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Abstract: Delineation of the lung parenchyma in the thoracic Computed Tomography (CT) 

is an important processing step for most of the pulmonary image analysis such as lung 

volume extraction, lung nodule detection and pulmonary vessel segmentation. An 

automatic method for accurate delineation of lung parenchyma in thoracic Computed 

Tomography images is presented in this paper. The proposed method involves a 

segmentation phase followed by a lung boundary correction technique. The tissues in the 

thoracic Computed Tomography can be represented by a number of Gaussians. We propose 

a histogram utilized Adaptive Multilevel Thresholding (AMT) for estimating the total 

number of Gaussians and their initial parameters. The parameters of Gaussian components are 

updated by Expectation Maximization (EM) algorithm. The segmented lung parenchyma from 

the Gaussian Mixture model (GMM) undergoes an Adaptive Morphological Filtering (AMF) 

to reduce the boundary errors. The proposed method has been tested on 70 diseased and 119 

normal lung images from 28 cases obtained from Lung Image Database Consortium 

(LIDC). The performance of the proposed system has been validated. 

Keywords: Lung parenchyma delineation, thoracic computed tomography, multilevel 

thresholding, Gaussian mixture model, Adaptive Morphological Filtering. 

1 Introduction 

In the recent years, thoracic Computed Tomography (CT) has become the standard for 

diagnosing several lung diseases such as lung nodules, pulmonary embolism, and 

interstitial lung diseases etc. An early detection of lung disease helps improve the survival 

rate of the patient [Midthun (2011)].  

Computer aided analysis of medical images has drawn the attention of the image processing 

community for the past two decades. The segmentation of lung parenchyma with other lung 

tissues in the thoracic CT image reduces the complexity of the computer aided analysis 

applications such as lung nodule analysis, lung parenchyma density analysis, blood vessel 

analysis, air way analysis, lung mechanics analysis and so on. The increasing number of 

applications of thoracic CT analysis require a simple and efficient lung parenchyma 

delineation technique [Mansoor, Bagci, Xu et al. (2014)].  
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Many researchers have proposed various techniques for computer aided segmentation of 

lung parenchyma within the thoracic CT images. However these techniques are semi-

automatic that they require human intervention for the segmentation process [Lin, Yan and 

Chen (2005)].  

(a) Inclusion of 

airways 

(b) Exclusion of pleural 

nodules and pulmonary 
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Figure 1: The limitations of gray level thresholding segmentation techniques 

The limitations of thresholding based segmentation are depicted in Fig. 1. The Otsu’s 

Adaptive Thresholding is used along with morphological opening and closing to segment 

the lung parenchyma [Yao, Bliton and Summers (2013)]. But such techniques are affected 

by severe edge distortions due to over smoothing of lung boundary which reduce the 

segmentation accuracy [Wei, Hu, MacGregor et al. (2008)]. 

In this work, we propose an unsupervised method for segmentation of lung parenchyma in 

a thoracic CT image. The proposed automatic delineation method consists of two phases: 

the segmentation stage and the lung border refinement stage as shown in Fig. 2. The first 

stage of lung parenchyma segmentation is based on Gaussian Mixture Model (GMM) 

which uses Expectation Maximization (EM) algorithm for updating the model parameters. 

The total number of Gaussian components and the initial parameters for each Gaussian 

component are obtained from Adaptive Multilevel Thresholding (AMT) technique which 

is proposed in this work. Finally, the lung border refinement is implemented using adaptive 

morphological filter. In order to validate the performance of the segmentation algorithm, 

the proposed method has been tested using Lung Image Database Consortium (LIDC) 

archive and the results are compared with other automatic segmentation techniques. The 

rest of the paper is organized as follows: Sections 2 and 3 describe the theoretical 

foundation for the proposed method and its performance metrics. Section 4 presents the 

experimental results of each stage of the segmentation algorithm. We conclude in Section 

5 with a discussion for its potential clinical applications and its scope for future venture. 
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Figure 2: Block diagram of the automated lung parenchyma delineation technique 

