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Abstract: Various drugs are used to maintain normoglycemia in subjects with type 2 

diabetes mellitus. The combination of the drugs from different classes in one single tablet 

may enhance the effectiveness of the anti-diabetic drugs. To investigate the impact of 

combining drugs on the glucose regulation of subjects with type 2 diabetes, we propose a 

pharmacokinetic/pharmacodynamics (PK/PD) mathematical modeling approach for a 

combination of metformin and vildagliptin drugs. In the proposed modeling approach, 

two separate PK models representing oral administration of metformin and vildagliptin 

for diabetic subjects are interconnected to a PD model comprising a detailed compartmental 

physiological model representing the regulatory effect of insulin, incretins and glucagon 

hormones on glucose concentration in a human body. The impact of doses of individual 

drugs and their combination on the blood glucose concentration of a group of type 2 

diabetic subjects is investigated. It is indicated that while administration of individual 

drugs reduces the blood glucose levels, since they have separate mechanisms of action, 

combining them synergizes lowering the blood glucose levels. 

Keywords: Pharmacokinetics, pharmacodynamics, mathematical modeling, anti-diabetic 

drugs, metformin, vildagliptin. 

1 Introduction 

Several anti-diabetic drugs have been developed over the past hundred years. Perhaps, 

exogenous insulin has been the first drug used practically to control the blood sugar in 

patients with diabetes since 1920s [White (2014)]. For type 1 diabetes, exogenous insulin 

is the only medication used to control the blood sugar due to the lack of endogenous 

insulin production caused by fully destruction of the subjects’ pancreatic beta cells. 

However, in case of type 2 diabetes, since high blood sugar is attributed to the multiple 

abnormalities in different body organs of the diabetic subjects [Vahidi, Gopaluni and 

Ezra (2015)], several classes of anti-diabetic drugs each of which are effective on specific 

organs have been introduced to the market [White (2014)]. 

Metformin, a member of biguanide class of anti-diabetic drugs, has been used as an oral 

anti-hyperglycemic agent in France since 1957 [Stargrove, Treasure and McKee (2008)] 

and has been administered as the initial preferred anti-diabetic drug for subjects with type 
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2 diabetes for many years [Rhee, Chung, Yi et al. (2017)]. It received approval from the 

United States Food and Drug Administration (FDA) on 1994 and used in the US market 

since then [Howlett and Bailey (1999)]. Metformin lowers the blood sugar by 

suppressing hepatic glucose production [Kirpichnikov, McFarlane and Sowers (2002)], 

enhancing peripheral glucose uptake resulted from increased insulin sensitivity [Bailey  

and Turner (1996)] and increasing intestinal glucose consumption [McCreight, Bailey 

and Pearson (2016)]. Vildagliptin, a member of dipeptidyl peptidase 4 (DPP-4) inhibitors, 

is a new oral anti-hyperglycemic drug used in more than 76 countries [Landersdorfer, He 

and Jusko (2012a)]. DPP-4 inhibitors decrease the blood glucose concentration by 

prolonging the circulation of active glucagon like peptide 1 (GLP-1), one of the two most 

important incretin hormones, by inhibiting DPP-4 enzyme responsible for deactivating 

the GLP-1 [Landersdorfer, He and Jusko (2012b)]. 

Combination of drugs from different classes to complement each other’s action may 

enhance the drugs medical impact on the diabetic subjects. Since biguanids and DPP-4 

inhibitors have different mechanisms and sites of action, polytherapy of vildagliptin as an 

add-on to the metformin has been the topic of some recent studies [Berndt-Zipfel, 

Michelson, Dworak et al. (2013); Blüher, Kurz, Dannenmaier et al. (2012); Halimi, 

Schweizer, Minic et al. (2008); Ji, Pan, Lu et al. (2013); Tang, Wang, Jiang et al. (2015)]. 

Clinical trials on human subjects have indicated that their combination enhances the 

blood sugar control in subjects with type 2 diabetes. While human experimentations have 

been conducted to prove the hypothesis, they are very expensive and sometimes impossible to 

be performed due to the medical restrictions. They should also meet ethical concerns and may 

results in unpredicted side effects for subjects. Pharmacokinetic/pharmacodynamic (PK/PD) 

mathematical modeling of drugs is another alternative which enables investigating the 

effects of drugs on the subjects in computer environment. 

A few studies have been published on PK/PD mathematical modeling of vildagliptin 

[Landersdorfer, He and Jusko (2012a, 2012b)] and metformin [Lee and Kwon (2004); 

Stepensky, Friedman, Raz et al. (2002); Sun, Kwok, Gopaluni et al. (2011)] so far. Lee et 

al. [Lee and Kwon (2004)] proposed a one equation indirect response model to represent 

the metformin glucose lowering effect in human diabetic subjects. Using a similar 

approach, Stepensky et al. [Stepensky, Friedman, Raz et al. (2002)] simulated the glucose 

lowering effect of metformin by an indirect response model on diabetic rats. The main 

difference between the two research studies was considering the number of compartments 

to represent the glucose concentration in the body. In Lee and Kwon study, the whole 

human body was considered as one physiological compartment while Stepensky et al. 

simulated the metformin glucose lowering effect within three compartments including 

liver, gastrointestinal (GI) tract and systemic circulation (comprising blood, different 

organs and tissues). The Stepensky et al. model was later used by Lin et al. for type 2 

diabetic human subjects [Sun, Kwok, Gopaluni et al. (2011)]. Using clinical data from 

human subjects, they indicated that the Stepensky et al. model structure can be used to 

predict the pharmacokinetics and pharmacodynamics of metformin on human subjects by 

updating the model parameters. In terms of vildagliptin, Landersdorfer et al. 

