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Abstract: In this paper, by introducing a chemical field, the J-integral formulation is 

presented for the chemo-mechanical coupled medium based on the laws of 

thermodynamics. A finite element implementation of the J-integral was performed to 

study the mode I chemo-mechanical coupled fracture problem. For derivation of the 

coupled J-integral, the equivalent domain integral (EDI) method was applied to obtain 

the mode I J-integral, with expression of the area integrals based on constitutive 

relationships of a linear elastic small deformation for chemo-mechanical coupling, 

instead of the finite deformation problem. A finite element procedure is developed to 

compute the mode I J-integral, and numerical simulation of the y-direction stress field is 

studied by a subroutine UEL (User defined element) developed in ABAQUS software. 

Accuracy of the numerical results obtained using the mode I J-integral was verified by 

comparing them to a well-established model based on linear elastic fracture mechanics 

(LEFM). Furthermore, a numerical example was presented to illustrate path-independence 

of the formulated J-integral for a chemo-mechanical coupled specimen under different 

boundary conditions, showing a high accuracy and reliability of the present method. The 

variation laws of J-integral and the y-direction stress field with external chemical, 

mechanical loading and time are revealed. The J-integral value increases with larger 

external concentration loading in the same integral domain. The extent of diffusion is 

much greater with larger concentration, which leads to a stronger coupling effect due to 

the chemical field. This work provides new insights into the fracture mechanics for the 

chemo-mechanical coupled medium. 

 

Keywords: Chemo-mechanical coupling, fracture, J-integral, equivalent domain integral 

(EDI) method, finite element method. 

1 Introduction 

A number of media are known to exhibit chemo-mechanical coupling behavior including 

polymer colloids, hydrogels, biological tissues, and lithium ion batteries. Hydrogels are 

composed of a water-swollen and cross-linked polymeric network and are capable of 
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reversible deformation when subjected to mechanical forces and/or environmental stimuli 

(e.g. temperature, pH, humidity). To date, several functional components have been 

designed and manufactured using chemo-mechanical coupled characteristics in a variety 

of applications, ranging from artificial organs [Shao, Jia, Cao et al. (2017)], drug delivery 

[Javanbakht and Namazi (2018)], actuators and sensors [Cheng, Ren, Yang et al. (2018); 

Deng, Bellmann, Fu et al. (2018)], oil packaging [Mahinroosta, Farsangi, Allahverdi et al. 

(2018)], contact lenses [Alvarez-Rivera, Concheiro and Alvarez-Lorenzo (2018)], and 

wound dressings [Khorasani, Joorabloo, Moghaddam et al. (2018)]. 

Cracking is a critical concern in designing chemo-mechanical coupled hydrogel 

components. Cracks may lead to poor mechanical stability, and eventually cause 

structural failure of the entire system. Moreover, in biological applications involving cell 

encapsulation, cracks may lead to involuntary cell release or possible cell death. 

Hydrogels have been used as microfluidic valves for lab-on-a-chip systems, which 

require appropriate measures to ensure that cracks do not lead to liquid leakage causing 

failure of the device. In recent years, a large number of fracture phenomena have been 

observed in intelligent hydrogels during experiments [Cai, Hu, Zhao et al. (2010); Sun, 

Zhao, Illeperuma et al. (2012); Pizzocolo, Huyghe and Ito (2013)]. Optical microscope 

observations of synthetic hydrogels during and after tensile testing experiments have 

demonstrated medium-sized fracture processes. For these reasons, the fracture behavior 

of chemo-mechanical coupled media has become a subject of rising scientific interest. 

Despite the emergence of chemo-mechanical coupling as an important research field, 

there is limited literature analyzing fracture problems occurring in such systems. The 

fracture problems of chemo-mechanical coupled media have not yet to be fully elucidated. 

Moreover, although most chemo-mechanical coupled media exhibit liquid-like behavior 

they are often considered to be perfectly elastic and functional solids. Analysis using the 

J-integral has been widely performed to study the fracture problems of other multi-field 

coupling phenomena. Fracture mechanics problems in thermo-mechanical, 

electro-mechanical and thermo-electro-mechanical coupled media have long always been 

gaining extensive interests in electromechanical devices, microelectromechanical systems 

and smart composite materials. In order to assess fracture properties of these media, 

exhaustive theoretical, numerical and experimental investigations on the J-integral have 

been performed in the past few decades. Modified forms of J-integral were presented to 

extract the magnitude of stress intensity factors from finite element solutions for 

homogeneous materials subjected to thermal stresses [Wilson and Yu (1979); Li (1993)]. 