2 Lung parenchyma delineation 

2.1 Initial parameter estimation 

The initialization of the model parameters is an important processing step in the GMM 

segmentation frame work. Since EM algorithm is very sensitive about choice of the initial 

model parameters (µn, σn, πn), an appropriate initial value of the model parameter will 

ensure the fast convergence of the algorithm to the best local maximum of the likelihood 

function. Sequential EM based initialization procedure has been proposed [Farag, El-Baz 

and Gimel’farb (2006)], which starts with a single Gaussian component covering the whole 

data set and it incrementally splits during expectation maximization steps. It may be 

repeated several times with different initial parameter values for giving the best 

approximation of the model. The other choices for initializing the model parameters are 

Fuzzy C-means [Sa (2010)] and K-means algorithm [Ji, Xia, Sun et al. (2012)]. 

2.1.1 Histogram analysis 

The histogram of a digital image conveys some significant information about the different 

intensity regions. The intensity based image processing applications rely on the analysis of 

histogram [Gu, Kumar, Hall et al. (2013)]. The modes in the histogram represent an object 

or background and the gaps represent the degree of separation between the modes. The 

histogram of a typical lung CT is not flat, rather it has multiple modes and gaps and also 

these modes are not well separated. The overlapped modes in the histogram increase the 

complexity of the segmentation. The constituent part corresponding to different peaks of 

the histogram are shown in Fig. 3. 
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(a) Gray level histogram 

 
        (b) Couch  (c) Lungs  (d) Soft tissues (e) Bones 

    

Figure 3: Histogram analysis of a typical lung CT image 

2.1.2 Adaptive multilevel thresholding algorithm 

The steps in adaptive multilevel thresholding algorithm are as follows: 

Step 1: Obtain the Thoracic CT image, f 

Step 2: Calculate the normalized histogram of the image, 𝑃(𝑟𝑘) 

Step 3: Find the first derivative of the Gaussian kernel, 
𝜕𝑔(𝑥,𝜎)

𝜕𝑥
 

Step 4: Convolve the normalized histogram of the image with derivative of the Gaussian 

kernel,
 
𝐶[𝑛] = 𝑃(𝑟𝑘) ∗

𝜕𝑔(𝑥,𝜎)

𝜕𝑥
 

Step 5: Find the Zero crossings in 𝐶[𝑛] and calculate the number of peaks 𝑃𝑘 and 𝑇𝑘−1 

intensity thresholds 

Step 6: Apply multi-thresholding, 𝑠 = {

𝐿1   𝑓𝑜𝑟   0 ≤ 𝑓 < 𝑇1                    
𝐿2   𝑓𝑜𝑟  𝑇2 ≤ 𝑓 < 𝑇3                  

..
𝐿𝑘    𝑓𝑜𝑟  𝑇𝑘 − 2 ≤ 𝑓 < 𝑇𝑘 − 1

 

Step 7: Obtain segmented image with k regions. 

The steps involved in the multilevel thresholding process are illustrated in Fig. 4. There are 

four dominant modes excluding the first one which represents the background. The optimal 

separation of the modes is shown by a vertical dotted line. 
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Figure 4: Adaptive multilevel thresholding 

2.2 Gaussian mixture model based segmentation 

Gaussian Mixture Model (GMM) is a generative model based on Bayesian theory and 

parameterized by mean and covariance. Its potential for complex image segmentation has 

been demonstrated by many researchers. GMM based multiple sclerosis lesion detection 

in brain MRI was proposed [Bijar and Khayati (2011)] using Active Contour Model (ACM) 

for parameter initialization. In this work, we attempt to speed up the convergence of the 

algorithm by introducing a simple method of estimating the initial model parameter and 

the number of Gaussian components. 

Let G denote the set of gray intensities and N denote the total number of pixels in the 

thoracic CT image. Let K be the number of dominant peaks in the histogram of the image 

corresponding to K number of classes (ω1, ω2, …, ωK). The observation of the ith pixel is 

represented by xi and this is assigned to a class with the largest posterior probability. 

