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Extrapolation Method for Cauchy Principal Value Integral with 
Classical Rectangle Rule on Interval

Maohui Xia1 and Jin Li*, 2

Abstract: In this paper, the classical composite middle rectangle rule for the computation 
of Cauchy principal value integral (the singular kernel 1/(x-s)) is discussed. With the 
density function approximated only while the singular kernel is calculated analysis, then the 
error functional of asymptotic expansion is obtained. We construct a series to approach the 
singular point. An extrapolation algorithm is presented and the convergence rate of 
extrapolation algorithm is proved. At last, some numerical results are presented to confirm 
the theoretical results and show the efficiency of the algorithms.
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1 Introduction
In recent years, much attention has been paid to the singular integral of the form

I( f ,s) =
∫ b

a
− f (t)

t− s
dt,s ∈ (a,b), (1)

where
∫ b

a− denotes a Cauchy principal value integral and s is the singular point.

There are many definition of the Cauchy principal value integral, in the following we adopt
the definition as below:∫ b

a
− f (t)

t− s
dt = lim

ε→0

{∫ s−ε

a

f (t)
t− s

dt +
∫ b

s+ε

f (t)
t− s

dt
}
,s ∈ (a,b). (2)

Lots of numerical methods for such singular integrals have been studied previously by many
authors [Choi, Kim and Yun (2004); Ioakimidis (1985); Kim and Jin (2003); Li, Yang and
Yu (2014); Yu (1992)]. The classical extrapolation method based on polynomial and ratio-
nal function has been widely studied. The extrapolation methods as an accelerating conver-
gence technique has been applied to many fields in computational mathematics [Liem, Lü
and Shih (1995)]. One of such extrapolation methods is Richardson extrapolation with the
error functional as

T (h)−a0 = a1h2 +a2h4 +a3h6 + · · · ,
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here T (0) = a0, a j is constant independent of h.

In reference Choi et al. [Choi, Kim and Yun (2004)], the asymptotic error analysis of
the Euler-Maclaurin formula is obtained by using the parametric sigmoidal transformation,
with traditional sigmoidal transformations, a distinct improvement on its predecessors is p-
resented. Then in the reference Elliott et al. [Elliott and Venturino (1997)], sigmoidal trans-
formations to obtain better approximation to Cauchy principal value integrals is employed,
which is also extended the Euler-Maclaurin formula to Hadamard finite-part integrals. In
the reference Sidi [Sidi (2003)] and Zeng et al. [Zeng, Lei and Huang (2014)] presented
high-accuracy numerical quadrature methods for integrals of singular periodic functions
which are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approx-
imations and their extrapolations. In recent reference, the classical Euler-Maclaurin sum-
mation formula [Sidi (2003)] expresses the difference between a definite integral over [0,1]
and its approximation using the trapezoidal rule with step length h = 1/m as an asymptotic
expansion in powers of h together with a remainder term.

The extrapolation method for the computation of Hadamard finite-part integrals on the in-
terval and in a circle are studied in Li et al. [Li, Wu and Yu (2009)] and Li et al. [Li,
Zhang and Yu (2013)] respectively which focus on the asymptotic expansion of error func-
tion. Based on the asymptotic expansion of the error functional, algorithm with theoretical
analysis of the generalized extrapolation are given. In reference Zeng et al. [Zeng, Lei and
Huang (2014)], quadrature formulae for hypersingular integrals and their asymptotic error
expansions and the extrapolation methods for hypersingular integrals with either periodic
integrand or non-periodic integrand are presented.

In this paper, we firstly obtain the error expansion of the classical rectangle rule. Then with
certain special function, we present the explicit part for the first part of the error expansion.
Based on this asymptotic expansion, we suggest an extrapolation algorithm. A series of s j is
selected to approximate the singular point s accompanied by the refinement of the meshes.
Moreover, by means of the extrapolation technique, we not only obtain an approximation
with higher order accuracy but also get a posteriori estimate of the error functional.

The rest of this paper is organized as follows. In Section 2, after introducing some basic
formulas of the classical rectangle rule, we present the asymptotic error expansion of clas-
sical rectangle rule for Cauchy principal value integrals. In Section 3, we finish the proof
of the main theorem. In Section 4, extrapolation algorithm and a posteriori asymptotic er-
ror estimation to compute Cauchy principal value integrals are obtained. Finally, several
numerical examples are provided to validate our analysis.