The viability of the domain integral method and corresponding finite element formulation 

were demonstrated for calculating the pointwise energy release rate based on a 

path-independent J-integral under thermo-mechanical loadings [Li, Shih and Needleman 

(1985); Shih, Moran and Nakamura (1986)]. The EDI approach and the numerical 

implementation for thermo-mechanical fracture analysis were described thoroughly in 

homogeneous materials [Nikishkov and Atluri (1987); Raju and Shivakumar (1990)]. The 

path-independent J and 
*

kJ  integrals were applied for evaluating numerically stress 

intensity factors (SIFs) and fracture parameters by means of the EDI method subjected to 

thermo-mechanical loading in functionally graded materials (FGMs) [Kim and Paulino 

(2002), Kim and Paulino (2003); Walters, Paulino and Dodds (2004)]. The generalized 

https://www.sciencedirect.com/science/article/pii/S0141813017351668#!
https://www.sciencedirect.com/science/article/pii/S0141813017351668#!
https://www.sciencedirect.com/science/article/pii/S0141813017351668#!
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Jk-integral and SIFs subjected to mode I and mixed-mode crack problems for FGMs were 

calculated by using the EDI method [Yildirim (2006); Dag (2007)]. A 

thermo-electro-mechanical J-integral formulation by using the laws of thermodynamics 

was derived for computing coupled crack problems in thermopiezoelectric structures 

[Kuna (2006); Ricoeur and Kuna (2008)]. A modified domain-independent interaction 

integral based on the J-integral combined with XFEM method was presented to 

investigate the influences of material continuity on the SIFs, TSIFs and EDIF of 

nonhomogeneous piezoelectric materials [Yu, Wu, Guo et al. (2012); Guo, Guo, Yu et al. 

(2014)]. The J-integral method can give highest accuracy compared to other calculating 

methods for evaluating the SIFs in two-dimensional piezoelectric solids [Lei, Wang, 

Zhang et al. (2014)]. A thermodynamic formulation of J-integral considering residual 

stress and thermal stress was presented to prove the independence of the J-integral for a 

welded component [Park, Choi, Kim et al. (2015)]. Ding et al. [Ding and Liu (2018)] 

developed a multi-layered model for heat conduction analysis of a thermoelectric 

material strip (TEMs) with a Griffith crack, and studied the effect of strip width on the 

electric flux intensity factor and thermal flux intensity factor. 

Among numerous existing studies on the fracture behavior under combined 

chemo-mechanical loading, few also have utilized the conventional J-integral to analyze 

crack problems. Furthermore, unlike the aforementioned systems, the poroelastic 

property of chemo-mechanical coupled media cannot be ignored due to the influence of 

solvent diffusion together with the coupling effects of chemical and stress fields on the 

fracture processes. The effects of solvent diffusion on fracture were studied within the 

general framework of poroelasticity [Rice and Cleary (1976)]. Bonn et al. [Bonn, Kellay, 

Prochnow et al. (1998)] discovered the phenomena of delayed fracture due to the solvent 

diffusion in polymer gels, which is ascribed to the time effect of solvent migration caused 

by viscoelastic creep and transient energy release rates [Wang and Hong (2012)]. A 

general form of energy release rate was derived and rewritten as a simplified path 

independent integral for hygrothermal elastic coupling fracture problems [Yang, Wang 

and Chen (2006)]. A J-integral formulation was developed for analyzing the coupled 

mechano-diffusional driving forces for fracture in Li-ion batteries through a fully-coupled 

finite deformation theory [Gao and Zhou (2013)]. Hui et al. [Hui, Long and Ning (2013)] 

studied the transient stress and pore pressure field near the static Mode I crack tip in 

poroelastic solids subjected to transient loading. An electro-chemo-mechanical J-integral 

under equilibrium conditions was constructed for demonstrating the path-independent 

nature of the chemo-mechanical J-integral in solid [Haftbaradaran and Qu (2014)]. A 

thermodynamically consistent method was presented for calculating the transient energy 

release rate based on a modified path-independent J-integral, considering the effect of 

solvent diffusion on crack growth in hydrogels [Bouklas, Landis and Huang (2015)]. The 

energy release rate was derived within the linearized, small-strain scope for the 

poroelastic nature of polymer gels [Noselli, Lucantonio, Mcmeeking et al. (2016)]. Tang 

et al. [Tang, Li, Vlassak et al. (2017)] observed three types of fracture behavior in the 

hydrogel: fast fracture, delayed fracture, and fatigue fracture, and concluded the 

concentration of water and the amplitude of load can significantly affect the fracture 

behavior. Zhang et al. [Zhang, Qu and Rice (2017)] constructed the J- and L-integrals 

which are two types of path-independent integrals in equilibrium electro-chemo-elasticity 
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in the solid, representing the energy release when a cavity translates and rotates, 

respectively. Böger et al. [Böger, Keip and Miehe (2017)] proposed a diffusion- 

deformation-fracture theory with a diffuse-crack approximation based on a 

phase-field/damage fracture theory, and presented a variational framework together with 

a numerical implementation in a finite element program. Yu et al. [Yu, Wang, Chen et al. 

(2017); Yu, Chen, Wang et al. (2018)] obtained several path-independent integrals, 

including the J-, L- and M-integrals of the dissipative chemo-electro-mechanical 

processes, and addressed the chemical reactions by the path-independence J-integral and 

verified the relation of the J-integral and L-integral with the energy release rate. Ma et al. 

[Ma and Yang (2018)] developed a micromechanics model incorporating fluid pressure, 

which can be used to determine the stress and strain fields at the tip of fluid-filled cracks 

in porous materials. Mao et al. [Mao and Anand (2018)] formulated a theory which 

accounts for the coupled effects of fluid diffusion, large deformations, damage, and also 

the gradient effects of damage for fracture of polymeric gels, and proposed the particular 

constitutive equations for fracture of a gel. Yang et al. [Yang and Lin (2018)] analyzed the 

concurrent deformation of the solid network and migration of interstitial fluid by using 

J-integral around a crack tip in a poroviscoelastic medium under mode-I condition.  

