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Three-Variable Shifted Jacobi Polynomials Approach for
Numerically Solving Three-Dimensional Multi-Term Fractional-
Order PDEs with Variable Coefficients

Jiaquan Xie®* *, Fugiang Zhao" 3, Zhibin Yao" 3 and Jun Zhang":2

Abstract: In this paper, the three-variable shifted Jacobi operational matrix of fractional
derivatives is used together with the collocation method for numerical solution of three-
dimensional multi-term fractional-order PDEs with variable coefficients. The main
characteristic behind this approach is that it reduces such problems to those of solving a
system of algebraic equations which greatly simplifying the problem. The approximate
solutions of nonlinear fractional PDEs with variable coefficients thus obtained by three-
variable shifted Jacobi polynomials are compared with the exact solutions. Furthermore
some theorems and lemmas are introduced to verify the convergence results of our
algorithm. Lastly, several numerical examples are presented to test the superiority and
efficiency of the proposed method.

Keywords: Three-variable shifted Jacobi polynomials, multi-term fractional-order PDEs,
variable coefficients, numerical solution, convergence analysis.

1 Introduction

The elliptic partial differential equations have been applied in various fields of engineering
and science. Many important phenomena in electromagnetics, viscoelasticity, fluid
mechanics, electrochemistry, biological population models, signals processing [Arpaci
(1984); Arpaci and Roache (1972); Myint-U and Debnath (2007); Spotz and Carey (1996);
Wang, Zhong and Zhang (2006); Cebeci (2002)] can be well described by elliptic fractional
differential equations. For that reason we need a reliable and efficient technique for the
solution of fractional differential equations.

The research of numerical solution is still an important subject. Various numerical methods
have been proposed to solve such problems. These methods include meshless methods
[Dehghan and Shirzadi (2015); Hu, Li and Cheng (2005)], spline collocation methods
[Fairweather, Karageorghis and Maack (2011); Abushama and Bialecki (2008)], finite-
difference methods [Britt, Tsynkov and Turkel (2010); Boisvert (1981); Singer and Turkel
(2006)], finite element method [Ciarlet (2002)], Chebyshev polynomials method [Ghimire,
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Tian and Lamichhane (2016)], new wavelet based full-approximation [Shiralashetti, Kantli
and Deshi (2016)] and Domain decomposition method [Zhang, Zhang and Yin (2008)]. In
Aziz et al. [Aziz and Asif (2017)], the authors utilized Haar collocation method for three-
dimensional elliptic partial differential equations. R. C. Mittal and S. Dahiya used cubic B-
spline differential quadrature method to obtain the numerical solution of three-dimensional
telegraphic equation in Mittal et al. [Mittal and Dahiya (2017)]. In Srivastava et al.
[Srivastava, Awasthi and Chaurasia (2017)], they proposed the reduced differential
transform method to solve two and three-dimensional second order hyperbolic telegraph
equations.

In this paper, we consider the three-dimensional multi-term fractional-order PDEs with
variable coefficients of the following form using three-variable shifted Jacobi polynomials:

o p )
a(x,y, Z)%-&b(x, Y, z)%.;.c(x, Y, Z)%—i—d (XY, Z)GU();,XY, z)
+e(x, y,Z)erk(x, Y, Z)WH(X, y.z)u(xy,z)=f(xy,2), (D

l<a,B,y<2, (X, y,Z)e[O,Ll]x[O, Lz]x[O,Le],

o of o o o 0 o _
—,——%,—»—,—,— denotes the Caputo derivative, f(X, y,z) is a
ox“ oy’ 01" ox oy oz

known function and U (X, Y, Z) is the solution function to be determined. Subject to the

where

Dirichlet boundary conditions:

u(xy,0)=g(xy,0),u(xy,L,)=g(xy.),
u(x,0,2)=9(x0,2), u(x,L,,z)=9(xL,,2), )
u(0,y,z2)=9(0,y,2), u(L,y,2)=9(L,y.z).

The current paper is organized as follows: In next Section, the definitions of fractional
calculus and shifted Jacobi polynomials, and function approximation are introduced. The
differential operational matrix of one-variable shifted Jacobi polynomials is given in
Section 3. In Section 4, the error bound and convergence analysis is investigated through
some theorems and lemmas. In Section 5, we utilize the three-variable shifted Jacobi
polynomials to solve three-dimensional PDEs with variable coefficients. In Section 6,
several numerical examples are illustrated to test the proposed method. Finally, a
conclusion is drawn in Section 7.