2 Main result
Before we give our main results, we firstly let a = t0 < t1 < · · ·< tn−1 < tn = b be a uniform
partition of the interval [a,b] with mesh size h = (b−a)/n.

Theorem 1 Let f (t) ∈ C∞[a,b] and let θ ∈ [0,1]be fixed. Set h = (b− a)/n for integer n
and define

En( f ,h) = h
n−1

∑
i=0

f (a+ ih+θh), θ ∈ [0,1] (3)
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and

I =
∫ b

a
f (t)dt, (4)

then we have

En( f ,h) = I +
∞

∑
k=1

Bk(θ)

k!
[ f (k−1)(b)− f (k−1)(a)]hk. (5)

where Bk(θ) is the Bernoulli number.

Define fC(t) as the constant interpolant for f (t)

fC(t) = f (t j−1), t ∈ [t j−1, t j]. (6)

and also define a linear transformation

t = t̂ j(τ) := (τ +1)(t j− t j−1)/2+ t j−1, τ ∈ [−1,1], (7)

from the standard reference element [−1,1] to the subinterval [t j−1, t j]. Replacing f (t) in
(1) with fC(t) gives the composite middle rectangle rule:

In( f ;s) :=
∫ b

a
− fC(t)

t j−1− s
dt =

n

∑
j=1

ω j f (t j−1) =
∫ b

a
− f (t)

t− s
dt−En( f ,s), (8)

where ω j denotes the Cote coefficient given by

ω j =
h

t j−1− s
. (9)

We also define

F j(t) = t− t j−1. (10)

By linear transformation (7), we have

F j(t) =
h
2
(τ +1) =

h
2

F(τ), (11)

where

F(τ) = τ +1 (12)

and φ0(t), defined by

φ0(t) =


−1

2

∫ 1

−1
− F(τ)

(τ− t)(t +1)
dτ, |t|< 1,

−1
2

∫ 1

−1

F(τ)

(τ− t)(t +1)
dτ, |t|> 1.

(13)

If F(τ) is the Legendre polynomial of first kind, φ0(t) defines the Legendre function of the
second kind [Andrews (2002)].

Now we present the main results below.
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Theorem 2 Assume f (t) ∈C∞[a,b]. For the middle rectangle rule In( f ;s) defined in (8),
there exist certain constant ci, independent of h, such that

En( f ,s) = f (s)π tan
πτ

2
+

∞

∑
i=1

cihi (14)

where s = tm−1 +(1+ τ)h/2, m = 1,2, · · · ,n.

Based on the theorem 2, we present the modify middle rectangle rule

Ĩn( f ;s) = In( f ;s)− f (s)π tan
πτ

2
, (15)

and

Ẽn( f ;s) =
∫ b

a
− f (x)

x− s
dx− Ĩn( f ;s). (16)

Then we have the corollary

Corollary 1 Under the same assumption of theorem 2, for the modify middle rectangle rule
(15), we have

|Ẽn( f ;s)| ≤Ch. (17)

3 Proof of the Theorem 2
Lemma 1 Assume that s ∈ (t j−1, t j) for some m and let c j = 2(s− t j−1)/h− 1,1 ≤ j ≤ n.
Then, we have

φ0(c j) =


−2
∫ tm

tm−1

− tm−1− t
(t− s)(tm−1− s)

dt, j = m,

−2
∫ t j

t j−1

t j−1− t
(t− s)(t j−1− s)

dt, j 6= m.

(18)

Proof: By following the definition of (1) and the linear transformation (7), we have

∫ tm

tm−1

− tm−1− t
(t− s)(tm−1− s)

dt

= lim
ε→0

{∫ s−ε

tm−1

tm−1− t
(t− s)(tm−1− s)

dt +
∫ tm

s+ε

tm−1− t
(t− s)(tm−1− s)

dt
}

=−1
2

∫ 1

−1
− τ +1

(τ− cm)(cm +1)
dτ

=−1
2

φ0(cm).

(19)

The case j 6=m can be proved by applying the same approach to the correspondent Riemann
integral.
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Lemma 2 Under the same assumptions of theorem 2, it holds that

f (t)
t− s

− fC(t)
t j−1− s

=

[
1

t− s
− 1

t j−1− s

]
f (s) (20)

+
∞

∑
k=1

f (k)(s)
k!