In this paper, the combined effects of volumetric swelling and stress under 

chemo-mechanical coupling were addressed. The main objective of this work was to 

derive the J-integral formulation for a mode I crack under chemo-mechanical coupling 

and develop a finite element procedure by means of the equivalent domain integral (EDI) 

method for fracture analysis in the chemo-mechanical coupled medium.  

The J-integral in the most of previous works were derived from the energy release rate 

[Gao and Zhou (2013); Bouklas, Landis and Huang (2015); Noselli, Lucantonio, 

Mcmeeking et al. (2016)]. In comparison to these studies, although the final form of the 

J-integral is similar, the theoretical derivation process of the J-integral formulation is a 

completely unique way in the paper. The chemo-mechanical coupled J-integral formula is 

deduced using the first law of thermodynamics that takes into account chemical energy 

instead of the usage of the energy release rate. In addition, in this paper，by using a 

unique chemo-mechanical coupled constitutive relation derived by Wei et al. [Wei and 

Yang (2016)], the mode I J-integral formula that contains the chemo-mechanical coupled 

constitutive relations can be deduced. Moreover, other people’s theories are based on the 

large deformation theory, but this paper is based on the assumption of the linear-elastic 

small deformation theory for the chemo-mechanical coupled medium. The mode I 

J-integral value of a crack is calculated by the J-integral calculation program developed, 

by which the variation law of J-integral is analyzed with different parameters. In the 

meantime, the y-direction stress field of a crack is numerically simulated with ABAQUS 

software including subroutine UEL (User defined element) developed by Wei et al. [Wei 

and Yang (2016)]. These processes are completely different from Gao et al. [Gao and 

Zhou (2013)], Bouklas et al. [Bouklas, Landis and Huang (2015)], and Noselli et al. 

[Noselli, Lucantonio, Mcmeeking et al. (2016)]. 

The paper is organized as follows. In Section 2, the J-integral formulation for a mode I 

fracture is deduced based on the laws of thermodynamics for chemo-mechanical coupling. 

Section 3 presents an equivalent domain form of mode I chemo-mechanical coupled 
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J-integral derived by means of EDI method around the crack tip. Section 4 comprises the 

finite element implementation of the J-integral for a mode I crack under chemo- 

mechanical coupling. Section 5 presents numerical examples, which were performed and 

interpreted to assess the y-direction stress field and J-integral characteristic around the 

crack tip. Finally, some concluding remarks are given in Section 6. 

2 J-integral formulation for chemo-mechanical coupling problem

 
According to the first law of thermodynamics, considering an infinitesimal volume dV, 

the local energy balance [Ricoeur and Kuna (2008)] of a chemo-mechanical coupled 

medium is given by 

revU Q W   = + +                                                   (1) 

where U  is the change in internal energy, Q  is the exchange of heat, 
revW  is the 

reversible work, and   is the irreversible dissipative work. 

If there exists a dislocation or a defect (crack) within the finite volume V, the total 

dissipative work can be characterized as 

k k
V

dV J z =                                                        (2) 

where kJ  is a generalized force acting on the defect, and kz  is the irreversible displacement.  

Based on the energy representation derived [Ricoeur and Kuna (2009)], ignoring the role 

of electrostatic field, and introducing the effects of a chemical field in conjunction with 

the Legendre transformation, the relationship between the internal energy density 

function ( , , )ijU     and the free energy density function ( , , )ijW T c  can be expressed 

as 

U W c T = − −                                                        (3) 

where ij  is the strain,   is the entropy,   is the chemical potential, and T and c are 

the temperature and solvent concentration, respectively. Based on Eq. (3), the change in 

internal energy is 

U W c c T T     = − − − −                                         (4) 

If all dissipative processes have been included in  , reversible work and heat are 

denoted by 
rev

ij ijW c   = − and Q T = − , respectively. Consequently, Eq. (1) 

becomes 

ij ijW c T     = − − −                                            (5) 

Substituting Eq. (5) into Eq. (2) yields the global energy balance for V 

( )k k ij ij
V V

J z dV W c T dV      = = − − −                            (6) 

The virtual displacement kz  can be adopted to incorporate changes in the state 

variables, such that  
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( )
,

k kj k
V V j

k

dW
WdV W z W dV z

dx
    = = =                                (7) 

Similarly, it can be concluded that
,k kc c z  = , and ( ), ,=ij ij ij i k j ku z    . It should 

be noted that the volume force is omitted in Eq. (9), i.e. , 0ij j = . Assuming the internal 

temperature of the system remains constant and substituting Eq. (7) into Eq. (6), lead to 

( ) ( ), , ,,k kj ij i k j kjV
J W u c dV   = − −

                                        (8) 

where kj  denotes the Kronecker delta. Applying the divergence theorem to a domain 

surrounded by   with unit outward normal nj, gives  

( ) ( ), , ( , , 1,2,3)k k ij j i k k
V

J Wn n u dA c dV i j k 


= − − =                     (9) 

The physical meaning of Jk is the generalized force applying on the crack tip of the 

elastic chemo-mechanical coupling medium. A sharp crack subjected to chemo- 

mechanical coupling is shown in Fig. 1. 