[Landersdorfer, He and Jusko (2012a); Landersdorfer, He and Jusko (2012b)] considered 

a two compartment model, central and peripheral compartments, to represent the 

vildagliptin pharmacokinetics. To model its pharmacodynamics, they considered a four 
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compartment model, three for glucose, insulin and GLP-1 concentrations and one for the 

glucose metabolism in the gut, to represents their variations in the subject’s body. 

In the present study, we have mathematically investigated the impact of vildagliptin as an 

add-on to metformin to regulate the blood sugar of type 2 diabetic subjects. The drugs 

pharmacokinetics is modeled by combining the models proposed by Lin et al. (the 

updated Stepensky et al. model) and Landersdorfer et al. To model the drugs 

pharmacodynamics, simple mathematical models with minimal number of compartments 

cannot be utilized since they cannot accommodate the required compartments to 

represent the pharmacodynamics of vildagliptin and metformin at the same time. 

Therefore, a comprehensive mathematical model developed in our previous work for a 

group of type 2 diabetic subjects [Vahidi, Kwok, Gopaluni et al. (2016)] is used and the 

rate of various species in different organs (i.e. glucose, insulin and GLP-1) are modified 

to account for the effects attributed to the drugs. Computer simulations are performed to 

investigate the impact of the vildagliptin and metformin on blood sugar regulation when 

are used individually and combinedly. 

2 Mathematical modeling 

2.1 Vahidi et al. model 

Vahidi et al. model is a detailed mathematical model proposed for healthy and type 2 

diabetic subjects which considers the insulin, glucagon and incretins hormonal regulatory 

effects on glucose [Vahidi, Kwok, Gopaluni et al. (2016)]. The model is an expanded 

form of another model proposed by Vahidi et al. [Vahidi, Kwok, Gopaluni et al. (2011)] 

for type 2 diabetic subjects based on a detailed model previously developed by Sorensen 

for healthy subjects [Sorensen (1985)]. This model is used to investigate the drugs 

pharmacodynamics.  

The model has four sub-models representing different substance concentrations, one of 

which for the blood glucose concentration and three of which for the concentrations of 

glucose regulatory hormones including insulin, glucagon and incretins in the body. 

Different number of compartments is considered for each sub-model. The insulin sub-

model comprises seven compartments interconnected by main blood vessels as depicted 

in Fig 1. The same compartments are considered for the glucose sub-model except for the 

pancreas compartment not included into the glucose sub-model as an individual compartment. 

For the incretins and glucagon, the whole body is considered as one compartment. For some 

compartments, sub-compartments are considered to account for the remarkable species 

transport resistance between the capillaries and interstitial fluid space (e.g. peripheral 

compartment in insulin sub-model as shown if Fig. 1) [Sorensen (1985)]. Mass balance over 

each sub-compartment constitutes the mathematical model equations (Appendix A). The 

Vahidi et al. model structure for healthy and type 2 diabetic subjects are the same. Only the 

values for model parameters are different. For the present study, the parameters for type 2 

diabetic subjects are used and are available in Appendix A.  

It should be noted that since GLP-1 is the only functional incretins in type 2 diabetic 

subjects [Garber (2011); Kim and Egan (2008); Meier and Nauck (2010)] and Vahidi et 

al. has considered both GLP-1 and GIP (another one of the two most important incretin 

hormones) concentrations in their model, a simple modification is implemented in Vahidi 
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et al. model and instead of incretins concentration only GLP-1 concentration is 

considered. 

 

 

Figure 1: Schematic representation of the insulin sub-model 

2.2 Drugs pharmacokinetics modeling 

The pharmacokinetics of metformin together with vildagliptin is modeled by combining 

the Lin et al. and Landersdorfer et al. PK mathematical models. Based on the metformin 

mechanism of action which triggers hepatic glucose production and peripheral and GI 

glucose uptakes, three compartments were considered to model metformin pharmacokinetics. 

Using the same approach here, we use the Lin et al. model to calculate the metformin 

concentration in the liver, GI tract and peripheral tissues. The calculated concentrations 

are used in the PD model to obtain the metformin glucose lowering effect on those 

specific organs. 
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The Landersdorfer et al. [Landersdorfer, He and Jusko (2012a)] PK/PD model for 

vildagliptin, considers the drug distribution and elimination into two central and 

peripheral compartments. In these compartments, the drug binds to the active DPP-4 

enzyme and deactivates it causing the increase in active GLP-1 presence into the 

circulation which consequently decreases the blood sugar. The drug concentration in 

central compartment is used to calculate the drug effect in the PD model. 