2 Preliminaries and notations
2.1 The fractional derivative in the Caputo sense

Definition 1. The Riemann-Liouville fractional integral operator of order V(VZ 0) is
defined as [Zhao, Huang, Xie et al. (2017)]
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1 X v-1
I'f(x)==—=| (x—7) f(r)dz,v>0,x>0,
r'(v) IO 3)
I%f (x) = f(x).
Definition 2. The Caputo fractional derivatives of orderv is defined as Zhao et al. [Zhao,
Huang, Xie et al. (2017)]

va (X) = Jm_vaf (X):ﬁj.:(x—f)mvj-dd?f (T)dT, m-1<v< m, X > 0, (4)

where D™ is the classical differential operator of order m .
For the Caputo derivative we have

0, for g <v,
D'x” =< T[(B+1)
r(p+1-v)

Recall that forV € N | the Caputo differential operator coincides with the usual differential
operator of an integer order.

)

X/, for p>v.

Similar to the integer-order differentiation, the Caputo’s fractional differentiation is a linear
operation, i.e.

D (Af (x)+ug(x))=2D"f (x)+uD"g(x), (6)

where A and [ are constants.

2.2 Jacobi polynomials

The well-known Jacobi polynomials are defined on the interval [-1, 1] and can be generated
with the aid of the following recurrence formula [Bhrawy and Zaky (2015)]:

(a+B+2i-1){a’ B> +t(a+p+2i)(a+p+2i-2)} »
2i(a+p+i)(a+p+2i-2) R (1)
(a+i-1)(B+i-1)(a+p+2i) (@5)

- i(a+pB+i)(a+p+2i-2) Pt (), 1223,

pla/) (t)=

where Po(a’ﬂ)(t):1 and F’l(a'ﬂ)(t)za+§+2t+a;ﬂ.

In order to use these polynomials on the interval X € [0, L] we define the so-called shifted

. . . . . 2X . .
Jacobi polynomials by introducing the change of variable t = T —1. Let the shifted Jacobi
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an | 2
polynomials Pi( ) (Tx—lj be denoted by Pfff’ﬁ )(X). Then P,_(f:'ﬂ )(X) can be
generated from:
(a+/3+2i—1){042—/3’2+[2LX—1j(a+ﬂ+2i)(a+ﬂ+2i—2)}
2i(a+p+i)(a+p+2i-2)
—(a_+i_l)(ﬂ_+i_1)(a+_ﬂ+2i)PL(‘i’;/z’)(x),i:2,3,...,
i(a+p+i)(a+p+2i-2) ~
Lﬁ*z(__ j ol
2 L 2

PLEY (x) =

where PL(%”B) (x)=1 and PL(Z’ﬂ) (x)=
The analytical form of the shifted Jacobi polynomials Pff’ﬁ ) (X) of degreei is given by

C(i+p+1)I(i+k+a+pB+1) )

R (x) = 3" (~1)™ , 8
L) kZ::;( ) F(k+ﬂ+l)F(i+a+ﬂ+l)(i—k)!k!L“X ®
where R (0)=(-1) UEAY pien () _Llivard)
' r(g+1it - I(a+1)i!
The orthogonality condition of shifted Jacobi polynomials is
.[ PP (x) RS (x)wi? (x)dx =h,, 9)
LM (k+a+1)T(k+ B+1) o
where VV(La'ﬂ)(X)=Xﬂ(L—X)aandhk= (2k+a+B+1)KIT(k+a+B+1)’ -
0, i # j,

Definition 3. Suppose that {PL(‘;"ﬂ ) (X)}w is the sequence of one-variable shifted Jacobi
! n=0

o0

polynomials on the interval [0, L] . Three-variable Jacobi polynomials, {Pij(ka ) (X)} e
I, J,K=!

are defined on the domain Q= [0, Ll]X[O, L2]>< [0, Ls] as follows:
P '(x,y,2)= P(l"‘."g)(x)P(“'.ﬂ)(y)PL(“k'ﬂ)(z), i,j,k=012,...,(xYy,2z)eQ, (10)

Li Lo,
Theorem 1. The polynomials F’,J(k (X Y, Z) are orthogonal with respect to the weight function
WD (x,y,2) =w (X)W (y)w (z) in the domain Q@ =[0, L ]x[0, L, ]x[0, L,].