1x

2x

2

3

A

1 2 3 =  + +

O

jn

1

  
 

Figure 1: Schematic diagram of a sharp crack  

 

Considering the two-dimensional plane strain state shown in Fig. 1, the chemo- 

mechanical coupled J-integral formulated can be represented as     

( ) ( ), ,d d ( , , 1,2)k k ij j i k k
A

J Wn n u c A i j k 


= −  − =                        (10) 

where A is the area surrounded by a closed contour  comprising 1 2 3, ,   . 

When k = 1, the chemo-mechanical coupled mode I J-integral formulated can be 

expressed as 

( ) ( )1 1 ,1 ,1 ( , 1,2)ij j i
A

J Wn n u d c dA i j 


= −  − =                          (11) 

When k = 2, JK integral can be written as 

( ) ( )2 2 ,2 ,2 ( , 1,2)ij j i
A

J Wn n u d c dA i j 


= −  − =                         (12) 

The Eq. (12) can be used to solve the mixed-mode fracture problem under chemo- 
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mechanical coupling. 

If the cracks are straight on the surfaces of 2 and 3 , a value n1=0 is achieved. Taking 

into account the traction-free condition on the crack surfaces (Fig. 1), it can be obtained 

= 0ij j in T = , so the J-integral can be denoted as 

( ) ( )
1

1 1 ,1 ,1 ( , 1,2)ij j i
A

J Wn n u d c dA i j 


= − − =                         (13) 

This form of the J-integral is similar to those reported in the literatures, in which the 

J-integral in the most of previous works were derived from the energy release rate [Gao 

and Zhou (2013); Bouklas, Landis and Huang (2015); Noselli, Lucantonio, Mcmeeking et 

al. (2016)]. However, the theoretical derivation process of the J-integral formulation is a 

completely unique way in the paper. The chemo-mechanical coupled J-integral formula is 

derived using the first law of thermodynamics which considers chemical energy rather 

than the usage of the energy release rate. Furthermore, based on mechanical equilibrium 

and mass conservation, it can be deduced that the chemo-mechanical coupled J-integral is 

conserved and necessarily zero for these conditions. For a domain containing a crack tip 

(Fig. 1), the chemo-mechanical coupled J-integral is path-independent, and an area 

integral must be considered to maintain path-independence.  

3 Equivalent domain integral method for coupled J-integral with a mode I crack 

The EDI method is widely used in numerical calculations. Using the EDI method, the 

J-integral can be converted to an area integral, replacing the integral loop by a limited 

region near the crack tip to effectively evaluate the J-integral value [Moura and Shih 

(1987); Shivakumar and Raju (1992)]. 

A crack in a homogeneous medium, which is subjected to a chemo-mechanical coupling 

effect, is depicted in Fig. 2.  
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Figure 2: A closed contour around the crack tip 

An arbitrary closed curve 1 starts from the lower crack and terminates on the upper one 

(counterclockwise direction). Again, nj represents the unit outward normal. Supposing A* 

is the area surrounded by 1  in Fig. 2, Eq. (13) can be expressed as 
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( ) ( )*
1

1 1 ,1 ,1 ( , 1,2)ij j i
A

J Wn n u d c dA i j 


= − − =                          (14) 

To carry out the numerical calculations in this section, the line integral in Eq. (14) can be 

converted to a domain integral using the EDI method. If we consider a positively-oriented 

closed contour curve   bounding the annular area A around the crack tip, as shown in 

Fig. 2,  is piecewise smooth and can be represented by 
2 1c c

+ −= + − + . The 

method originally proposed by Shih et al. [Shih, Moran and Nakamura (1986)] can be 

adopted to convert the contour integral into a domain integral in order to compute the 

J-integral in the present study.  

The chemo-mechanical coupled medium is assumed to be an elastic 

homogeneous medium. Therefore, using the relationship for infinitesimal displacements 

( ), , / 2 ( , 1,2)ij i j j iu u i j = + =  and / ( , 1,2)ij ijW i j   = = , for both plane stress and 

plane strain states, we have 

( ),1 ,1 ,1 exp
1 1

( , 1,2)
ij

ij i j

ij

W W c
W u W i j

x c x






  
= + = + =
   

                      (15) 

Supposing the first component of the unit outward normal 1 0n = , together with q=1 in 

area A*, the mode I J-integral can be written as  

( ) ( ) ( )*1 ,1 1 , ,1 ,1exp
( , 1,2)ij i j jA A A

J u W q dA W qdA c qdA i j   = − − − =
             (16) 

where q is a sufficiently piecewise smooth arbitrary weight function in A in which 

1
1q =  on the inner curve 1  and 

2
0q =  on the outer curve 2 . In general, q is 

known as the plateau type function.  

4 Finite element implementation for coupled J-integral with mode I crack  

Linear constitutive equations of chemo-mechanical coupling are derived and transient 

finite element method is implemented with details of the formulation given by Wei et al. 