2.3 Drugs pharmacodynamics modeling 

Stepensky et al. employed indirect response modeling approach to model the metformin 

pharmacodynamics. They defined three variables, one of which for the inhibition effect 

of metformin on hepatic glucose production and two of which for the stimulation effect 

of metformin on GI and peripheral glucose uptake and used them in metformin PD model. 

In another attempt for metformin pharmacodynamics modeling, Sun et al. [Sun, Kwok, 

Gopaluni et al. (2011)] utilized the variables defined by Stepensky et al. and modified the 

hepatic glucose production rate and GI and peripheral glucose uptake rates defined in 

Vahidi et al. first model [Vahidi, Kwok, Gopaluni et al. (2011)] to address the metformin 

glucose lowering effect. Here, we have considered the similar approach in modeling the 

metformin pharmacodynamics by modifying the metabolic rates in the Vahidi et al. 

expanded model [Vahidi, Kwok, Gopaluni et al. (2016)]. The sigmoidal Emax model is 

used to define the variables attributed to inhibition of hepatic glucose production and 

stimulation of GI and peripheral glucose uptake rates as follows [Sun, Kwok, Gopaluni et 

al. (2011)]: 

𝐸𝐿 =
𝐸𝐿𝑚𝑎𝑥(𝐴𝐿)𝑛𝐿

(𝐴𝐿50)𝑛𝐿+(𝐴𝐿)𝑛𝐿                 (1) 

𝐸𝐺 =
𝐸𝐺𝑚𝑎𝑥(𝐴𝐺)𝑛𝐺

(𝐴𝐺50)𝑛𝐺+(𝐴𝐺)𝑛𝐺                 (2) 

𝐸𝑃 =
𝐸𝑃𝑚𝑎𝑥(𝐴𝑃)𝑛𝑃

(𝐴𝑃50)𝑛𝑃+(𝐴𝑃)𝑛𝑃                 (3) 

where 𝐸𝐿 , 𝐸𝐺  and 𝐸𝑃  are the metformin inhibitory and stimulatory effects at their 

corresponding metformin concentrations (i.e. 𝐴𝐿, 𝐴𝐺 and 𝐴𝑃) in liver, gut and periphery 

compartments, respectively, 𝐴𝐿50, 𝐴𝐺50 and 𝐴𝑃50 are metformin concentrations at which 

half of the maximum effect (i.e. 𝐸𝐿𝑚𝑎𝑥, 𝐸𝐺𝑚𝑎𝑥 and 𝐸𝑃𝑚𝑎𝑥) is obtained. Using Eqs. (1-3), 

A.11, A.12 and A.16, the modified rates of the Vahidi et al. model are: 

𝑟𝐻𝐺𝑃
𝑚 = 𝑟𝐻𝐺𝑃(1 − 𝐸𝐿)                 (4) 

𝑟𝐺𝐺𝑈
𝑚 = 𝑟𝐺𝐺𝑈(1 + 𝐸𝐺)                 (5) 

𝑟𝑃𝐺𝑈
𝑚 = 𝑟𝑃𝐺𝑈(1 + 𝐸𝑃)                 (6) 

According to the vildagliptin mechanism of action which deactivates the active DPP-4 

enzyme, the PD model of vildagliptin is formulated by modifying Eq. (A.54) as follows: 

𝑉𝛹1
𝑑𝛹1

𝑑𝑡
= 𝑟𝐼𝛹1𝑃 − [𝐾𝑜𝑢𝑡 + (𝑅𝑚𝑎𝑥𝐶 − 𝐷𝑅𝐶) × 𝐶𝑓2] × 𝛹1            (7) 

where 𝑟𝐼𝛹1𝑃  is the rate of GLP-1 secretion calculated by Eq. (A.53), 𝐾𝑜𝑢𝑡  is the first 

order clearance rate constant from the blood circulation for GLP-1 cleared through a non-
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saturable pathway independent on the DPP-4 concentration and (𝑅𝑚𝑎𝑥𝐶 − 𝐷𝑅𝐶) × 𝐶𝑓2 is 

the saturable DPP-4 eliminating pathway where 𝐷𝑅𝐶  is the drug deactivated DPP-4 

concentration at central compartment and 𝑅𝑚𝑎𝑥𝐶 is the maximum available active DPP-4 

concentration at zero drug concentration [Landersdorfer, He and Jusko (2012a)]. The 

numerical values of 𝐾𝑜𝑢𝑡 and 𝐶𝑓2 constants are set such that their values at zero drug 

concentration equals the Vahidi et al. model and their ratio equals to that of the 

Landersdorfer et al. model. The rest of the PD model parameters are taken from 

[Landersdorfer, He and Jusko (2012a); Sun, Kwok, Gopaluni et al. (2011); Vahidi, Kwok, 

Gopaluni et al. (2016)]. 