[(t− s)k−1− (t j−1− s)k−1] (21)

Proof: By performing Taylor expansion of fC(t), f (t) at the point s, we have

fC(t) = f (s)+
∞

∑
k=1

f (k)(s)
k!

(t j−1− s)k (22)

and

f (t) = f (s)+
∞

∑
k=1

f (k)(s)
k!

(t− s)k (23)

Combining (22) and (23) together we get the results (20).

Lemma 3 Under the same assumptions of theorem 2, there holds

S0(φ0,τ) =
n

∑
j=1

φ0(c j) = π tan
π(τ)

2

Proof: By straightly calculation of φ0(x), we easily get

φ0(x) =
2

x−1
+ ln

∣∣∣∣1− x
1+ x

∣∣∣∣
= 2Q0(x)+2Q0(x)

(24)

where
Q0(x) =

1
x−1

and

Q0(x) =
1
2

ln
∣∣∣∣x+1
x−1

∣∣∣∣ , Q1(x) = xQ0(x)−1. (25)

Here Qn(x) be the function of the second kind associated with the Legendre polynomial
Pn(x), defined by Andrews [Andrews (2002)]. Then, we have,

lim
n→∞

n

∑
j=1

Q0(2 j+ τ) = lim
m→∞

(
n−m−1

∑
j=0

Q0(2 j+ τ)+
m

∑
j=1

Q0(−2 j+ τ)

)

= lim
m→∞

1
2

ln
2(n−m)−1+ τ

2m+1− τ

= 0
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and

lim
n→∞

n

∑
j=1

Q0(2 j+ τ) = lim
m→∞

(
n−m−1

∑
j=0

Q0(2 j+ τ)+
m

∑
j=1

Q0(−2 j+ τ)

)

= lim
m→∞

(
n−m−1

∑
j=0

2
2 j+ τ−1

+
m

∑
j=1

2
−2 j+ τ−1

)

= lim
m→∞

m

∑
j=−m

1
j+ 1

2 −
τ

2

= π tan
πτ

2
,

where we have use the identity [Andrews (2002)], it follows that

S0(φ0,τ) = π tan
πτ

2
. (26)

3.1 Proof of Theorem 1

Proof: By Lemma 2, we have

(∫ tm−1

a
+
∫ b

tm

)
f (t)
t− s

dt−
n

∑
j=1, j 6=m

h fC(t)
t j−1− s

=
n

∑
j=1, j 6=m

∫ t j

t j−1

[
f (t)
t− s

− fC(t)
t j−1− s

]
dt

=
n

∑
j=1, j 6=m

∫ t j

t j−1

[
1

t− s
− 1

t j−1− s

]
f (s)dt

+
∞

∑
i=1

f (i)(s)
i!

n

∑
j=1, j 6=m

∫ t j

t j−1

[(t− s)i−1− (t j−1− s)i−1]dt.

(27)

For i = m, we have

∫ tm

tm−1

− f (t)
t− s

dt− h fC(t)
tm−1− s

=
∫ tm

tm−1

−
[

f (t)
t− s

− fC(t)
tm−1− s

]
dt

=
∫ tm

tm−1

−
[

1
t− s

− 1
tm−1− s

]
f (s)dt

+
∞

∑
i=1

f (i)(s)
i!

∫ t j

t j−1

[(t− s)i−1− (tm−1− s)i−1]dt.

(28)
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Putting (27) and (28) together yields∫ b

a
− f (t)

t− s
dt−

n

∑
j=1

h fC(t)
t j−1− s

=
n

∑
j=1

∫ t j

t j−1

−
[

f (t)
t− s

− fC(t)
t j−1− s

]
dt

=
n

∑
j=1

∫ t j

t j−1

−
[

1
t− s

− 1
t j−1− s

]
f (s)dt

+
∞

∑
i=1

f (i)(s)
i!

n

∑
j=1

∫ t j

t j−1

[(t− s)i−1− (t j−1− s)i−1]dt

= S0(φ0,τ) f (s)+
∞

∑
i=1

f (i)(s)
i!

n

∑
j=1

∫ t j

t j−1

[(t− s)i−1− (t j−1− s)i−1]dt.