[Wei and Yang (2016)]. According to the chemo-mechanical coupled constitutive 

relationship 
*

ij ijkl kl ijC R T c   = − [Wei and Yang (2016)], another form for a general 

three-dimensional state of stress can be written as  
*2 ( , 1,2,3)ij ij kk ij ijR T c i j    = + −  =                                (17) 

where the Lame constants ( )/ 2 1E = + , ( )( )/ 1 1 2E   =  + −   , ( , 1,2,3)ij i j =  

are the total strain components, R* is the universal gas constant, T is the absolute 

temperature,
 

c  is the solvent concentration change from a reference concentration, 

and E and   denote elastic modulus and Poisson’s ratio of the medium, respectively.  

Imitating the way of thermo-mechanical coupling problem, by means of the relationship 

/ 2m

ij ijW  = and
m

ij ij ijc   = −  , the free energy density function W of 

chemo-mechanical coupling can be calculated by 
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( )( )

( ) ( )

*

2 2* *

1
2

2

3
( , 1,2,3)

2 2

ij kk ij ij ij ij

ij ij kk kk

W R T c c

R T c R T c i j

      


    

= + −  − 

= + −  +  =

                (18) 

where   is the chemical expansion coefficient. Focusing on a mode I crack, we have  

( ) ( )*

,1 ,1exp
3kkW R T c c = − +                                            (19) 

Therefore, according to Eq. (16), the J-integral with a mode I crack can be written as  

( ) ( ) ( )*

*

1 ,1 , ,1 ,1 ,13 ( , 1,2)ij i j kk
A A A

J u q Wq dA R T c c qdA c qdA i j   = − − − +  − =    (20) 

In particular, it needs to be pointed out that Eq. (20) is applicable to the problem of linear 

elastic small deformation characterized by non-steady diffusion process for the 

chemo-mechanical coupled medium rather than the finite deformation problem, which is 

an important difference from Gao et al. [Gao and Zhou (2013)], and Bouklas et al. 

[Bouklas, Landis and Huang (2015)].  

According to the definition of the EDI method, the J-integral value calculated by Eq. (20) 

does not depend on the size and shape of the integration domain. Typically, numerical 

implementations of the J-integral are evaluated using the isoparametric finite element 

method [Yildirim (2006); Dag (2007)]. An edge crack in the chemo-mechanical coupled 

medium is depicted for a square domain A* with a side length of 2 L around the crack tip 

in Fig. 3.  
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Figure 3: The equivalent domain around an edge crack tip in a chemo-mechanical 

coupled medium 

For the purpose of the description, we define *

^

1 1 A
J J J= − , whereby 

( ) ( )^ *

1 ,1 , ,1 ,13ij i j kk
A A

J u q Wq dA R T c c qdA  = − − − +                        (21) 

( )* * ,1A A
J c qdA=                                                      (22) 

Assuming the number of isoparametric elements in the annular domain A is M1 (Fig. 3),  
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^

1J  can be expressed as 

1

1 1^ 1 ^^ ^ ^1 ^2

1 1 1 1 1 1

1

M
M Ms

s

J J J J J J
−

=

= = + + + +                              (23) 

Similarly, assuming the number of isoparametric elements in square domain A* is M2, 

*A
J  can be written as  

2

2 2
*

11 2

* * * * *

1

M
M Ms

A A A A AA
s

J J J J J J
−

=

= = + + + +                               (24) 

Under the case of plane condition, by using the chemo-mechanical coupled constitutive 

relationship * *

0/kkR T R T c c  =− + [Wei and Yang (2016)], the J-integral value 

calculated over one element in domain A* and A, respectively, can be given by 

( )

( )

1 1

2

1 1 1 1

1 ,1 , ,1 ,1
1 1 1 1

1 1
* *

0 ,1
1 1

( 3 )

/ ( , 1,2)

*

ij i j kkM M

kk M

J u q Wq d d R T c c q d d

R T R T c c c q d d i j

      

  

− − − −

− −

 = − − − +  

 − − +  =
 

   

 

J J

J

 (25) 

where  and   are the  horizontal and vertical axes of the local coordinate system, 

respectively. c0 is the solvent concentration in the reference state and 
1M

J and 
2M

J are 

the determinant of the Jacobian matrix for the M1-th and M2-th elements, respectively.  

In finite element modeling, the equivalent integral domain must be partitioned into a 

number of elements. Applying the Gaussian integration method, the J-integral value 

relative to an element can be obtained from Eq. (25). Superimposing the J-integral values 

for all elements covering the corresponding domain can achieve the final J-integral value.  

Based on the isoparametric finite element method, the calculation procedure can be 

developed to evaluate the mode I J-integral under chemo-mechanical coupling.  

5 Numerical examples and discussion 

Numerical solutions of the mode I fracture problem considered in the present study 

require computation of the displacement and concentration values for the 

chemo-mechanical coupled medium. Thus, we have programmed a user element 

subroutine UEL in ABAQUS and a plane 8-node isoparametric element for 

chemo-mechanical coupling is developed [Wei and Yang (2016)]. The calculated 

displacement and concentration profiles extracted from the UEL data file are employed to 

evaluate the two-dimensional J-integral value in the medium. 