On the hand, the following property is held:
1plpl @
,Uj u(k (xy.2 ) i’ (X ¥,z ) )(x,y, ) dxdydz = h ( )hL Jﬁ)(y)h ( )80 0y



Three-Variable Shifted Jacobi Polynomials Approach for Numerically Solving 71

Lemma 1. If Pj(a’ﬂ ) (x)and p«” )(X) are jth and Kth shifted Jacobi polynomials,

the product of Pj(a"B ) (x) and Pj(“’ﬁ ) (X) are written as

Q(a!ﬁ)(x): i(j!k)xr’

j+k

)

. ik .
where coefficient ﬂ,r“ are determined as follows:

If j>k
r=0.1..., j+k,
if r> jthen
k
(ik) _ ik
a —|;j7r|7li
else
r=min{rk},
(1K) N7k
Ay —;7:4“ ,
end
If j<Kk;
r=0,1,..., j+Kk,
if r<jthen
r=min{r, j},
(1) N0 ok
Ay —IZ:O‘,?’LVN
else
r, =min{rk},
(k) _ N 0k
Ay _|;j7/r_lrl 1
end

Proof. See Borhanifar et al. [Borhanifar and Sadri (2015)].
Lemma 2. IfP*”) (x), Pj(a'ﬂ) (x)and pl«”) (x)arei, j and Kth shifted Jacobi polynomial,
then
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1 a, a, a, a,
G = R 0PI ()R ()W ()

_ (—1)i7I ﬂ(j’k)l"(i+,8+l) (i+l+a+ B+ (n+1++1)T (a+1) (1
_HZ:(:‘zo T(1+ B8+ (i+a+B+Y)T(n+l+a+B+2)(i-1)! ’

were introduced in Lemma 1.

2.3 Function approximation
A three-variable continuous functionU(X, ¥, Z) in the domain Q = [0, L1] X [0, L, ] X [0, Le]
can be expanded in terms of three-variable shifted Jacobi polynomials as

X y’ zzzuuk uk X Y.z )’

i=0 j=0 k=0

where

Uy = N I I I (x,y,2) (x, y,z)W(“ﬁ)(x, y,z)dxdydz, i, jk=0,1,2,...
L Lz i |—3

In practice, the (N +l) truncated series with respect to all three variables X, Y and z can

be used an approximation for the given function U (X, Y, Z)

u(xy.z)=uy(xy.z =ZN:ZN:ZN:uuk PY (% y,2)=@" (x,y,2)U=U"®(x,y,z), (12)

i=0 j=0 k=0

where U and @(X, y,z) are the unknown coefficients and three-variable Jacobi

polynomials vectors are defined as

T
U _[UOOO’UOOl"“ uOON’“OlO’“Oll"" l"I01N"" l"INNO’uNNl"" uNNN] ’

(X Y.z ) [ 0(00 (X Y, Z) PO(ON (X Y, Z) 0(10 (X Y, Z) Po(lN (X Y, Z)

The following property of the product of two vectors (D(X, Y, Z) and @' (X, Y, Z) is

(13)

introduced and applied in solving the three-dimensional PDEs with variable coefficients.

D(x,Y,2)@" (x,y,2)V =VO(x,Y,2), (14)

where V' and V are, respectively, (N +1)3 x1 vector and (N +1)3 ><(N +1)3
operational matrix of product.

Theorem 2. The entries of the matrixV , in Eq. (14), are computed as:
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N

- l N N
Vm(N+l)2+n(N+l)+|,m’(N+1)2+n’(N+l)+|’ - h@ APl ) Zol Zvijkqmim’qnjn’qlkl”
| -

Ny 7 i=0 j=0 k=0
! !’

m,n,I,m’,n",1"'=0,1,...,N,

where (fj, are introduced by Lemma 2.

Proof. See Sadri et al. [Sadri, Amini and Cheng (2017)].