(29)

Here

S0(φ0,τ) =
n

∑
j=1

∫ t j

t j−1

−
[

1
t− s

− 1
t j−1− s

]
dt

with the linear transformation from [t j−1, t j] to the identity interval [−1,1] . As for the last
part of

n

∑
j=1

∫ t j

t j−1

[(t− s)i−1− (t j−1− s)i−1]dt

which can be considered as the error estimate of middle rectangle rule for the definite
integral

∫ b
a (t− s)i−1 dt, i≥ 2. Obviously,by the Theorem 1, it can be expanded by the Euler-

Maclaurin expansions and we have

E i
n( f ,h) =

∫ b

a
(t− s)i−1 dt +

∞

∑
k=1

Bk(θ)

k!
[(b− s)(k−1)− (a− s)(k−1)]hk, k ≤ i−1. (30)

It is easy to see that there are not relation with the singular point s which can be written as

E i
n( f ,h) =

∫ b

a
(t− s)i−1 dt +

∞

∑
k=1

ckhk, k ≤ i−1. (31)

∞

The proof is completed. 
We actually obtain the error expansion of the middle rectangle rule and moreover, get the 
explicit expression of the first order t erm. So it is easy for us to get the superconvergence 
point with S0(φ0,τ) = 0, which means that τ = 0 is the superconvergence point in subinter-
val not near the end of the interval.

4 Extrapolation method
In the above sections, we have proved that the error functional of the middle rectangle rule 
have the following asymptotic expansion

πτ

En( f ,s) = f (s)π tan 
2 

+ 
k=
∑

1 
ckhk (32)

It is easily to see that the error functional depended on the value of ci(τ). In order to present 
our extrapolation algorithm, we give the Lemma below
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Lemma 4 Assume f (t) ∈ C∞[a,b]. For I( f ;s) defined in (1), there holds that I( f ;s) ∈
C∞[a,b].

The proof is similarly to the Lemma 2 in Du [Du (2001)], here we omit it.

For the given s, now we present algorithm. There exists positive integer n0 such that

m0 :=
n0(s−a)

b−a

is a positive number. Firstly, we partition [a,b] into n0 equal subinterval and get a mesh 
denoted by Π1 with mesh size h1 = (b − a)/n0 as the starting meshes. Then we refine the 
starting meshes Π1 to get mesh Π2 with mesh size h2 = h1/2. In this way, a series of meshes 
{Π j}( j = 1,2, · · ·) is obtained in which Π j is refined from Π j−1 with mesh size denoted by 
h j. Then we get extrapolation scheme in Tab. 1.

Table 1: Extrapolation scheme of Ti
( j)

T (h1) = T (1)
1

T (h2) = T (2)
1 T (1)

2

T (h3) = T (3)
1 T (2)

2 T (1)
3

T (h4) = T (4)
1 T (3)

2 T (2)
3 T (1)

4

T (h5) = T (5)
1 T (4)

2 T (3)
3 T (2)

4 T (1)
5

...
...

...
...

...

For a coordinate τ ∈ (−1,1) is given, and define

s j = s+
τ +1

2
h j, j = 1,2, · · · . (33)

and

T (h j) = I2 j−1n0
( f ,s j). (34)

the following extrapolation algorithm is presented:

Step one:

Compute T ( j)
1 = T (h j), j = 1, · · · ,m.

Step two:

Compute T ( j)
i = T ( j+1)

i−1 +
T ( j+1)

i−1 −T ( j)
i−1

2i−1−1 , i = 2, · · · ,m j = 1, · · · ,m− i.
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Theorem 3 Under the asymptotic expansion of theorem 2, for τ = 0 and the series of mesh-
es defined by (33), we have

|I( f ,s)−T ( j)
i | ≤Chi (35)

and a posteriori asymptotic error estimate is given by∣∣∣∣∣T
( j+1)

i−1 −T ( j)
i−1

2i−1−1

∣∣∣∣∣≤Chi−1, i≥ 2.

Proof: For a given τ , by the asymptotic expansion of (32) we have
I( f ,s)−T (h j) = I( f ,s)− I( f ,s j)+ I( f ,s j)−T (h j)

= I( f ,s)− I( f ,s j)+ f (s j)π tan
πτ

2
+

∞

∑
i=1

cihi
(36)

By the definition of Cauchy principal value integrals and (33), for the first two part of (36),
by Taylor expansion for I( f ;s j) at the singular point s, we have

I( f ;s j) = I( f ;s)+ I′( f ;s)
τ +1

2
h j +

I′′( f ;s)
2!