In this section, to validate the accuracy and feasibility of the present theory and method, 

we firstly consider the linear elastic case with concentration-independent properties, such 

that the J-integral computed by the proposed procedure can be compared with those 

given by a purely mechanical LEFM. 

Example 1 

First, we take into account a rectangular linear elastic solid specimen containing a central 

crack subjected to normal uniaxial tension 30 = MPa under the two-dimensional plane 
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strain condition. Dimensions of the plate are shown in Fig. 4, where the height 2 H is 400 

mm, the width 2 W is 200 mm, and the initial half crack length a=EO=OG= 20 mm with 

an overall crack length to width ratio of a/W=1:5.  
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Figure 4: A rectangular solid plate with a central crack  

For the present simulation, the material properties of the plate are Young’s modulus 
3200 10E =   MPa and Poisson’s ratio 0.25 = . All of the above parameters were 

based on previously published values in the literature [Xie, Qian and Li (2009)]. An 

equivalent domain with plateau type q-function is applied to evaluate the J-integral value. 

Making use of symmetry, only a quarter of the rectangular plate is modeled using a 

two-dimensional finite element mesh. 

The stress intensity factor [Anderson (1995)] can be written as 

( ) ( )
2 4

sec 1 0.025 / 0.06 /
2

a
K a a W a W

W


   = − +

 Ⅰ                        (26) 

For a homogeneous isotropic linear-elastic medium with a mode I crack, a well-known 

relationship for the plane strain condition is ( )2 2

1 1 /J K E= −Ⅰ . Therefore, values can 

be obtained from known parameters to give K1=243.6 
a(MP mm)  and J = 278.3 

(N/m).   

The J-integral value can now be calculated using the procedure developed in this 

example, wherein all internal and external concentrations of the medium are assumed to 

be zero. The calculated displacements can be input into the procedure and all 

chemical-related parameters set to zero such that the procedure degenerates to solve for 

pure mechanical fracture problem. 

As shown in Fig. 5, green elements denote the annular domain A and white elements 

around the crack tip represent the domain A* for evaluating the chemical integral term.  
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Figure 5: Equivalent integration domains around the crack tip 

The size of each square is 2 mm, such that the crack tip G accurately corresponds to the 

number of elements. Then, the integration domain can be determined by selecting 

different values for L. For a quarter model in Fig. 4, when L=2 mm, there are 1 2  

elements in A* around the crack tip and when L=4 mm, A* includes 2 4  elements 

around the crack tip, and so on. The domain A includes the outer elements enclosing the 

domain A*. 

The model consists of 5000 elements and 15301 nodes with plane 8-node isoparametric 

elements. Calculated values are multiplied by two and six J-integral values together with 

the relative error of each solution are displayed in Tab. 1. 

 

Table 1: The influence of integration domain on the calculated values of the J-integral 

(N/m) 

 

L(mm) 2  4  6   8  10 12 

Elements(A*) 1 2  2 4  3 6   4 8   5 10  6 12  

J1(present) 273.279 276.254 277.401 277.944 277.949 277.952 

Error(%) -1.804 -0.735 -0.323 -0.128 -0.126 -0.125 

 

Under pure mechanical loading, the maximum relative error between the analytical and 

calculated numerical value is -1.804% for L=2 mm (Tab. 1). The error is greatest at this 

domain, due to the singularity at the crack tip. It is shown that when the integral domain 

is much closer to the crack tip, the error of numerical result of the J-integral is larger than 

the others. As L increases, the absolute values of numerical errors gradually decrease and 

when L=8 mm, 10 mm, and 12 mm, the J-integral values are approximately equal 

indicating good precision. The change rule of numerical results is in agreement with Xie 

et al. [Xie, Qian and Li (2009)], which analyzed the same solid plate and evaluated 

J-integral values using square elements. In addition, the similar J-integral values obtained 

for different domains in the present simulation confirmed the classical path-independence 

of the J-integral under pure mechanical loading, while ignoring the influence of the 

singularity at the crack tip. Importantly, the results obtained from this simulation 

demonstrated the accuracy of the model and by ignoring the effects of the chemical field 

the procedure can be used to evaluate purely mechanical problems.  
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Example 2 

Next, the chemo-mechanical coupled fracture problem was investigated by considering 

an immersed rectangular specimen with a central crack in Fig. 6.  

B
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D

E G
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
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0c wc
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x

y

A

2H
P

 
 

   Figure 6: An immersed central cracked rectangular plate   

Table 2: Material parameters of the rectangular plate 

 

Parameter Value 

Young’s modulus E 1.08 MPa 

Poisson’s ratio v  0.45 

Diffusion coefficient D 4.9 E-10 m2/s 

Atmospheric constant R* 8.314 J/(mol·K) 

Absolute temperature T 298 K 

Chemical expansion 

coefficient  
1.10 

The dimensions of the rectangular plate are the same as the previous example (Fig. 4). 

The initial solvent concentration of the rectangular plate was assumed to be c0= 200 

mol/L. Simulations were conducted under the plane strain condition for two different 

boundary conditions: Pure mechanical loading and combined mechanical and chemical 

loading. Case 1 involved pure mechanical loading of 
25 10 −=   MPa applied on the 

AD and BC edges and case 2 used a combined loading of 
25 10 −=  MPa and 

concentration cw=700 mol/L. All material parameters of the rectangular plate are listed in 

Tab. 2.  