3 The differential operational matrix of one-variable shifted Jacobi polynomials
vector

Lemma 3. The first-order derivative of the vector @(X) can be expressed by

20 _prig(x), (15)

where D s the ( N +l) X ( N +l) operational matrix of derivative given by

DY :(dij):{cl(i! J)' P> ],

0, otherwise,

W (v pr)(itasfe2), (7ra2), | T(iratfr)
C(ij)= (i-j-1)'T(2j+a+p+1)
§ (—i+1+j,i+j+a+ﬂ+2’j+a+1 .1j
CHjra+2, 2j+a+p+2 )

For the proof see Doha et al. [Doha, Bhrawy and Ezz-Eldien (2012)].

Theorem 3. Let @ ( X) be one-variable shifted Jacobi polynomials vector and let alsoV >0,
then

D'®(x)= D(V)qﬁ(x), (16)
where D" is the (N +1)><(N +1) operational matrix of derivative of orderv in the
Caputo sense and is defined by:
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0 0 0 0
0 0 o
oo | 410 A (V1Y) A (v]2) - A(VIN)| (17
Av(.i,O) AV(.i,l) AV(.i,Z) Av(i.,N)
AN AND  A(N2) N A, (N,N)
where
G )= 8,
k=[v]

and 5”-k is given by
B (—1)i_kL‘“ﬂ‘”ll"(j+/3+1)1“(i+ﬂ+1)1“(i+k+a+ﬁ+1)
iJ'k_hjl“(j+0¢+ﬂ+1)1“(k+ﬁ+1)1“(i+0{+ﬁ-|r1)1“(k—v+1)(i—k)!
y J (—l)j_lF(j+|+a+,B+1)F(a+1)F(I+k+,[)’—v+l)
g()“ L(l++)T(I+k+a+B-v+2)(j-1)H!

Note that in D" , the first I_V—l rows, are all zeros.

Proof. See Doha et al. [Doha, Bhrawy and Ezz-Eldien (2012)].

4 Error bound and convergence analysis

In this section, we show that the given method in the previous sections, is convergent. For
our purpose we will need the following definitions and theorems to obtain an error bound
for the proposed method in the Jacobi-weighted Sobolev Space.

Definition 4. We define
F, = span{Pn(ﬁl'ﬂ) (x,y,2),0<m,n,I < N},

as the finite-dimensional polynomials space.
Theorem 4. Suppose that

d'u(x,y,z)
0" xo"yo"z
Jacobi approximate solution to U (X, Y, Z) from FN and U, (X, Y, Z) is the Taylor

eC(Q)(Q=[0,1]x[0,2]x[0,1]),i, +i, +i; =i,i=0,1,...,N. IfUy (X, Y,2)is the

series of the U (X, Y, Z) of order N respect to each variables X,Y and z then an error

bound can be presented as follows:



Three-Variable Shifted Jacobi Polynomials Approach for Numerically Solving 75

3N+1M 3
o y.2) =t (3. D < Gy (BB 204 D)
where
N+1,
M = max {an}' an: max l\?l—U(X’—y,Z) |
0<m,n<N+1 ' ' (xy.2)e|ONF mxam ”y@”z‘

and B ( r, S) is the well-known Beta function.

Proof. See Sadri et al. [Sadri, Amini and Cheng (2017)].
Definition 5. To derive approximation results, we introduce the Jacobi-weighted Space:

Flon (Q)= {v|v is measurable and|\v] ., < oo}, reN, Q=[0,1]x[0,1]x[0,1],

equipped with the following norm and semi-norm:

1
r 2 E
e =l | X =002,

My = o5
where
| 3
oV =
X axllay|262|3 le

3

Wo(a+l,,8+l) (X, Y, Z) _ W(a+l1,ﬁ'+ll) (X, Y, Z)W(a+lz,ﬂ+lz) (X, Y, Z)W(a+l3,ﬁ+l3) (X, Y, 2)1 ZI, -1

i-1
Theorem 5. For any Ue F\,\;wm (Q), reN, and 0< u<r, the following estimate
holds:

3
S(u=r)

Ju=uy, yen SAN(N+a+B))2" |, e (18)

where A is a positive constant independent of any function, N, o and 8 .

Proof. See Sadri et al. [Sadri, Amini and Cheng (2017)].

Remark. Let Ue F\A;w,,,) (Q) and Uy € K be the Jacobi approximation to u . Then,

the following estimates holds for all U e FV\;(Q‘ 5 (Q),

Ju—uy ||L2(Q) < Ju-uy ||F’( Q)
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5 Numerical implementation

In the section, we use the three-variable shifted Jacobi polynomials to solve three-
dimensional fractional-order PDEs with variable coefficients.