The Gaussian mixture model of the given observation x is  

𝑝(𝑥) = ∑  𝑝(𝑥|𝜔𝑛)𝐾
𝑛=1                                                     (1) 

Where ωn is the parameter of the nth gaussian component, ωn =(µn, σn, πn). The probability 

density function of the nth component is given by 

(a) Normalized histogram (b) Convolution with Gaussian kernal 

  
(c) Dominant modes (d) Multiple thresholds 
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𝑝(𝑥|µ𝑛, 𝜎𝑛) =
1

√2𝜋𝜎𝑛
2

𝑒
(−

((𝑋𝑗 −  µ𝑛))
2

2𝜎𝑛
2 )

                                                                           (2) 

 µn and σn are the mean and variance of the Gaussian distribution and πn represents the 

mixture coefficient given by the prior probability of the corresponding class ωn that 

independently generates all pixel labels yn. 

𝑝(𝑦𝑛 = 1) = 𝜋𝑛                                                                (3) 

The mixture coefficients satisfy the following constraints 

0 ≤ 𝜋𝑛 ≤ 1                                                                 (4) 

∑ 𝜋𝑛 = 1𝐾
𝑛=1                                                                  (5) 

The log-likelihood of the density function given in (1) is  

ln 𝑝(𝑥|µ, 𝜎, 𝜋) = ∑ ln𝑁
𝑖=1 {∑ 𝜋𝑛 𝑝(𝑥|µ𝑛, 𝜎𝑛)𝐾

𝑛=1 }  

Maximizing the log-likelihood function reduces the intra class variance of the model; 

therefore is better fit of the model and the data set can be achieved. Though the maximum 

likelihood (M-L) method provides a simple solution to GMM model, it fails when there 

are singularities in the data set and results in the log likelihood function getting into infinity 

[Allili, Bouguila and Ziou (2007)]. Another approach to estimate model parameter is 

gradient-descent optimization. Expectation Maximization (EM) has also been widely used 

to approximate the maximum likelihood [Greggio, Bernardino, Laschi et al. (2012); 

Nguyen, Wu, Member et al. (2010)]. The following two criteria play an important role in 

EM algorithm. 

(i). The marginal distribution of x, which is obtained by summing the joint distribution 

p(x|y) over all possible states of y 𝑝(𝑥) = ∑ 𝑝(𝑦) 𝑝(𝑥|𝑦)𝑦 = ∑ 𝜋𝑛 𝑝(𝑥|µ𝑛, 𝜎𝑛)𝐾
𝑛=1         (6) 

(ii). The posterior probability ψ(yn), which can be obtained by using Bayes’ rule in the 

conditional probability of y given x and using Eq. (6). 

𝑃(𝑦𝑛 = 1|𝑥) = 𝜓(𝑦𝑛) =
𝑃(𝑦𝑛=1)𝑃(𝑥|𝑦𝑛=1)

∑ 𝑃(𝑦𝑗=1)𝑃(𝑥|𝑦𝑗=1)𝐾
𝑗=1

=  
𝜋𝑛 𝑝(𝑥|µ𝑛, 𝜎𝑛)

∑ 𝜋𝑗 𝑝(𝑥|µ𝑗 , 𝜎𝑗)
𝐾

𝑗=1

          (7) 

2.2.1 Expectation maximization algorithm 

EM algorithm is an iterative technique to determine the model parameters ωn =(µn, σn, πn), 

(n=1, 2, . . ., K). Each iteration has two steps, step of parameter estimation and step of 

parameter maximization. The step in estimation determines the posterior probability using 

the current parameter values and the step in maximization re-estimates the parameter using 

the posterior probabilities calculated in the former step. The expression used to update the 

parameters is obtained by differentiating the log-likelihood function with respect to the 

corresponding parameter µn or σn or πn and setting it at zero. We obtain the following 

equations: 

µ𝑛
(𝑡+1)

=
1

𝑁𝑛
∑ 𝜓(𝑦𝑖𝑛)𝑁

𝑖=1 𝑥𝑖                                                                (8) 

Where 𝑁𝑛 = ∑ 𝜓(𝑦𝑖𝑛)𝑁
𝑖=1  represents the effective number of pixels assigned to the class n. 