In this paper, crack edges are assumed to be traction-free and our discussion is limited to 

the case of an impermeable and excluded liquid-filled crack edges. Again, due to 

symmetry, only one quarter of the plate is modeled. 
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Regarding the initial conditions, Tab. 2 lists specific values for the material parameters of 

a rectangular plate for chemo-mechanical coupling. For the present simulation, Young’s 

modulus E is chosen to have a value 1.08 MPa, and diffusion coefficient is taken to have 

a value D=4.9E-10 m2/s originated from Luo et al. [Luo and Li (2013)]. The value of 

Poisson’s ratio is taken as 0.45 = , and the atmospheric constant R*=8.314 J/(mol·K) at 

an absolute temperature T=298 K, which is stemmed from Li et al. [Li and Mulay (2011)]. 

Additionally, we have chosen a value of 1.1 =  for the chemical expansion coefficient 

a value which is favorable for the small deformation problem.  

For a mode I crack, the y-direction stresses at the crack tip and in front of the crack tip are 

important parameters in researching a chemo-mechanical coupled fracture problem. 

Firstly, the y-direction stress field near the crack tip was investigated. If the external 

mechanical loading remains unchanged (
25 10 −=   MPa), the y-direction stress values 

at the crack tip decrease with the increase of the concentration because the larger 

concentration value can lead to the greater degree of inhomogeneous swelling in the 

chemo-mechanical coupled medium in Fig. 7.  
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Figure 7: Variations of y-direction stress along the crack front for different 

concentrations at the equilibrium moment 

The extent of free expansion in the y-direction on left part of the crack tip gradually 

increases with increasing concentration values. Consequently, stresses in the y-direction 

at the crack tip gradually diminish under the constant external mechanical loading 

(
25 10 −=   MPa). In other words, the effect of stress relaxation resulted from solvent 

redistribution gives rise to lower stress values at the equilibrium state. However, stresses 

at other points in front of the crack tip increase with increasing concentration values. The 

gradually increasing degree of expansion results in greater constraint forces in the 

y-direction acting in front of the crack tip, and hence the stresses are greater in this area. 

When the external concentration is constant (cw =700 mol/L), the y-direction stress values 

at and in front of the crack tip increase simultaneously with the increasing mechanical 

load, as depicted in Fig. 8. 
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Figure 8: Variations of y-direction stress in front of the crack tip for different mechanical 

loadings 

This indicates that stress values for the chemo-mechanical coupled medium are 

proportional to the external mechanical loading for constant concentrations. 

In order to compare stress distributions near the crack tip for different boundary 

conditions, 50 30 elements containing the crack tip were selected for which the length 

of each element are 2 mm, as shown in Figs. 9(a)-9(b). The gridding mesh denotes the 

contour at the initial time (t=0 s).  

 

   
(a) Under pure mechanical loading         (b) Under combined loading 

 

Figure 9: Stress distributions in the y-direction around the crack tip 

 

It was observed that in the y-direction, the stress distribution around the crack tip under 

the combined loading regime was more widespread than that under pure mechanical 

loading. Absorption of a large amount of solvent during the deformation phase 

substantially promotes solvent diffusion through the rectangular plate. However, the 

y-direction stress value at the crack tip with combined loading is less than that under pure 

mechanical loading, due to the effect of stress relaxation resulted from solvent 

redistribution at the equilibrium state. In addition, the time spent in equilibrium was 

much longer with combined loading than that under pure mechanical loading. The reason 

is that, under combined loading the rectangular plate experiences a slow deformation 
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process with inhomogeneous swelling. 

As shown in Fig. 10, the solvent concentration outside the rectangular plate is greater 

than that inside the plate, and gradually spreads into the plate.  

 

     
(a) t=500 s     (b) t=1500 s     (c) t=3100 s    (d) t=4600 s     (e) t=6500 s 

 

Figure 10: Stress distributions in the y-direction at different time-points under combined 

loading 

 

A larger concentration gradient at the initial time-point causes a faster diffusion rate, 

resulting in inhomogeneous swelling versus time. Consequently, the shape of the plate 

changes irregularly and no longer maintains a regular rectangle. In addition, an irregular 

sharp corner at the top right of the rectangle appeared during the deformation process. 

The deformation characteristics observed in this study were consistent with the literatures 

[Chester and Anand (2011); Zhang, Zhao, Suo et al. (2009)]. It is suggested that the top 

right corner is subjected to the mutual effects of the solvent around both upper and right 

edges at the same time. As a result, the degree of solvent absorption and the expansion 

rate at the top right corner are higher than what is experienced in other parts of the plate. 

Eventually, the entire system tends toward the equilibrium state with a smaller diffusion 

velocity and less inhomogeneous deformation due to a decreasing concentration gradient. 

Mechanical loading on the upper edge of the plate results in elongation while 

considerable solvent absorption leads to a volume expansion. 

The J-integral values were calculated using six different integration domains as shown in 

Fig. 5. The calculated J-integral values under pure mechanical loading and combined 

loading are listed by multiplying corresponding values resulted from the procedure with 2 

in Tab. 3.  