Similarity, the functions a(X,¥,z),b(x,y,z),c(x,y,z),d(xy,z).e(x,y,z),k(x,y,z)
and | (X, Y, Z) are also approximated by the three-variable shifted Jacobi polynomials as:
a(x,y,2)=@" (x,y,2)Ab(x,y,2)=®" (x,y,2)B,c(x,y,z)=®" (x,Y,2)C,
d(xy,z)=®"(x,y,2)D,e(x,y,2)=@" (x,y,2)E.k(x,y,2)=@" (x,y,2)K, (19
I(x,y,z)=@" (x,y,2)L.

where A,B,C,D,E,K and L can be obtained by Eq. (13).

Using Egs. (12), (14), (15) and (16) we have Sadri et al. [Sadri, Amini and Cheng (2017)]

a(x, , Z)a“ug;((,ay, Z) =UT 5“@2:;)/, Z)(DT (X, Y, Z)A: T 0" (qj(x)@;jw@@(z))dg (X, Y, Z)A
:“T{(%X)F(@(y)@m(z))}@(x, 1,2)A=UT (D" 01,)0(11,2) (x,2)A ¢
=U"(D“®1,)Ad(x,y,2),

b(x, y,z)aﬂug,ﬂy,z):w aﬂq)g/,}y,z)qf(xl y2)B=U" aﬂ(cb(X)@;ﬁ(y)@a)(Z))(pr(x, ,2)B

=u’ {di(x)@[[aﬂggy)]@a)(z)}qf (xy.2)B=U"{1,8(D'8L,)|0(xy,2)0" (xy.2)8 @D
=U" {I2 ®(D/’®I2)} Bo(x,y,2),

7 (2(x)99(y)8(2)
o7’

du(x,y,2) m IP(xy,12)

T ~ T
pr p o' (xy,2)C=U

c(xy.2) o' (x,y,2)C

=y’ {(D(x)@(di(y)@[&gz)j}df (xy,z)C=U" (I1®D’)q§(x,y,z)d§T (x,y,2)C (22)

0z

:UT(I1®D’)C~<D(X,y,z),

U O g OISO
=U’ {[dz—)((x)j(@(di(y)@di(z))}df (x,y,2)D=U" (D(” ® Il)(b(x, y,2)®' (x,y,2)D (23)

=UT (D(l) ®I1)I5q7(x, Y,2),



Three-Variable Shifted Jacobi Polynomials Approach for Numerically Solving 77

e(x y,z)au(zyy’z) U ad’(gyyz)qf (1y.2)E=U" o(2(x)22(y)92(2) - (1y,2)E
:UT{q)(x)@)[[di—f,W]@@(z)j}@T(x,y,z)E:UT{|2®(D“)®|2)}¢(x,y,z)¢T(x,y,z)E (24)
:UT{|2®(D(”®|2)} Eo(xy.2),

k(x,y,z)au();’zy’z) U M(;y’z)af (xy.2)K=U" 6(¢(X)®‘2y)®¢(z)>d (xy.2)K

:UT{@(x)@{@(y)@(d(z—iz)]]}df(x,y,z)K =UT(I1®D(1))¢(x,y,z)d§T(x,y,z)K (25)
:UT(|1®D(1))K@(X, y,2),

(X, y,2)u(x,y,2)=UT®(x,y,2)®" (x,y,2)L=U"LD(x,Y,2). (26)
where |, and I, are (N +1)2 x(N +l)2 and (N+1)x(N+1) identity matrices,
respectively. Substituting Egs. (20)-(26) into Eq. (1) we get

U™ (D*®1,)A®(x,y,2)+UT{I,®(D’ ®1,)|B&(x,y,2)+U" (1,00 )Co(x,y.2)

U7 (0% ®1,)00(x,y,2)+UT {1,8(DY ®1,)| E@(x,y,2)+UT (1,©D" )R@(x,y,2) (27)
+UTLD(x,y,2) = (x,y,2).

For the Dirichlet boundary condition (2) we have

U'®(xy,0)=9g(xy,0),U ®(x Yy L)=9(xy.L),

U'®(x,0,2)=9(x,0,z), U'®(x,L,,z)=9(xL,,2), (28)

U'®(0,y,z)=9(0,y,z), U'®(L,y,z)=9(L,Y.2).