3 Results and discussion 

3.1 Steady states solution 

The resulted PK/PD mathematical model for metformin and vildagliptin comprises 37 

ordinary differential equations (ODEs), 27 equations for the modified Vahidi et al. model, 

6 equations for Landersdorfer et al. PK model and 4 equations for the Lin et al. PK model 

as well as many algebraic equations to be solved alongside the ODEs. The initial 

conditions of the ODEs are obtained by solving the model at steady states. Fasting 

condition with no drug administration is considered as the steady states for the diabetic 

subjects. Therefore, the initial conditions for the Lin et al. and Landersdorfer et al. PK 

model equations are zero for all equations. To obtain the initial conditions for modified 

Vahidi et al. model equations, all derivative terms are set to zero and all metabolic rates 

are set at their basal conditions (i.e. fasting condition) resulting in four decoupled sets of 

algebraic equations corresponding to each sub-model. At fasting conditions, since no 

glucose is present in the gut, the initial condition for GLP-1 sub-model is zero since this 

hormone is secreted when glucose is present into the duodenum. For glucagon sub-model, 

since normalized value of glucagon is used, an arbitrary value is considered for glucagon 

basal concentration. For glucose sub-model, the degree of freedom for algebraic solution 

is one and one unknown variable has to be set and therefore, the available measured value 

of peripheral glucose concentration is set at 153.4 mg/dl. Similar to the glucose sub-

model, the available measured peripheral insulin concentration is set at 5.9 mU/l. These 

values are taken from the clinical data sets published by Knop et al. [Knop, Vilsboll, 

Hojberg et al. (2007)] which were used by Vahidi et al. to estimate their model 

parameters for the group of diabetic subjects. 

3.1 Dynamic solution 

To investigate the lowering effect of drug administration on type 2 diabetic subjects, an 

in silico 50 g oral glucose tolerance test (OGTT) with the administration of 500 mg 

metformin together with 25 mg vildagliptin is performed. The test is repeated with the 

administration of individual drugs and with no drug administration. Fig. 2 shows the 

variations of peripheral glucose concentrations and Fig. 3 (a) and (b) indicate the 

variations of peripheral insulin and GLP-1 concentrations during the four 50 g OGTTs.  
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Figure 2: The variations of peripheral glucose concentration during the 50 g OGTT 

 

Figure 3: The variations of peripheral insulin and GLP-1 concentration during the 50 g 

OGTT 
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As Fig. 2 indicates, vildagliptin reveals a non-significant lowering effect on the blood 

glucose levels. According to Fig. 3 (b), vildagliptin has effectively increased the GLP-1 

level by inhibiting the DPP-4 enzyme and consequently, the plasma insulin concentration 

has a remarkable increment (Fig. 3 (a)), however, due to the high insulin resistance and 

significant abnormalities associated with this group of diabetic subjects, the impact of 

insulin increase on lowering the blood glucose is not significant. As the time passes, 

vildagliptin gets cleared from the circulation and therefore, its effect completely 

disappears after around 300 min of the test. 

On the other hand, although metformin reveals a weak impact on lowering the blood 

sugar at the beginning of the test, its glucose lowering effect increases as the blood sugar 

level falls. The reason is due to the high suppression of hepatic glucose production when 

the blood sugar is high. Hepatic glucose production is inversely proportional to the blood 

glucose concentration and its amount is significantly reduced by high levels of plasma 

glucose concentration at the beginning of the test (see Fig. 4). Since the glucose lowering 

effect of metformin is remarkably implemented by suppressing the hepatic glucose 

production, metformin becomes almost ineffective on the liver when hepatic glucose 

production is already suppressed by other factors. As the results indicate, the glucose 

lowering effect of metformin lasts longer than that of vildagliptin for this group of 

diabetic subjects. It also diminishes gradually by passage of time until it fully vanishes at 

around 1000 min of the test (the results are not shown). 

 

Figure 4: The variations of hepatic glucose production rate during the 50 g OGTT with 

the administration of 500 mg metformin 

The results also prove the drugs complementation of each other’s action. Vildagliptin 

complements the glucose lowering effect of metformin since their mechanisms of action 

do not interfere and therefore, the vildagliptin glucose lowering effect adds to that of 

metformin.  

Quantitative comparisons between the four in silico tests are provided in Fig. 5-8. The 

information on these figures (except for Fig. 8) are obtained by integrating the production 

and uptake rates of glucose and insulin for the four oral glucose tolerance tests up to 300 
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min where the species concentrations reach almost to their steady state values (see Figs. 2 

and 3). Fig. 8 indicates the integration of glucose concentration profiles (Fig. 2) for 300 

min of the tests with drug administration subtracted from the same amount obtained from 

the test with no drug administration. 

