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Abstract: Torsional micromirror devices have been widely used in micro displays, RF 

switches, optical communications, and optical coherence tomography systems. In order to 

study the stability of electrostatically driven torsional micromirror system with double 

bottom plates and two voltage sources, a dimensionless, two degrees of freedom (2-DoF) 

dynamic model was constructed. Governed by the dimensionless phase space model 

equation, the pull-in and bifurcation phenomena were analyzed using the Hamiltonian 

method and numerical simulation. In particular, the influence of the damping coefficient 

and the torsion-bending coupling effect on the phase trajectory was investigated. 

Furthermore, the conditions that can lead to pull-in were numerically determined for 

saddle-node, pitchfork and Hopf bifurcations in the framework of 2-DoF system. Result 

showed that the dynamic pull-in voltage as predicted by the proposed 2-DoF system 

model is considerably lower than that by the one degree of freedom (1-DoF) system 

model. It was also confirmed that the pull-in voltage varies with the damping coefficient 

and/or the ratio of the two voltages applied to the bottom plates of the micromirror. The 

modelling method and stability analysis presented in this paper shall provide valuable 

insight to the design and control of electrostatically actuated micromirror systems. 
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1 Introduction 

Electrostatically actuated torsional micromirror is widely utilized in various engineering 

or research fields due to its advantages of low energy consumption, simple structure and 

high scanning frequency [Koay and Rahim (2016)]. Like any other devices driven by 

electrostatic force, a torsional micromirror system’s top plate can be attracted to and 

physically get in touch with its bottom plate. This so-called pull-in phenomenon, 

whenever it occurs, is an indicator that the torsional micromirror system is at an unstable 

state.  

The pull-in phenomenon in electrostatically driven systems is well researched for the 

development of micro-electro-mechanical systems (MEMS) technology. An early study 

of pull-in concerned only the static equilibrium [Zhang, Chau, Quan et al. (2001)]. Very 
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quickly, it was realized that the pull-in of any electrostatically actuated MEMS device is 

related to bifurcation seen in a nonlinear system, exemplified in a study to characterize 

the pull-in instability of a MEMS device using the bifurcation diagram obtained from a 

simple model [Pelesko (2002)].  

In general, study of the pull-in of a torsional micromirror has been carried out by either 

solving the static equilibrium equation and dynamic differential equation directly [Zhang, 

Chau, Quan et al. (2001); Zhao, Chen, Huang et al. (2005)], or applying phase space 

analysis. Through the latter approach, the bifurcation phenomenon of micromirror system 

can be identified right in the state/phase space by examining the state change of the 

system, and those state changes are found to be directly tied to the stability or instability 

of the system. Following the phase space analysis, Li et al. [Li, Xi and Hua (2011)] were 

able to mathematically reveal that the DMD system exhibits both the saddle node and the 

codimension bifurcations. Taghizadeh et al. [Taghizadeh and Mobki (2014)] analyzed an 

electrostatically driven double bottom plate torsional micromirror system in phase space 

using one-degree-of-freedom(1-DoF) dynamic model, and the system shows the saddle 

node and pitchfork bifurcations. Li et al. [Li, Duan, Ma et al. (2014)] proved that a 

sequence of Hopf bifurcation occurs at the equilibria in phase space analysis. Pratiher et 

al. [Pratiher (2014); Li and Zhang (2016)] studied the static and dynamic characteristics 

of electrostatically driven MEMS microbeam also in the phase space. 

Although these studies have implicitly or explicitly recognized that subtle differences 

exist between the static pull-in and dynamic pull-in behaviors [Zhang, Yan, Peng et al. 

(2014)], no study yet is conducted to examine these differences through the phase space 

analysis, and it remains unexplored regarding how bifurcations of a MEMS micromirror 

system are linked to the dynamic pull-in.  

Another drawback of all the bifurcation studies on MEMS micromirror system is 

attributed to the fact that they were all based on the 1-DoF model, which ignored the 

torsion-coupling effect. When this important effect is ushered in for more accurate 

analysis, a more complex two-degree-of-freedom (2-DoF) dynamics model needs to be 

developed and used. 