(
τ +1

2
h j)

2

+ · · ·+ I(l)( f ;s)
l!

(
τ +1

2
h j)

l + · · · , (37)

Putting (37) and (36) together, yields

I( f ,s)−T (h j) = f (s j)π tan
πτ

2
+

∞

∑
i=1

bi(s,τ)hi
j, (38)

where

bi(s,τ) = ci−
(τ +1)i

2ii!
I(i)( f ,s), (39)

for a given τ , bi(s,τ) is a constant. By (38), we also have

I( f ,s)−T (h j+1) = f (s j+1)π tan
πτ

2
+

∞

∑
i=1

bi(s,τ)hi
j+1. (40)

By (38) and (40), with h j = 2h j+1 we also have

I( f ,s) = 2T (h j+1)−T (h j)+
∞

∑
i=1

bi(s,τ)
(

1
2i−1 −1

)
hi

j

= T ( j)
2 +

∞

∑
i=1

bi(s,τ)
(

1
2i−1 −1

)
hi

j,

(41)

which implies

I( f ,s)−T ( j)
2 =

∞

∑
i=1

bi(s,τ)
(

1
2i−1 −1

)
hi

j (42)

and
T ( j)

2 = 2T (h j+1)−T (h j). (43)
Continuing to use extrapolation process again, we can obtain accuracy O(h3). Similarly we
can get the accuracy O(h4) . In this way, we continue extrapolation process and finish the
proof.
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5 Numerical example
In this section, computational results are reported to confirm our theoretical analysis.

Example 1 We consider the Cauchy principal value integrals with f (t) = t3, a = 0,b = 1. 
Obviously the integrand function f (t) is smooth enough and by (1), we examine the 
dynamic point s = t[n/4] + (τ + 1)h/2 with τ = 0,±2/3,1/2.

Table 2: The error of the rectangle rule to s = t[n/4] + (τ + 1)h/2

0 −2/3 2/3 1/2
32 2.1095e-02 1.1125e-01 -9.3054e-02 -4.2904e-02
64 1.0481e-02 9.8114e-02 -8.8455e-02 -4.5782e-02
128 5.2243e-03 9.1563e-02 -8.6596e-02 -4.7382e-02
256 2.6081e-03 8.8291e-02 -8.5774e-02 -4.8222e-02
512 1.3031e-03 8.6656e-02 -8.5389e-02 -4.8651e-02
1024 6.5129e-04 8.5839e-02 -8.5203e-02 -4.8869e-02
hα 1.0035 − − −

Table 3: The error modify of the rectangle rule to s = t[n/4]+(τ +1)h/2

0 −2/3 2/3 1/2
32 2.1095e-02 2.0798e-02 2.1401e-02 2.1324e-02
64 1.0481e-02 1.0408e-02 1.0555e-02 1.0537e-02
128 5.2243e-03 5.2061e-03 5.2426e-03 5.2380e-03
256 2.6081e-03 2.6036e-03 2.6127e-03 2.6116e-03
512 1.3031e-03 1.3019e-03 1.3042e-03 1.3039e-03
1024 6.5129e-04 6.5101e-04 6.5157e-04 6.5150e-04
hα 1.0035 0.9995 1.0075 1.0065

From Tab. 2, we know that the convergence rate is O(h) with the coordinate location of
singular point equal zero, while for the local coordinate of singular point do not equal zero,
it is not convergence in general which coincide with our analysis.

For the modify classical rectangle rule, from Tab. 3, we can see that the convergence rate
can reach O(h) for the local coordinate of singular point equal zero or not, which is also
coincide with our corollary.

Example 2 We consider the Cauchy principal value integrals with f (t) = t3 a = 0,b =
1. Obviously the integrand function f (t) is smooth enough and by (1),with s = 0.25 and
the exact value is 5.379991503437726e-01 , we use s = t[n/4]+(τ + 1)h/2 with τ = 0, to
approximation s = 0.25.
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From Tab. 4, we know that the convergence rate of error estimate of the classical rectangle
rule is O(h) for the first column, and the convergence rate of second column, third column
and fourth column are O(h2), O(h3) and O(h4) respectively. From Tab. 5, we know that the
convergence rate of posteriori estimate of the classical rectangle rule rule is the same as the
the convergence rate of error estimate of the classical rectangle rule which agree with our
theorem.