 

 

Figure 5: Total hepatic, peripheral and GI glucose uptake amounts for 300 min of the 

four 50 g oral glucose tolerance tests 

 

 

Figure 6: Total hepatic glucose production amount (g) for 300 min of the four 50 g oral 

glucose tolerance tests 

As Fig. 5 indicates, total peripheral and GI glucose uptake amounts are enhanced by 

approximately 17.5% and 45.5%, respectively, for the tests with metformin 

administration compared to the tests with no metformin administration, however, in 

contrary to the expectations, the total hepatic glucose production amount is apparently 

not only suppressed after metformin administration, but also slightly augmented by 

approximately 4.5% (see Fig. 6). As implied earlier, glucose induced suppression of 

hepatic glucose production is not abnormal for this group of diabetic subjects causing the 

significant suppression of hepatic glucose production rate when glucose concentration is 

high. Since the glucose levels during the OGTT tests are remarkably higher when no 
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metformin is administered compared with the tests with metformin administration (see 

Fig. 2), it yields significantly higher suppression of hepatic glucose production. Therefore, 

the reason for slightly more total hepatic glucose production amount is due to the 

remarkably lower glucose levels. Moreover, a more realistic evaluation of metformin 

suppressive effect on hepatic glucose production should be performed using Eq. (4) by 

calculating the suppression percentage based on 𝑟𝐻𝐺𝑃 and 𝑟𝐻𝐺𝑃
𝑚  values which results in 

approximately 35% of hepatic glucose production suppression. 

As Fig. 7 indicates, vildagliptin administration enhances the total pancreatic insulin 

secretion amount by approximately 17.5%. Also, when metformin is administered, the 

total pancreatic insulin secretion is lowered due to the lowered glucose levels caused by 

the administration of metformin which consequently lowers the need of pancreatic insulin 

secretion. 

 

 

Figure 7: Total pancreatic insulin secretion amount (U) for 300 min of the four 50 g oral 

glucose tolerance tests 

Integration of glucose concentration profile for the tests with drug administration enables 

a quantitative comparison of drugs lowering effect on blood glucose levels. As Fig. 8 

shows, the glucose lowering effect of metformin is much stronger than that of vildagliptin. 

Nevertheless, something more interesting is that the glucose lowering effect of the 

combined drugs is higher than the summation of individual drugs’ effects proving the 

synergetic complementation of combined drugs. This is because of the different drugs 

mechanisms of action in lowering the blood sugar level which not only interfere each 

other’s action, but also amplify each other’s action. 
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Figure 8: Integration of glucose concentration profiles for the tests with drugs 

administration subtracted from the same value obtained from the test with no drug 

administration. The unit of the indicated values are min.g/dl 

3 Conclusion 

We developed a mathematical PK/PD model for the administration of vildagliptin as an 

add-on to metformin by combining the available mathematical models individually 

proposed for metformin and vildagliptin. For the PK model, Lin et al. PK model for 

metformin and Landersdorfer et al. PK model for vildagliptin were used and for the PD 

model a comprehensive mathematical model proposed by Vahidi et al. for type 2 diabetic 

subjects with some modifications was used. The models were all interconnected to obtain 

the PK/PD model for the combination of vildagliptin and metformin drugs. Mathematical 

simulation of 50 g oral glucose tolerance test was performed and the impact of drugs 

administration when were used individually and combinedly was qualitatively and 

quantitatively investigated. Both drugs revealed glucose lowering effects. The impact of 

metformin on glucose level reduction was stronger than that of the vildagliptin for the 

group of diabetic subjects for whom the model was developed. Also, due to the separate 

mechanisms of action of both drugs, they synergized their glucose lowering effects which 

means that the glucose lowering effect of their combination was greater than the 

summation of their individual effects. 

Appendix A  

The following nomenclature is adopted for the Vahidi et al. model description: 

Model variables in the glucose sub-model 

D Oral glucose amount (mg) 

G Glucose concentration (mg/dl) 

M Multiplier of metabolic rates (dimensionless) 

q Glucose amount in GI tract (mg) 
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Q Vascular blood flow rate (dl/min) 

r Metabolic production or consumption rate (mg/min) 

Ra Rate of glucose appearance in the blood stream (mg/min) 

T Transcapillary diffusion time constant (min) 

t Time (min) 

V Volume (dl) 

 

Model variables in the insulin sub-model 

I Insulin concentration (mU/l) 

M Multiplier of metabolic rates (dimensionless) 

m Labile insulin mass (U) 

P Potentiator (dimensionless) 

Q Vascular blood flow rate (l/min) 

R Inhibitor (dimensionless) 

r Metabolic production or consumption rate (mU/min) 

S Insulin secretion rate (U/min) 

T Transcapillary diffusion time constant (min) 

t Time (min) 

V Volume (l) 

X Glucose-enhanced excitation factor (dimensionless) 

Y Intermediate variable (dimensionless) 

 

Model variables in the glucagon sub-model 

𝛤 Normalized glucagon concentration (dimensionless) 

M Multiplier of metabolic rates (dimensionless) 

r Metabolic production or consumption rate (dl/min) 

V Volume (dl) 

t Time (min) 

 

Model variables in the GLP-1 sub-model 

𝛹1 GLP-1 concentration (pmol/l) 

𝜓1 Amount of produced GLP-1 (pmol) 

r Metabolic production or consumption rate (pmol/min) 

V Volume (l) 

t Time (min) 

 

First superscript 

 Glucagon 

𝛹1 GLP-1 

B Basal condition 

G Glucose 
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I Insulin 

 