To address the aforementioned problems in analyzing the pull-in phenomena of the 

electrostatically actuated MEMS torsional micromirror system with two voltage sources, 

the Newton-Euler method is applied to build a nonlinear 2-DoF dimensionless dynamic 

model, as detailed in Section 2. With the proposed 2-DoF model, both the static and 

dynamic characteristics of the micromirror can thus be studied through examining the 

static and the dynamic bifurcations in phase space, as reported in Sections 3 and 4. These 

results are compared with those obtained from the Hamiltonian method for undamped 

systems.  

2 2-DoF Model for double bottom plate micromirror system 

As shown in Fig. 1(a), the micromirror system is composed of two torsional cantilever 

beams, a micromirror surface, a top plate, two bottom plates, and two fixed anchors that 

sit on top of the silicon substrate. The width, length and thickness of the top plate are a, L, 

and tm, respectively. The thickness of the mirror is tAl. The width, length and thickness of 

the two cantilever beams are w, l, and tb, respectively. The size and position of the bottom 



 

 

 

Bifurcation-Based Stability Analysis of Electrostatically Actuated                                 263 

plate are determined by a1 and a2. The initial (rest) spacing between the top plate and the 

bottom plates is h. 

As far as a micromirror system with a single bottom plate is concerned, a torsion 

micromirror model based on small angle approximation [Wetsel and Strozewski (1993)] 

could be used. If the bending-torsion coupling effect, resulting from a driving voltage 

applied to the plates, needs to considered, a vertical displacement has to be added into the 

model, along with the angular displacement, as the case in Huang’s work [Huang and Liu 

(2004)]. In the same token, for the double-bottom-plate torsional micromirror system 

driven by two voltages, V1 and V2, the bending-torsion coupling effect cannot be ignored. 

Consequently, rotation of the micromirror will be reflected in the angle of rotation θ and 

the vertical displacement y, as illustrated in Fig. 1(b).  

  
(a)                                               (b)  

Figure 1: Schematic views of the torsional micromirror: (a) 3D view, and (b) cross-

sectional view 

Since the lengths and widths of the top and bottom plates are much greater than the 

distance between the top and the bottom plates, the edge effect can be safely neglected 

[Huang and Liu (2004); Zhang, Meng and Chen (2007)]. The electrostatic forces between 

the top plate with unit length and the two respective bottom plates, hereinafter referred as 

the left bottom and the right bottom plates, are given below 
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where εr is the relative dielectric constant (1 for air), and ε0 is the dielectric constant of 

vacuum. If we integrate Eqs. (1) and (2) (see Eqs. (3) and (4)) and use small angle 

approximation (i.e. θ and sinθ are assumed to be equal when θ is small), the electrostatic 

force between a bottom plate and the top plate and the corresponding electrostatic torque 

can be expressed as Eq. (5) through Eq. (8). 
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The total electrostatic force and the total electrostatic torque of the top plate, at the angle 

of rotation θ and vertical displacement of y, are given in Eqs. (9) and (10). 
R
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In addition to electrostatic force, the micro-mirror system also is exerted on damping 

force Fdamp, elastic recovery force Felas and corresponding torques, as given in Eqs. (11) 

through Eq. (14) ： 
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where Cy and Ky represent the damping factor and the stiffness of the vertical direction, 

respectively, and Cθ and Kθ represent the damping factor and stiffness of the torsional 

direction, respectively [Zhao, Chen, Huang et al. (2005)]. 

The micromirror system driven by an input voltage has a 2-DoF of coupling output: the 

torsional angle of θ and vertical displacement y. Following the Newton-Euler dynamics, 

the dynamics model of the micromirror system is constructed as Eq. (15): 
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Eq. (5) through Eq. (10) are substituted into Eq. (15), and then the variables are 

normalized by including the relationships defined in Eq. (16). The dimensionless two-

degrees-of-freedom dynamic equation of the micromirror system is thereby obtained as 

given in Eq. (17). 
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where R0, R1 are the equivalent damping coefficients, ω0 is the natural angular frequency, 

and ω1 is the natural frequency of the vertical bending movement. ω0 and ω1 can be 

calculated from the moment of inertia I, mass m, bending stiffness Kθ, and torsional 

rigidity Ky [Zhao, Chen, Huang et al. (2005)]. Note that p represents the ratio of the two 

driving voltages applied to the two bottom plates [Taghizadeh and Mobki (2014)].  