From Tab. 3, similar trends were observed to those in example 1, whereby the J-integral 

values increased with L. Moreover, path-dependence under chemo-mechanical coupling 

is confirmed by the similar J-integral values, by neglecting the effect of the singularity at 

the crack tip in six domains. Moreover, the calculated J-integral values under combined 

loading are smaller than those under pure mechanical loading in the same domain. This 

suggests that the chemical term in Eq. (20) has a negative contribution to the J-integral, 
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and may be the result of solvent diffusion around the crack tip.  

 

Table 3: Comparisons of the J-integral values for six different domains under pure 

mechanical loading and combined loading (N/m) 

 

L (mm) 2 4 6 8 10 12 

Elements (A*) 1 2  2 4  3 6  4 8  5 10  6 12  

Mechanical 

loading 
338.18 341.86 343.28 343.95 343.96 343.97 

Combined 

loading 
152.32 153.97 154.61 154.92 154.92 154.93 

 

As shown in Fig. 11, when the external concentration value remains unchanged (cw=700 

mol/L), J-integral values are approximately equal with same external mechanical loading.  
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 Figure 11: Variations of the J-integral versus domain under external mechanical loading 

 

If the effect of the singularity at the crack tip is ignored under the same external loading 

in different domains, it can be demonstrated the path-independence of the J-integral. 

However, it can be observed that the J-integral value is smaller with larger mechanical 

loading in combination with the same integral domain. Moreover, there is more obvious 

variation in the J-integral value when the mechanical loading is much larger. 

When the external mechanical loading is kept constant (
25 10 −=   MPa) the J-integral 

values are nearly equivalent with a constant concentration in different domains in Fig. 12.  
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Figure 12: Variations of the J-integral versus domain under external concentration 

loading  

 

The observed J-integral value increased with larger external concentration loading in the 

same integral domain. With greater concentrations, the extent of diffusion is much greater, 

resulting in a stronger coupling effect due to the chemical field. In addition, changes in 

the trend of the J-integral values were more apparent with larger concentration loading.  

As mentioned above, for simplicity, L=8 mm can be chosen to calculate the J-integral 

value with sufficient accuracy. The results suggest that in the equilibrium state, the 

J-integral values decrease gradually with increasing external mechanical loading under 

constant concentration in Fig. 13.  
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Figure 13: Variations of the J-integral under combined loading for different external 

concentrations (L=8 mm) 

 

Furthermore, when the external mechanical loading is kept constant, the J-integral value 

increases with external concentration.  

Since the J-integral is associated with solvent diffusion, the effect is expected to rely on 



 

 

 

Theory and Calculation of the J-Integral for Coupled Chemo-Mechanical          405 

 
 

the amount of solvent within the medium. At the initial moment, the J-integral values 

become large under combined loading in Fig. 14.  
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   Figure 14: Variation of the J-integral versus time under combined loading (L=8 mm) 

 

Then the J-integral values gradually increase to a maximum at t=5100 s and when the 

effect of solvent diffusion gradually reduces, the J-integral value becomes smaller. At 

equilibrium (t=6500 s), diffusion behavior tends to stop and J-integral value remains 

constant. This may be the result of solvent diffusion around the crack tip, and the solvent 

concentration is inhomogeneous during the diffusion phase. The change rule of J-integral 

versus time above is similar to Bouklas et al. [Bouklas, Landis and Huang (2015)]. 

6 Conclusion 

In this paper, the J-integral formulation for fracture analysis and numerical 

implementation of a chemo-mechanical coupled medium were developed using the 

equivalent domain integral method. The model demonstrated path-independence for a 

mode I crack under chemo-mechanical coupling regarding deformation and diffusion 

with multi-physical mechanisms.  

Based on the first law of thermodynamics, the mode I J-integral formulation for a 

chemo-mechanical coupled fracture problem was deduced. Applying the equivalent 

domain integral method and the chemo-mechanical coupled constitutive relationship, the 

mode I J-integral was transformed into the expression of an area integral. The accuracy 

of the developed procedure for evaluating the chemo-mechanical coupled mode I fracture 

problem was verified by comparing with the calculation values with the analytical 

solutions for a purely mechanical LEFM. Then, an example of a mode I fracture problem 

in the chemo-mechanical coupled medium was investigated and confirmed the 

path-independence of the J-integral under chemo-mechanical coupling. The effects of the 

integral domain, and the external chemical and mechanical loadings on the J-integral 

values were studied. The results presented the y-direction stress values around the crack 

tip under different boundary conditions and captured the variation trends of the stress 

field during an inhomogeneous deformation process. 

The numerical procedure for calculating the chemo-mechanical coupled J-integral was 

../../../AppData/Local/Youdao/Dict/Application/6.3.69.8341/resultui/frame/index.html
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implemented to demonstrate the accuracy and efficiency of the path-independence of the 

J-integral, thus validating the applicability of present theoretical and numerical methods. 

Without the chemical field, the coupled J-integral becomes the conventional mechanical 

J-integral. This work provides a basic framework for analysis of the mode I fracture 

problem in the chemo-mechanical coupled medium. Finally, the chemo-mechanical 

coupled fracture problem should be investigated further combining the numerical model 

with experiments. 
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