Second superscript 

∞ Final steady state value 

 

Metabolic rate subscripts 

BGU Brain glucose uptake 

GGU Gut glucose uptake 

HGP Hepatic glucose production 

HGU Hepatic glucose uptake 

𝐼𝛹1𝑅 Intestinal GLP-1 release 

IVG Intravenous glucose injection 

IVI Intravenous insulin injection 

KGE Kidney glucose excretion 

KIC Kidney insulin clearance 

LIC Liver insulin clearance 

𝑀𝛤𝐶 Metabolic glucagon clearance 

𝑃𝛤𝐶 Plasma glucagon clearance 

𝑃𝛹1𝐶 Plasma GLP-1 clearance 

𝑃𝛤𝑅 Pancreatic glucagon release 

PGU Peripheral glucose uptake 

PIC Peripheral insulin clearance 

PIR Pancreatic insulin release 

RBCU Red blood cell glucose uptake 

 

First subscripts 

A Hepatic artery 

B Brain 

G Gut 

H Heart and lungs 

L Liver 

P Periphery 

S Stomach 

∞ Final steady state value 

 

Second subscripts (if required) 

C Capillary space 

F Interstitial fluid space 

l Liquid 

s Solid 
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A.1 Glucose sub-model 

The mass balance equation over each sub-compartment in the glucose sub-model results 

in the following equations: 

𝑉𝐵𝐶
𝐺

𝑑𝐺𝐵𝐶

𝑑𝑡
= 𝑄𝐵

𝐺(𝐺𝐻 − 𝐺𝐵𝐶) −
𝑉𝐵𝐹

𝐺

𝑇𝐵
𝐺

(𝐺𝐵𝐶 − 𝐺𝐵𝐹) (A.1) 

𝑉𝐵𝐹
𝐺

𝑑𝐺𝐵𝐹

𝑑𝑡
=

𝑉𝐵𝐹
𝐺

𝑇𝐵
𝐺

(𝐺𝐵𝐶 − 𝐺𝐵𝐹) − 𝑟𝐵𝐺𝑈 (A.2) 

𝑉𝐻
𝐺

𝑑𝐺𝐻

𝑑𝑡
= 𝑄𝐵

𝐺𝐺𝐵𝐶 + 𝑄𝐿
𝐺𝐺𝐿 + 𝑄𝐾

𝐺𝐺𝐾 + 𝑄𝑃
𝐺𝐺𝑃𝐶 − 𝑄𝐻

𝐺𝐺𝐻 − 𝑟𝑅𝐵𝐶𝑈 + 𝑟𝐼𝑉𝐺 (A.3) 

𝑉𝐺
𝐺

𝑑𝐺𝐺

𝑑𝑡
= 𝑄𝐺

𝐺(𝐺𝐻 − 𝐺𝐺) − 𝑟𝐺𝐺𝑈 + 𝑅𝑎 (A.4) 

𝑉𝐿
𝐺

𝑑𝐺𝐿

𝑑𝑡
= 𝑄𝐴

𝐺𝐺𝐻 + 𝑄𝐺
𝐺𝐺𝐺 − 𝑄𝐿

𝐺𝐺𝐿 + 𝑟𝐻𝐺𝑃 − 𝑟𝐻𝐺𝑈 (A.5) 

𝑉𝐾
𝐺

𝑑𝐺𝐾

𝑑𝑡
= 𝑄𝐾

𝐺(𝐺𝐻 − 𝐺𝐾) − 𝑟𝐾𝐺𝐸 (A.6) 

𝑉𝑃𝐶
𝐺

𝑑𝐺𝑃𝐶

𝑑𝑡
= 𝑄𝑃

𝐺(𝐺𝐻 − 𝐺𝑃𝐶) −
𝑉𝑃𝐹

𝐺

𝑇𝑃
𝐺

(𝐺𝑃𝐶 − 𝐺𝑃𝐹) (A.7) 

𝑉𝑃𝐹
𝐺

𝑑𝐺𝑃𝐹

𝑑𝑡
=

𝑉𝑃𝐹
𝐺

𝑇𝑃
𝐺

(𝐺𝑃𝐶 − 𝐺𝑃𝐹) − 𝑟𝑃𝐺𝑈 (A.8) 

The metabolic rates for the glucose sub-model are summarized below: 

𝑟𝐵𝐺𝑈 = 70 (A.9) 

𝑟𝑅𝐵𝐶𝑈 = 10 (A.10) 

𝑟𝐺𝐺𝑈 = 20 (A.11) 

𝑟𝑃𝐺𝑈 = 𝑀𝑃𝐺𝑈
𝐼 𝑀𝑃𝐺𝑈

𝐺  𝑟𝑃𝐺𝑈
𝐵   (A.12) 

 𝑟𝑃𝐺𝑈
𝐵 = 35 (A.13) 

 𝑀𝑃𝐺𝑈
𝐼 = 1.31 + 1.22 𝑡𝑎𝑛ℎ[0.13(𝐼𝑃𝐹 𝐼𝑃𝐹

𝐵⁄ − 2.98)] (A.14) 
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 𝑀𝑃𝐺𝑈
𝐺 = 𝐺𝑃𝐹 𝐺𝑃𝐹