As the system state variables are set to be x1=δ, x2=dδ/dτ, x3=φ, x4=dφ/dτ, the second 

order differential equations given in Eq. (17) can be transformed to the phase space 

equations which are the first order differential equations, as listed in Eq. (18). 
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As a dimensionless 2-DoF dynamics model, Eq. (18) can be used to compute the static 

pull-ins and bifurcations, dynamic pull-ins and bifurcations of the torsional micromirror 

in the phase space.  

Table 1: Parameters of torsional micromirror (unit μm)   

Parameters Symbols Value 

Width of the top plate a 100 

Length of the top plate L 100 

Thickness of the top plate tm 1.5 

Thickness of the mirror surface tAl 0.5 

Width of the torsional Beam w 2 

Length of the torsional Beam l 65 

Thicness of the torsional Beam tb 1.5 

Gap between the bottom plates a1 6 

Total Width of all the bottom plates a2 84 

Distance between the top and bottom plate h 2.75 

 

The coefficients in the analysis process are calculated from the parameters tabulated in 

Tab. 1, and values of the material properties are taken from the ones used in [Zhao, Chen, 

Huang et al. (2005)]. Note that if x1 and x2 in Eq. (18) take the value of zero, the system 

actually degenerates into a 1-DoF output system that does not consider the bending-

torsion coupling effect. 

3 Static pull-in and bifurcation 

As the driving voltage gradually reaches a critical value, beyond which the state of 

mechanical equilibrium is no longer maintained, the pull-in of the torsion micromirror 

will happen, along with a bifurcation phenomenon as predicted by the static analysis. 

This so-called static bifurcation and the static characteristics are studied through 

Hamiltonian method and numerical simulation in the phase space. 
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3.1 Hamiltonian analysis 

When the 2-DoF system is in a static equilibrium state, not only does the elastic recovery 

moment balances the electrostatic moment, but the elastic recovery force and the 

electrostatic force in the vertical direction also need to balance each other. The static 

characteristics of the system thus can be analyzed using the Hamiltonian potential 

function that accounts for both balance of moments and balance of forces.  

When damping R0=R1=0, the Hamiltonian [Azizi, Ghazavi, Khadem et al. (2013); Shang, 

Song and Wen (2016)] of the system described in Eq. (18) is given in Eq. (19). 
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The potential function is: 
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The equilibrium state of the system is computed by having [Elata and Bamberger (2006)]: 

0/),(0/),( 33121311  xxxUfandxxxUf  (21) 

When the system is in equilibrium, it needs to satisfy the condition given in Eq. (22): 
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(22b) 

If the voltage ratio is known, the relationship curves between the x1 and x3 can be 

obtained by solving Eqs. (22a) and (22b) for different driving voltages V, and the 

intersection point of these two curves is actually the equilibrium point of the system. 

When the driving voltage is increased to the critical voltage, the two relationship curves 

only have one intersection point and thus, the system has only one equilibrium state 

solution. When the driving voltage is greater than the critical voltage, these two 

relationship curves do not intersect, and the static equilibrium condition governed by Eq. 

(22) cannot be satisfied. In a simple word, the system now enters the pull-in, and this 

critical voltage is thus referred as the pull-in voltage. 

The x1 vs. x3 relationship curves obtained from solving Eqs. 22(a) and 22(b) are shown in 

Figs. 2(a) and 2(b), respectively, for the cases of p=0 and p=1, and critical voltage V=10 

v. When p=0, V=21.15 v, there is a unique intersection point between curve 1 and curve 2, 

and the static pull-in occurs, as shown in Fig. 2(a). When p=1, V=23.85 v, there is a 

unique intersection point between curve 1 and curve 2, and the static pull-in occurs, as 

shown in Fig. 2(b). Similarly, when the voltage ratio falls in between, i.e. 0<p<1, the 

static pull-in voltage lies in somewhere between the value seen in p=0 case and that in 

p=1 case. 