Eq. (27) together with Eq. (28) constitutes a system of algebraic equations. Then dispersing
the unknown variables X, Y and z as the following way:

L) LEID) L@
X = 2(N+1)' | = 2(N+1) 2, = 2(N+1) 1= N +1. (29)

Then we have
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UT(D* ®1,)Ad(x,y,,2)+UT{1,8(D’ @1,) Bo
+UT (DY ®1,)00(x,y,2)+U"1,8(0" @1, )| E0
+UTLq)(xi,yj,z):f(xi,yj,z.),

UT®(x,y;,0)=9(%,¥;:0).U"®(x.y;, L) =9 (%.y;, L),
U'®(x.0.2)=9(x,0,2), U®(x,L,,2)=0(x.L,,7,),

U'(0,y,2)=9(0y,.2 ), U'®(L,y,2)=9(L.y,.2).

Solving this system, the unknown coefficient matrix U can be obtained. Then using Eq.
(12), the unknown solution function U (X, Y, Z) is found.

(xl,yj, )+U (I ®DV)C(D(x,,yJ, )
Eo(x.Y;.2 +UT(I ®D" )Kdi(xi,yj,z,)
(30)

6 Numerical experiments

Example 1. Consider the following three-dimensional multi-term fractional-order PDEs
with variable coefficients

F(L75) 4o 0#u(xy,2) T(L5)

15 0°U(X,Y,2) s r(1.25) TS o""u(x,y,z)
2 axl .25 2 y ayl.S 2 621.75
+lxau(x, y,z)+1y8u(x,y,z)+lz6u(x,y,z)+u(xiyyz) XYz,

2 ox 2 oy 2" &
(x,y,2)€[0,2]x[0,2]x[0,2].

with the

€2))

Dirichlet boundary conditions: U (X, Y, 0) =
u(xy,2)=4x*y*,u(x2,z)=4x’z2",u(2,y,z) = 4y*z*
u (X, Y, Z) = XZyZZ2 . WhenN =2,4 and 6, the absolute errors at some

values of X,Y and z are shown in Tab. 1. Tab. 1 shows that the absolute errors decrease

u(x,0,z)=u(0,y,z)=0 ,
The analytical solution of

this problem is

as N increases.
Table 1: The absolute errors at some values of X,Y,Z with N =2,4,6

(x.y,2) Anal. Sol. N=2 N=4 N=6

(0,0,0) 0 7.37849180e-4 6.27192197e-5 1.8271918%-6
(0.25,0.25,0.25)  0.000244140625  2.37812719e-3  7.38202901e-5 2.18278112e-6
(0.5,0.5,0.5) 0.015625000000  3.28172089¢-3  8.37191898¢-5 2.74918109¢-6
(0.75,0.75,0.75)  0.177978515625  3.72719098e-3  9.37192897e-5 2.35181781e-6
(1,1,1) 1.000000000000  4.28191890e-3  1.36181289¢-4  8.37191807¢-7
(1.25,1.25,1.25)  3.814697265625  4.87319018e-3  1.74910909¢-4  4.29810190e-6
(1.5,1.5,1.5) 11.390625000000  5.27192801e-3  1.52612817c-4  4.63817989¢-6

(1.75,1.75,1.75)
(2,2,2)

28.722900390625
64.000000000000

6.78319819¢-3
6.15271282¢-3

2.38101910e-4
2.75918101e-4

5.23891100e-6
4.18728191e-6
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Example 2. Consider the following three-dimensional fractional-order PDEs with variable
coefficients

a(xy, z)M+b(x, Y, Z)M+C(x, y’Z)(’;VU(X, y,2) +d(x y’Z>6u(x, y,z)

oX oy’ oz’ oX
+e(Xx, y,z)%+k(x, y,z)%ﬂ(x, y,2)u(x,y,z)=f(x,y,2), (32)

(X, Y, Z)e[O,l]x[O,l]x[O,l].

:% 3/2 2,2 b( ) 5F(3/4)X2y7/422,

96

Xy*2%, d (x, y,z)=%xy222, e(x, y,z)=%x2y22,
k(x,y,z):%xzyzz, I(X,y,z)zxyz

and f(x, y,z)=6x3y3z3+3xyz[ (y“+z4)+y2(x4+z4)+22(x4+y4)]+x2y222(x2+y2+zz).
Subject to the Dirichlet boundary conditions: U (X, Y, 0) =u (X, 0, Z) =Uu (0, Y, Z) =0,
u(x, y,1):xy(1+x2 +yz),u(x,l,z):xz(1+x2+22),u(L y,z2)= yz(1+ y2+22).