 

 

 

Automatic Delineation of Lung Parenchyma Based on Multilevel                                  147 

𝜎𝑛
(𝑡+1)

=
1

𝑁𝑛
∑ 𝜓(𝑦𝑖𝑛)𝑁

𝑖=1 (𝑥𝑖 − µ𝑛)(𝑥𝑖 − µ𝑛)Τ                                                             (9) 

𝜋𝑛
(𝑡+1)

=
𝑁𝑛

𝑁
                                                                       (10) 

After training the GMM using Eq. (8-10), and determining ψ(yn) using Eq. (7), we can 

assign each pixel in the image to a class ωn with largest ψ(yn). 

2.3 Lung parenchyma boundary refinement 

This section describes the morphological approach to the problem of lung boundary 

refinement. Lung parenchyma boundary correction based on top-hat transform has been 

proposed [Li-nan, Dao-jing, Shen-shen et al. (2010)], [Meng and Zhao (2009)], but these 

techniques use a constant size structuring element which results in a higher segmentation 

error. The technique proposed in our system is based on morphological filter that modifies 

the size of the structuring element based on local geometric features of the lung boundary. 

The mathematical morphological operations are represented by the combination of two 

basic operations: erosion and dilation. Let Z represent the set of integers and F (x, y) be a 

discrete image signal, where the set {x, y}⊂Z2 is domain set and {F}⊂Z is range set. The 

structuring element S can be expressed by its support domain S⊂Z2. The erosion and 

dilation operation can be defined as  

F ⊖ S = {Z| (S)z ⊆ F}                                                                (11) 

F ⊕ S = {Z| (Ŝ)z ∩ F ≠ ∅}                                                              (12) 

The opening and closing operations are defined as  

(F ∘ S) (x, y) = [(f ⊖ S) ⊕S1] (x, y)                                                             (13) 

(F ∙ S) (x, y) = [(f ⊕ S) ⊖ S] (x, y)                                                              (14) 

The opening operation removes objects that are smaller than the structuring element. 

Therefore, with a specified structuring element S1, we can remove any small objects 

attached with the lung wall by taking the difference between the original image and the 

image processed by the opening operation which is described by the top-hat operation as 

follows, 

ϒ S1 [F (x, y)] = max [0, F (x, y)-(F ∘ S1) (x, y)]                                                           (15) 

Let S2 be the second structuring element whose size should be larger than the lung mask 

used for background correction described by the operation 

ϒ S2 [F (x, y)] = max [0, F (x, y)-(F ∘ S2) (x, y)]                                                           (16) 

The desired enhanced image can be obtained by subtracting the results of the operation 

latter from that of the former. 

3 Performance evaluation metrics 

For evaluating the performance of the proposed system, we have imposed four metrics: 

Dice Similarity Coefficient (DSC), Sensitivity, Specificity and Hausdorff Distance (HD). 

The total number of each combination of pixels for both manual and automatically labeled 

image is specified as follows: 
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• True Positive (TP) represents the total number of pixels which are correctly labeled 

by the algorithm.  

• False Negative (FN) represents the number of lung parenchymal pixels the 

algorithm failed to label.  

• False Positive (FP) represents the number of not a lung parenchymal pixel labeled 

as lung parenchyma by the segmentation algorithm.  

• True Negative (TN) represents the number of pixels which are not labeled as lung 

parenchyma by both manual and automatic segmentation. 

DSC is a statistical metric which quantifies the degree of likeness between the manual and 

automatic segmented images [Zou, Warfield, Bharatha et al. (2004)]. The Dice similarity 

coefficient is defined as 

2

2

TP
DSC

TP FN FP


 
                                                   (17) 

The DSC may take values between 0 and 1. If both the manual and automatic segmentation 

results are exactly identical then DSC will be equal to 1 and vice versa. 