 

 

 

Bifurcation-Based Stability Analysis of Electrostatically Actuated                                 267 

   
(a) p=0                                                                    (b) p=1 

Figure 2: The static pull-in of the 2-DoF micromirror system by the Hamiltonian method 

3.2 Numerical solution in phase space 

In Eq. (18), there are four state variables in the 2-DoF system, namely the two output 

degrees of freedom and their derivatives, which together constitute a four-dimensional 

(4D) phase space. In the dynamic phase space built for the system at different driving 

voltages, the respective projections of the phase diagram onto the (x2, x1) plane and (x4, x3) 

plane can be used to study both the dynamic behavior and the static characteristics of the 

system, rather than using the 4D trajectory that is impossible to visualize and hard to 

analyze. In a nutshell, the phase plane made of the vertical displacement (state variable x1) 

and x1’s derivative (state variable x2) and the phase plane made of the torsion angle (state 

variable x3) and x3’s derivative (state variable x4) can be interpreted as two windows to 

help observe the 4D phase trajectory. 

After making the damping coefficient in Eq. (18) equal to zero and setting the state 

variables [x1, x2, x3, x4] with different initial values, for different p and V values, the phase 

trajectories of the system’s state variables can be obtained using the fourth order Runge-Kutta 

method, and the projected trajectories for each given [x1, x2, x3, x4] are shown in Fig. 3.  

Note that the changes of the position of the fixed point and the projected trajectories 

shown in Fig. 3 can be explored to determine if the system is globally stable.  

It can be seen from Fig. 3(a), when the driving voltage is zero, there is exactly one stable 

center point in the system, as exhibited on the phase plane of x4=dφ/dτ vs. φ. 
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(a) p=any number between 0 and 1, V=0 

   
(b) p=0, V=15 v 

   
(c) p=0, V=21.15 v 

   
(d) p=1, V=15 v 

   
(e) p=1, V=23.85 v 

Figure 3: The projected phase trajectories of the 2-DoF system without damping 

In the case of p=0, V≠0 and the driving voltage smaller than a critical value of 21.15 v, 
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different from the line-shaped trajectories as predicted by the 1-DoF model, the actual 

trajectories, according to the proposed 2-DoF model, form a ring shape, as shown in Fig. 

3(b). The center point in this case is shifted to the right as the driving voltage increases, 

and there exists a saddle point in the system. When the critical voltage is reached as the 

case in Fig. 3(c), it is revealed from the phase diagram that the overall instability arises. 

That is, the saddle point overlaps with the center point and it actually gets disappeared, 

meaning that the saddle node bifurcation does occur and the critical voltage is indeed the 

static pull-in voltage. 

In the case of p=1, shown in Figs. 3(a), 3(d), and 3(e), the center remains at the origin, 

and the system has two saddle points that are symmetric with respect to that center point. 

Both points are dragged closer to the center point as the driving voltage increases. By the 

time when the driving voltage reaches the static pull-in voltage, the three equilibria 

finally merge into one, and thus, the pitchfork bifurcation occurs and the overall 

instability phenomenon can be seen from the projections of their phase diagrams.  

It can also be seen from Fig. 3 that the projected unstable trajectories of the vertical 

displacement and the angle of rotation appear at the same time. The static characteristics 

of the 2-DoF system can thus be studied by inspecting the number and positions of the 

main equilibrium points on the phase diagram of the torsional direction.  

   
(a) p=0                                                             (b) p=1 

Figure 4: The static characteristic curve of 2-DoF system 

The summarized static characteristics are shown in Fig. 4. It becomes quite clear that the 

static pull-in voltage is equal to the static bifurcation voltage, which is 21.15 v for p=0, 

and 23.85 v for p=1. These results are consistent with those obtained from the 

Hamiltonian method. When the voltage ratio falls into the range of 0<p<1, the bifurcation 

voltage is in the range of 21.15 v to 23.85 v. 

4 Dynamic pull-in and bifurcation 

Dynamic behavior of a torsional micromirror reflects how the system responds to the 

driving voltage with a special waveform, like a step function. In this section, the pull-in 

and bifurcation phenomena of the micromirror system driven by the step voltage are 

analyzed based on 2-DoF model governed by Eq. (18) for two distinct scenarios: one 

with damping and one without. 
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4.1 System without damping 

The dynamic pull-in condition of the undamped 2-DoF micromirror system can always 

be obtained through the Hamiltonian method given in Eq. (19). The energy constraints of 

the system denoted as H0 can be set as given in Eq. (23) [Elata and Bamberger (2006)]. 
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Let the state variables x2 and x4 in Eq. (24) assume the value of zero. That is, both the 

kinetic energy of the vertical direction and the kinetic energy of the angular direction are 

equal to zero, which brings up the surface equation of V (x1, x3) as expressed in Eq. (25). 
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The contour on the surface of V (x1, x3) is projected onto the plane (x1, x3), as shown in 

Fig. 5. The cases of p=0 and p=1 are plotted in Figs. 5(a) and 5(b), respectively.  