𝐵⁄  (A.15) 

𝑟𝐻𝐺𝑃 = 𝑀𝐻𝐺𝑃
𝐼 𝑀𝐻𝐺𝑃

𝐺  𝑀𝐻𝐺𝑃
𝛤  𝑟𝐻𝐺𝑃

𝐵  (A.16) 

 𝑟𝐻𝐺𝑃
𝐵 = 35 (A.17) 

 
𝑑

𝑑𝑡
𝑀𝐻𝐺𝑃

𝐼 = 0.04(𝑀𝐻𝐺𝑃
𝐼∞ − 𝑀𝐻𝐺𝑃

𝐼 ) (A.18) 

 𝑀𝐻𝐺𝑃
𝐼∞ = 1.836 − 1.73 𝑡𝑎𝑛ℎ[1.46(𝐼𝐿 𝐼𝐿

𝐵⁄ − 0.64)] (A.19) 

 𝑀𝐻𝐺𝑃
𝐺 = 1.29 − 0.91 𝑡𝑎𝑛ℎ[0.48(𝐺𝐿 𝐺𝐿

𝐵⁄ − 0.301)] (A.20) 

 𝑀𝐻𝐺𝑃
𝛤 = 2.7 𝑡𝑎𝑛ℎ[0.39 𝛤 𝛤𝐵⁄ ] − 𝑓 (A.21) 

 
𝑑

𝑑𝑡
𝑓 = 0.0154[(

2.7 𝑡𝑎𝑛ℎ[0.39𝛤 𝛤𝐵⁄ ]−1

2
) − 𝑓] (A.22) 

𝑟𝐻𝐺𝑈 = 𝑀𝐻𝐺𝑈
𝐼 𝑀𝐻𝐺𝑈

𝐺  𝑟𝐻𝐺𝑈
𝐵   (A.23) 

 𝑟𝐻𝐺𝑈
𝐵 = 20 (A.24) 

 
𝑑

𝑑𝑡
𝑀𝐻𝐺𝑈

𝐼 = 0.04(𝑀𝐻𝐺𝑈
𝐼∞ − 𝑀𝐻𝐺𝑈

𝐼 ) (A.25) 

 𝑀𝐻𝐺𝑈
𝐼∞ = 0.125 + 0.94 𝑡𝑎𝑛ℎ[1.73(𝐼𝐿 𝐼𝐿

𝐵⁄ − 0.039)] (A.26) 

 𝑀𝐻𝐺𝑈
𝐺 = 6.88 + 6.876 𝑡𝑎𝑛ℎ[2.24(𝐺𝐿 𝐺𝐿

𝐵⁄ − 1.57)] (A.27) 

𝑟𝐾𝐺𝐸 = 71 + 71 𝑡𝑎𝑛ℎ[0.11(𝐺𝐾 − 460)]      0 ≤ 𝐺𝐾 < 460 

(A.28) 

𝑟𝐾𝐺𝐸 = −330 + 0.872𝐺𝐾                                        𝐺𝐾 ≥ 460 

The glucose absorption amount in the GI tract, Ra, is calculated from the following 

equations: 

𝑑𝑞𝑆𝑠

𝑑𝑡
= −0.074𝑞𝑆𝑠 + 𝐷𝛿(𝑡) (A.29) 

𝑑𝑞𝑆𝑙

𝑑𝑡
= −𝑘𝑒𝑚𝑝𝑡𝑞𝑆𝑙 + 0.074𝑞𝑆𝑠 (A.30) 

𝑑𝑞𝑖𝑛𝑡

𝑑𝑡
= −0.078𝑞𝑖𝑛𝑡+𝑘𝑒𝑚𝑝𝑡𝑞𝑆𝑙 (A.31) 
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𝑘𝑒𝑚𝑝𝑡 =
0.0434

2
{𝑡𝑎𝑛ℎ[𝜑1(𝑞𝑆𝑠 + 𝑞𝑆𝑙 − 0.82𝐷)]

− 𝑡𝑎𝑛ℎ[𝜑2(𝑞𝑆𝑠 + 𝑞𝑆𝑙 − 0.00236𝐷)] + 2} 
(A.32) 

 𝜑1 =
5

2𝐷(1−0.82)
 (A.33) 

 𝜑2 =
5

0.0047𝐷
 (A.34) 

𝑅𝑎 = 0.0698𝑞𝑖𝑛𝑡 (A.35) 

where 𝛿(𝑡) is the impulse function. 