Table 4: Error estimate of the classical rectangle rule s j = s+(τ +1)h j/2

0 h2−extra h3−extra h4−extra
32 3.3328e-03
64 1.6541e-03 -2.4542e-05
128 8.2476e-04 -4.5983e-06 2.0496e-06
256 4.1190e-04 -9.6219e-07 2.4985e-07 -7.2613e-09
512 2.0584e-04 -2.1742e-07 3.0838e-08 -4.4913e-10
1024 1.0289e-04 -5.1482e-08 3.8303e-09 -2.7926e-11

Table 5: A posteriori estimate of the classical rectangle rule rule s j = s+(τ +1)h j/2

0 h2−extra h3−extra h4−extra
32
64 1.6787e-03
128 8.2936e-04 -6.6479e-06
256 4.1286e-04 -1.2120e-06 2.5711e-07
512 2.0606e-04 -2.4826e-07 3.1287e-08 -4.5415e-10
1024 1.0295e-04 -5.5312e-08 3.8582e-09 -2.8080e-11

For the case the singular point is near the end of the interval with s = 1/1024,and the exact
value is 3.338225747121760e-01. We choose the starting meshes n0 = 1024,the conver-
gence rate is also O(h) for the first column, and the convergence rate of second column,
third column and fourth column are O(h2), O(h3) and O(h4) respectively in Tab. 6 and Tab.
7 which agree with our theorem.

For the case the singular point is not located as the mesh-point, we can not find the proper
starting meshes. We have lots of methods to solve the problem, we adopt the methods by
moving the starting meshes a little to make the singular point be located at the mesh point.
In fact, it is not difficult to extend our methods to the quasi-uniform meshes and the proof
is similarly to Theorem 2.

Example 3 Let f (t) = t3, a = 0,b = 1 for the case of quasi-uniform meshes, we consider
the case of s = 1/

√
2 and make sure s is located at the meshes point by moving the starting

meshes a little and refine the meshes each time.
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Table 6: Error estimate of the classical rectangle rule s = 1/1024,s j = s+(τ +1)h j/2

0 h2−extra h3−extra h4−extra
1024 2.4349e-04
2048 1.2179e-04 8.1779e-08
4096 6.0904e-05 2.0399e-08 -6.0707e-11
8192 3.0454e-05 5.0939e-09 -7.7871e-12 -2.2704e-13
16384 1.5228e-05 1.2727e-09 -9.8932e-13 -1.8208e-14
32768 7.6141e-06 3.1809e-10 -1.2346e-13 2.2204e-16

Table 7: A posteriori estimate of the classical rectangle rule s j = s+(τ +1)h j/2

0 h2−extra h3−extra h4−extra
1024
2048 1.2170e-04
4096 6.0883e-05 2.0460e-08
4096 3.0449e-05 5.1017e-09 -7.5600e-12
16384 1.5227e-05 1.2737e-09 -9.7111e-13 -1.3922e-14
32768 7.6137e-06 3.1822e-10 -1.2369e-13 -1.2286e-15

From Tab. 8, for the singular point s = 1/
√

2, we know that the convergence rate of error
estimate of the classical rectangle rule is O(h) for the first column, and the convergence rate
of second column, third column and fourth column are O(h2), O(h3) and O(h4) respectively.
From Tab. 9, we know that the convergence rate of posteriori estimate of the classical
rectangle rule is the same as the the convergence rate of error estimate of the classical
rectangle rule which agree with our theorem.

Table 8: Error estimate of the classical rectangle rule with s = 1/
√

2

0 h2−extra h3−extra h4−extra
32 7.5514e-02
64 3.6402e-02 -2.7097e-03
128 1.7875e-02 -6.5214e-04 3.3719e-05
256 8.8575e-03 -1.6001e-04 4.0393e-06 -2.0067e-07
512 4.4089e-03 -3.9631e-05 4.9451e-07 -1.1884e-08
1024 2.1995e-03 -9.8618e-06 6.1181e-08 -7.2315e-10
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Table 9: A posteriori estimate of the classical rectangle rule with s = 1/
√

2

0 h2−extra h3−extra h4−extra
32
64 3.9112e-02
128 1.8527e-02 -6.8586e-04
256 9.0175e-03 -1.6405e-04 4.2400e-06
512 4.4486e-03 -4.0125e-05 5.0640e-07 -1.2586e-08
1024 2.2094e-03 -9.9230e-06 6.1904e-08 -7.4403e-10
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