Fig. 5(a) shows that the ideal dynamic bifurcation voltage, for the case of p=0, is 13.23 v. 

When p = 0 and V (x1, x3) is less than the ideal dynamic bifurcation voltage, the trajectory 

on the displacement plane (x1, x3) defined by Eq. (25) is separated into two closed regions, 

which correspond to the stable and unstable equilibrium situations, respectively. The two 

regions are drawn closer to each other as the driving voltage increases, and they overlap 

at the unstable equilibrium when the ideal dynamic bifurcation voltage is reached. When 

the voltage is further increased to surpass the ideal dynamic bifurcation voltage, the two 

regions actually merge into one single region, and there exists an open path that connects 

the stable and unstable regions.  

The contour of the case of p≠0 is similar to that of p=0, as shown in Fig. 5(b), where the 

ideal dynamic bifurcation voltage is 11.88 v for the case of p=1. 

The actual movement of the micromirror is different from that of the ideal situation, as 

shown in Fig. 5, because there exists a nonlinear coupling between state variables x3 and 

x1. Such nonlinear coupling causes an unconstrained phase difference between the torsion 

movement and the vertical movement. As so, the kinetic energy of the vertical direction 

and the kinetic energy of the angular direction cannot be zero at the same time, which is 

different from the undamped situation discussed previously through Eq. (25).  

Even if the micromirror acquires the same amount of input energy, as shown in Fig. 5, its 

area enclosed by the actual moving trajectory is smaller than the area enclosed by the 

ideal trajectory. That is, the actual dynamic pull-in voltage should be greater than the 

ideal dynamic bifurcation voltage, as indicated in Fig. 5. 
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        (a) p=0                                                                    (b) p=1 

Figure 5: Ideal dynamic bifurcation characteristics of the undamped 2-DoF system 

In order to find the actual dynamic pull-in voltage of the undamped 2-DoF micromirror 

system, one can increment the driving voltage at a step size of 0.01 v, beginning from 0 v 

and setting the initial state to be [0, 0, 0, 0], after which the trajectory projections for 

voltage are obtained. Some projected phase trajectories are shown in Fig. 6.  

As the driving voltage increases, radius of the circle formed by the projected phase 

trajectory increases as well, and an unstable trajectory appears when the voltage exceeds 

the pull-in voltage V (x1, x3)=20 v, as shown in Fig. 6. 

 

Figure 6: Projected dynamic phase trajectories of zero damping 2-DoF system 

The dynamic pull-in voltages obtained from the numerical simulation of the 2-DoF 

system with no damping at p=0 and p=1 are 19.39 v and 22.99 v, respectively, which are 

larger than their respective ideal dynamic bifurcation voltages of 13.23 v and 11.88 v.  

In Fig. 7, the dynamic characteristics of the system, for the case of p=0 and voltage swing 

of 0 v to 20 v, are plotted together in the same figure. One can see that when the driving 

voltage is larger than 10 v, the difference between the 2-DOF model and the 1-DOF 

model becomes quite noticeable. These results as plotted in Fig. 7 are in good agreement 

with those obtained from solving the deferential equations in time domain [Zhao, Chen, 

Huang et al. (2005)]. 

Similar observation can be also be made for the cases when p is not equal to zero. These 

differences clearly indicate that torsion-bending coupling effect should not be omitted 

from the stability analysis of torsional micromirror system. 
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Figure 7: The comparison of dynamic characteristic curves between 2-DoF and 1-DoF 

system 

4.2 System with damping 

In addition to the driving voltage, the damping coefficients of the system can also impact 

the system pull-in.  

   

Figure 8: The dynamic Hopf bifurcation of the 2-DoF system with the damping factor R 

assuming V=0 and initial state of [0.1, 0.2, 0.2, 0.7]. 