A.2 Insulin sub-model 

The mass balance over the sub-compartments of the insulin sub-model is as follows: 

𝑉𝐵
𝐼

𝑑𝐼𝐵

𝑑𝑡
= 𝑄𝐵

𝐼 (𝐼𝐻 − 𝐼𝐵) (A.36) 

𝑉𝐻
𝐼

𝑑𝐼𝐻

𝑑𝑡
= 𝑄𝐵

𝐼 𝐼𝐵 + 𝑄𝐿
𝐼 𝐼𝐿 + 𝑄𝐾

𝐼 𝐼𝐾 + 𝑄𝑃
𝐼 𝐼𝑃𝑉 − 𝑄𝐻

𝐼 𝐼𝐻 (A.37) 

𝑉𝐺
𝐼

𝑑𝐼𝐺

𝑑𝑡
= 𝑄𝐺

𝐼 (𝐼𝐻 − 𝐼𝐺) (A.38) 

𝑉𝐿
𝐼

𝑑𝐼𝐿

𝑑𝑡
= 𝑄𝐴

𝐼 𝐼𝐻 + 𝑄𝐺
𝐼 𝐼𝐺 − 𝑄𝐿

𝐼 𝐼𝐿 + 𝑟𝑃𝐼𝑅 − 𝑟𝐿𝐼𝐶 + 𝑟𝐼𝑉𝐼 (A.39) 

𝑉𝐾
𝐼

𝑑𝐼𝐾

𝑑𝑡
= 𝑄𝐾

𝐼 (𝐼𝐻 − 𝐼𝐾) − 𝑟𝐾𝐼𝐶 (A.40) 

𝑉𝑃𝐶
𝐼

𝑑𝐼𝑃𝐶

𝑑𝑡
= 𝑄𝑃

𝐼 (𝐼𝐻 − 𝐼𝑃𝐶) −
𝑉𝑃𝐹

𝐼

𝑇𝑃
𝐼

(𝐼𝑃𝐶 − 𝐼𝑃𝐹) (A.41) 

𝑉𝑃𝐹
𝐼

𝑑𝐼𝑃𝐹

𝑑𝑡
=

𝑉𝑃𝐹
𝐼

𝑇𝑃
𝐼

(𝐼𝑃𝐶 − 𝐼𝑃𝐹) − 𝑟𝑃𝐼𝐶 (A.42) 

The metabolic rates for the insulin sub-model are: 

𝑟𝐿𝐼𝐶 = 0.4[𝑄𝐴
𝐼 𝐼𝐻 + 𝑄𝐺

𝐼 𝐼𝐺 + 𝑟𝑃𝐼𝑅] (A.43) 

𝑟𝐾𝐼𝐶 = 0.3𝑄𝐾
𝐼 𝐼𝐾 (A.44) 
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𝑟𝑃𝐼𝐶 =
𝐼𝑃𝐹

[(
1 − 0.15
0.15𝑄𝑃

𝐼 ) −
20
𝑉𝑃𝐹

𝐼 ]
 

(A.45) 

A separate model is included into the Vahidi et al. model to calculate the pancreatic 

insulin secretion rate under the insulin sub-model [Vahidi, Kwok, Gopaluni et al. (2016)] 

whose equations are not shown here. 

A.3 Glucagon sub-model 

Since the glucagon sub-model considers the whole body as one compartment, it only has 

one equation: 

𝑉𝛤
𝑑𝛤

𝑑𝑡
= 𝑟𝑃𝛤𝑅 − 𝑟𝑃𝛤𝐶 (A.46) 

The metabolic rates for the glucagon sub-model are summarized below: 

𝑟𝑃𝛤𝐶 = 9.1𝛤 (A.47) 

𝑟𝑃𝛤𝑅 = 𝑀𝑃𝛤𝑅
𝐺 𝑀𝑃𝛤𝑅

𝐼 𝑟𝑃𝛤𝑅
𝐵  (A.48) 

 𝑀𝑃𝛤𝑅
𝐺 = 1.31 − 0.61𝑡𝑎𝑛ℎ [1.06(𝐺𝐻 𝐺𝐻

𝐵⁄ − 0.47)] (A.49) 

 𝑀𝑃𝛤𝑅
𝐼 = 2.93 − 2.09𝑡𝑎𝑛ℎ [4.18(𝐼𝐻 𝐼𝐻

𝐵⁄ − 0.62)] (A.50) 

 𝑟𝑃𝛤𝑅
𝐵 = 9.1 (A.51) 

A.4 GLP-1 sub-model 

The GLP-1 sub-model also has one compartment, however, two equations are used to 

model this sub-model [Vahidi, Kwok, Gopaluni et al. (2016)]. As mentioned, this sub-

model was originally for incretins (i.e. GLP-1 and GIP together), but since GLP-1 is the 

only functional incretins for type 2 diabetic subjects, the Vahidi et al. model is slightly 

modified to only accommodate the GLP-1. For that, only the constants are changed and 

the sub-model structure is remained unchanged: 

𝑑𝜓1

𝑑𝑡
= 8.248𝑘𝑒𝑚𝑝𝑡𝑞𝑆𝑙 − 𝑟𝐼𝛹1𝑃 (A.52) 

𝑟𝐼𝛹1𝑃 =
𝜓1

35.1
 (A.53) 

V𝛹1
d𝛹1

dt
= rI𝛹1P − rP𝛹1C (A.54) 
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The model constant parameters are available in [Vahidi, Kwok, Gopaluni et al. (2016)]. 
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