Sensitivity and specificity are statistical measures of the ability of the algorithm to correctly 

label the lung parenchymal pixels and correctly exclude not a lung parenchymal pixels 

respectively [Taha and Hanbury (2015)]. 

TP
Sensitivity

TP FN



                                                   (18) 

TN
Specificity

TN FP



                                                   (19) 

The Hausdorff distance provides a measurement of error between the two segmented 

regions [Chalana and Kim (1997)]. Let Sm and Sa be two surfaces, then the symmetrical 

Hausdorff distance is defined by, 

( , ) [ ( , ), ( , )]h m a m a a md S S Max d S S d S S                                                 (20) 

Where  

( , ) d( , )m a a

m

Max
d S S p S

p S



                                                   (21) 

( , ) d( , )a m m

a

Max
d S S p S

p S



                                                  (22) 

4 Data set and experimental results 

The proposed method has been evaluated using the database created by lung image 

database consortium (LIDC) [Armato, McLennan, Bidaut et al. (2011)]. It is a large 

collection of publicly available referential thoracic CT database. We have covered 70 

diseased and 119 normal lung images from 28 cases. The inclusion criteria entail the 

following features: should contain 40% of pathological lung image which includes pleural 
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nodules and 20% of the data contains airways and pulmonary vessels attached with lung 

walls. The ground truth images are carefully labeled with the help of experienced 

radiologists.  

The results of the consecutive phases of the lung parenchyma segmentation process are 

shown in Fig. 5.  

(a) Original image slice 

from LIDC database 

(b) Segmentation by 

multilevel thresholding 

(c) Clustering by GMM 

   
(d) Boundary correctd 

Lung mask 

(e) Segmented lung 

parenchyma 

(f) Manual 

segmentation 

   

Figure 5: Result of the proposed method 

The performance of the system achieved is evaluated in terms of its dice similarity 

coefficient (DSC), Hausdorff distance (HD), sensitivity and specificity values. The result 

of the proposed system and some of other segmentation algorithms reported in the literature 

such as fuzzy c-means clustering (FCM), combination of thresholding and rolling ball 

algorithm and GMM initialized by active contour segmentation (ACS) was computed and 

are summarized in Tab. 1. 

Table 1: Performance of the lung segmentation algorithms 

 DSC (%) HD  Sensitivity (%) Specificity (%) 

Thresholding+Rolling ball 90.07 1.77 99.85 95.83 

FCM+morphological filtering 93.74 1.44 99.76 97.52 

ACS+GMM 96.03 1.18 99.49 99.35 

Proposed 97.22 1.02 99.91 99.67 
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Figure 7: Comparison of the Dice similarity coefficient of the proposed and other 

automatic segmentation techniques 

 

Figure 8: Comparison of the Hausdorff distance of the proposed and other automatic 

segmentation techniques 

In order to evaluate the performance of the automatic segmentation algorithms, the 

segmentation results were compared with the ground truth produced by the radiologists. 

Based on Dice similarity coefficient and Hausdorff distance, the boxplots in Fig. 6 and Fig. 

7 show the comparison among the automatic segmentation techniques. 

5 Conclusion 

In this paper we have presented an efficient lung parenchyma segmentation scheme for 

thoracic CT images. The scheme is fully automatic and does not require human 
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intervention. The proposed method involves GMM based segmentation followed by an 

adaptive border correction technique. This system provides a simple solution to the GMM 

initialization process which reduces the computational time. Furthermore, the adaptive 

boundary correction technique (that handle pathological lungs) improves the segmentation 

accuracy. These are the key features of the developed system. As demonstrated in this 

paper, it provides the highest segmentation accuracy (DSC=97. 22%) over other methods. 

Additionally, it also exhibits a very high sensitivity and specificity, which are significant 

in any computer aided diagnosis system. Hence the proposed lung parenchyma delineation 

scheme will be a promising precursor to the computer aided diagnosis of lung diseases. 
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