As shown in Fig. 8, with both the driving voltage and the initial state are fixed, say V=0 

and the initial state of [0.1, 0.2, 0.2, 0.7], when the damping coefficient sweeps over a 

wide range, say R0=R1 =R=0.4, down to R0=R1 =R=0, there is a drastic shape change of 

the projected trajectories, going from a spiral shape with a focus point, for the case of 

R=0.4, to a limit cycle, for the case of R=0. In the latter case, a Hopf bifurcation actually 

occurs.  

The analysis method of the actual dynamic pull-in voltage of damped 2-DoF system is 

similar to that of the undamped system. As the driving voltage sweeps a step size of 

0.01v along with the initial state of [0, 0, 0, 0], the trajectory of 2-DoF is calculated and 

projected onto both the torsional direction and the vertical direction. A few phase 

trajectory projection curves for a few damping coefficients, R=0.2, 3, are shown in Fig. 9.  
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(a) p=0, R=0.2 

   
(b) p=0, R=3 

Figure 9: The projection of phase trajectories of 2-DoF system with different damping 

When the equivalent damping coefficient R≠0 and the voltage is smaller than the critical 

voltage, the trajectory shows the corresponding focus point. But when the critical voltage 

is reached, there exists an unstable trajectory, which indicates the occurrence of pull-in. 

Applying different driving voltages to the 2-DoF system with R=0, 0.2, 3, the pull-in 

angle and the pull-in voltage for 2-DoF system with different damping coefficients are 

plotted in Fig. 10. One can see that dynamic pull-in voltage increases along with the 

increase of the damping coefficient. In another word, if the driving voltage remains fixed, 

the maximum deflection angle is smaller for higher damping coefficient, indicating that 

damping tends to make the system more stable. 

Fig. 11 plots the dynamic pull-in voltages across a range of damping coefficients, as 

obtained from the 2-DoF micromirror system and the 1-DoF. One can see that the 

dynamic pull-in voltage predicted by the 2-DoF model is considerably lower than that is 

predicted by the 1-DoF model for the same damping coefficient and p=0. 
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Figure 10: Pull-in angle vs. pull-in voltage for 2-DoF system at damping R=0, 0.2, 3 

 

Figure 11: The dynamic pull-in voltages vs. different the damping factors for 2-DoF and 

1-DoF systems 

5 Conclusion 

In this paper, two degrees of freedom dynamic model was constructed for an 

electrostatically driven torsional micromirror system with double bottom plates and two 

voltage sources. Based on the dimensionless phase space model equation thus constructed, 

the pull-in and bifurcation phenomena were analyzed using the Hamiltonian method and 

numerical method. The following conclusions are drawn: 

1. Due to the torsion-bending coupling effect, when the driving voltage is smaller than 

a critical voltage but larger than zero, the 2-DoF system shows ring-shaped projected 

trajectories whereas the line-shaped trajectory is predicted by the 1-DoF system. In 

addition, saddle node bifurcation, pitchfork bifurcation and Hopf bifurcation can all 

be predicted by the 2-DoF model for MEMS torsional micromirror. The pull-in 

conditions can be readily identified by examining these bifurcation points. 

2. Static bifurcation and static pull-in voltage are essentially the same, and they have 

higher value than the dynamic pull-in voltage. The static pull-in voltage is nearly the 

same as the dynamic voltage when the voltage ratio is close to 1. The dynamic pull-

in voltage, on the other hand, falls between the ideal dynamic bifurcation voltage 

and the static bifurcation voltage. The driving voltage applied to the bottom gate 
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must be higher than the ideal dynamic bifurcation voltage for a dynamic pull-in to 

occur. In addition, dynamic pull-in voltage varies with the voltage ratio. 

3. Even with the same initial state, the pull-in voltage of the damped system is always 

lower than that of the undamped system; the pull-in voltage increases with damping. 

When the same driving voltage is applied, maximum deflection angle drops as 

damping increases. At the damping coefficient R=0, the system shows a dynamic 

Hopf bifurcation. 

4. Pull-in voltage predicted by the 2-DoF system is considerably lower than that by the 

1-DoF, clearly indicating that for accurate stability analysis of a torsional 

micromirror, the torsion- bending coupling effect should not be ignored. 
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