The analytical solution of this problemis u (X, Y, Z) = Xyz (X2 +y*+ 22) . Example 2 and

Example 3 show that the numerical solutions approximate to the exact solutions well as N
becomes bigger.

. oyl 5 _
(M Whenx=]/3,U(X,y,Z)—? §+y +2° |. When N =3,4and 5, the graphs of

the numerical solutions at Z = 0.3,0.6 and 0.9 are shown in Fig. 1.

z=0.6 =09

0.35 - 0.6 S

! .
Anal. Sol. | Anal. Sol.

1
Anal. Sol. i

(IR

03} — % —-N=5 <
& .5

< &
025} .o — N=3 {,’ )

«?’ I

[IX4)

¥l 04

| 02

Figure 1: The numerical solution u(% Y, ZJ at z=0.3,0.6and0.9when N =3,4and5
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. 2yz(4  ,
(i) When x=2/3, U(X,y,z)Z? §+y +Z° |. When N =3,4and 5, the graphs

of the numerical solutions at z =0.3,0.6 and 0.9 are shown in Fig. 2.

z=0.3 z=0.6 =09
0.5 1 R v
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Figure 2: The numerical solution U (5 Y, Zj at z=0.3,0.6 and09when N =3,4and5

Example 3. Consider the following three-dimensional second-order PDEs with variable
coefficients

a(xy, z)%’zy'zhb(x, Y, z)%w(x, y,z)wz f(xy,2), (33)

0z
(X,y,z)e[O,l]x[O,l]x[O,l].
where a(X,y,z)=yz,b(x,y,z)=xz,c(X,y,z)=xy and
f (x,y,z)=sinh(x+1)sinh(y+1)sinh(z+1)(xy+xz+yz) . With the Dirichlet
boundary conditions:
u(x,y,0)=sinh(1)sinh(x+1)sinh(y+1),u(x,0,z)=sinh(1)sinh(x+1)sinh(z+1),
u(0,y,z)=sinh(1)sinh(y+1)sinh(z+1),u(x, y,1)=sinh(2)sinh(x+2)sinh(y+2),
u(x,1,z) =sinh(2)sinh(x+2)sinh(z+2),u(1,y,z) =sinh(2)sinh(y+2)sinh(z+2).
The analytical solution of this problem is
u(x,y,z)=sinh(x+1)sinh(y+1)sinh(z+1).
when z=05,u(X,y,z)=sinh(15)sinh(1+x)sinh(1+y). The graphs of the

numerical and analytical solutions when N = 2,3 and 4 are shown in Figs. 3-6.
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Figure 3: Analytical solution
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Figure 5: Numerical solution with N = 3.
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30

Numer. Sol. with N—4

0 0 . X

Figure 6: Numerical solution with N =4,

Example 4. Consider Eq. (33), we define the 2-norm error as

1 2 Yo (1 e
||g(x, y,z)||2=(_[o[uN(x, y,2)-u(x, y,z)] dx) E[M;[UN (xi,yj,z,)—u(xi,yj,z,)] j
j1=12,....M.
Where Uy (X, Y, Z) and U(X, Y, Z) are the approximate and exact solutions respectively.
When N=2,N=3 and N=4 , the 2-norm error ||g(x, y,z)||2 with M=21 at
y =0.3,z = 0.6 are shown in Tab. 2. Tab. 2 shows that the numerical precision can achieve

le—5~1e—6 only small series terms are expanded.

Table 2: The 2-norm error”g(x, Y, Z)“2 with N =2,3and 4

||8(X' Y, Z)”z 2.36181210e-4  3.17281919e-5  6.18271018e-6

7 Conclusions

In this article we have studied a numerical scheme to solve three-dimensional multi-term
fractional-order PDEs with variable coefficients. Our approach is based on the three-
variable shifted Jacobi polynomials and their operational matrices of fractional derivatives
together with a set of suitable collocation nodes. The approximation of the solution together

with imposing the collocation nodes is utilized to reduce the computation of this problem

to some algebraic equations. The numerical results show that our method is convergent as
N increases.
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