Goubergrits, Kertzscher, Schoneberg et al. (2008)] reported that OSI values of greater 

than 0.2 represented detrimental flow conditions that could be prone to the development 

of atherosclerosis and thrombosis. In this study, high OSI value regions were observed 

both under pulsatile ECMO and non-pulsatile mode ECMO support (Fig. 4). That meant 

that both pulsatile and non-pulsatile ECMO may contribute to vascular dysfunction, 

which was consistent with the clinical practice [Bisdas, Beutel, Warnecke et al. (2011)]. 
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From the results of this study, high OSI may result from the variation of the instantaneous 

value of left ventricular outflow. Along with the increase of left ventricular outflow rate, 

the location, where the left ventricular outflow contracted with the blood flow from 

ECMO, was moved toward to the descending aorta. In contrast, during the diastolic phase, 

this mixed location was moved toward to the ascending aorta. Among the three modes, 

OSI value in co-pulse mode was significantly higher than constant flow mode and 

counter pulse mode. That means compared with constant flow mode and counter pulse 

mode, ECMO, working under co-pulse mode, could provide worse hemodynamic 

conditions to arterial system. RRT was another important hemodynamic factor that 

indicated the particles stay near the wall [Pinto and Campos (2016)]. RRT should be 

between 0 and infinite, for zones with close recirculation. According to Lee’s study, the 

RRT values higher than 8 should be considered elevated. High RRT values indicated 

potential zones of thrombosis and deposition appearance, as verified by Morbiducci et al. 

[Morbiducci, Gallo, Massai et al. (2011)] and Sousa et al. [Sousa, Castro, António et al. 

(2016)]. In this study, it was found that the high RRT area was observed at aortic arch 

and descending aorta. And the value and area of high RRT was much larger than that 

obtained from compared with constant flow mode and counter pulse mode. In short, the 

co-pulse mode ECMO may provide worse hemodynamic state to the arterial system than 

that obtained from both other modes.  

Currently, the effects of ECMO on the left ventricular function and afterload has been 

attracted much more interests. Reesink et al. [Reesink, Sauren, Dekker et al. (2005)] 

found that the myocardial oxygen consumption was significantly increased at the systolic 

phase. Similarly, Cheypesh et al. [Cheypesh, Yu, Li et al. (2014)] reported that the 

myocardial oxygen consumption was increased along with the increase of ECMO flow 

rate. These findings were consistent with our results. In this study, EW was used to 

evaluate the left ventricular work, which was related to the myocardial oxygen 

consumption. It was seen that EW was varied along with the cardiac motion. During the 

systolic phase, EW rapidly increased. And among the three modes, EW, obtained from 

co-pulse mode ECMO, was the largest one. Similarly, EAL was another hemodynamic 

factor for evaluating the left ventricular working condition. It was confirmed that the 

increase of EAL resulted in the increase of myocardial oxygen consumption. And 

reduction of the EAL became an important aim for protecting and promoting cardiac 

function. In this study, it was found that EAL, under three modes, was totally different 

from each other. EAL, obtained from co-pulse mode ECMO, was the largest among the 

three modes, while the EAL, under counter pulse mode, was the smallest one. Moreover, 

EL was a useful hemodynamic factor, reflecting the efficiency and hemocompatibility of 

ECMO. The lower EL meant that less energy was consumed by vascular wall and 

turbulence, which may result in vascular dysfunction and hemolysis. In this study, the EL, 

obtained from co-pulse mode ECMO, was more than twofold than that, obtained from 

constant flow mode and counter pulse mode. That means patients, supported by co-pulse 

mode ECMO, had higher possibility to suffer from vascular complications and hemolysis. 

In short, it is demonstrated that the counter pulse mode ECMO could provide better 

hemodynamic states to the arterial system, which may lead to better outcome to patients. 
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5 Limitation  

The boundary condition, used in this study, was set according to the clinical practice. 

Hence the results could provide useful information to operator of ECMO and surgeons. 

However, the results of numerical study was changed by the varied of the boundary 

condition (including the left ventricular outflow rate and flow rate from ECMO), hence, 

if the boundary condition is significant different from those reported in this study, the 

conclusions maybe altered. 

6 Conclusion 

Numerical studies were conducted to evaluate the hemodynamic differences between 

constant flow ECMO, co-pulse mode ECMO and counter pulse mode ECMO. 

Furthermore, this study found that optimal the relationship between left ventricular 

outflow and ECMO outflow was a viable engineering solution to improve the 

hemodynamic states and cardiac function. The study results demonstrated that there was 

more oxygenated blood perfused into the three braches vessels than that under constant 

flow mode and counter flow mode. That meant the ECMO, working in the counter pulse 

mode, could provide better oxygen perfusion performance. In addition, the counter pulse 

mode ECMO could also achieve lowest RRT among the three modes (constant flow 

mode 220 vs. co-pulse mode 132 vs. counter pulse mode 93), while the peak value of OSI, 

obtained from the three modes, was similar with each other. Similarly, the results also 

demonstrated that the ECMO, working under counter pulse mode, could significantly 

reduce the left ventricular external work (co-pulse mode 1.51 w vs. constant flow mode 

1.44 w and counter pulse mode 1.30 w), left ventricular afterload (constant flow mode 

1.03 mmHg·s/ml vs. co-pulse mode 1.67 mmHg·s/ml vs. counter pulse mode 0.82 

mmHg·s/ml) and energy loss of arterial system (constant flow mode 0.18 w vs. co-pulse 

mode 0.50 w vs. counter pulse mode 0.16 w). In short, the counter pulse mode ECMO 

could provide better hemodynamic performance, cardiac function and cerebral oxygen 

perfusion, compared with that obtained from conventional constant flow ECMO and 

counter pulse mode ECMO. 
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