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Abstract: An improved teaching-learning-based optimization (I-TLBO) algorithm is 
proposed to adjust the parameters of extreme learning machine with parallel layer 
perception (PELM), and a well-generalized I-TLBO-PELM model is obtained to build 
the model of NOX emissions of a boiler. In the I-TLBO algorithm, there are four major 
highlights. Firstly, a quantum initialized population by using the qubits on Bloch sphere 
replaces a randomly initialized population. Secondly, two kinds of angles in Bloch sphere 
are generated by using cube chaos mapping. Thirdly, an adaptive control parameter is 
added into the teacher phase to speed up the convergent speed. And then, according to 
actual teaching-learning phenomenon of a classroom, students learn some knowledge not 
only by their teacher and classmates, but also by themselves. Therefore, a self-study 
strategy by using Gauss mutation is introduced after the learning phase to improve the 
exploration ability. Finally, we test the performance of the I-TLBO-PELM model. The 
experiment results show that the proposed model has better regression precision and 
generalization ability than eight other models. 
 
Keywords: Bloch sphere, qubits, self-learning, improved teaching-learning-based 
optimization (I-TLBO) algorithm. 

1 Introduction 
Reducing NOX emissions of a boiler has been paid a significant attention recently in the 
economic development of power plants. In order to implement the reduction of NOX 
emissions, a precise model of NOX emissions firstly needs to be built. Due to the complex 
nonlinear relationship between the NOX emissions of the boiler and its influencing factors, 
it is difficult to build an accurate mathematical model by using mechanism modeling 
methods [Wang and Yan (2011)]. Artificial neural networks (ANNs) based on data-
driven modeling is an effective method in solving this problem [Zhou, Cen and Fan 
(2004); Ilamathi, Selladurai, Balamurugan et al. (2013)]. However, the conventional 
neural network has the disadvantages of large amount of calculation, slow training speed, 
poor generalization ability and easy to fall into local minimum points. Extreme learning 
machine with parallel layer perception (PELM) [Tavares, Saldanha and Vieira (2015)] is 
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a new type of neural network. In the PELM, the input weights and thresholds of hidden 
layer in the nonlinear part are randomly generated, and then the input weights and 
thresholds of hidden layer in the linear part are obtained by the generalized inverse of the 
matrix. The PELM has some good characteristics: Low model complexity, high 
calculation speed and good generalization ability. So, this network can overcome the 
shortcomings of back propagation (BP) neural network, such as large iterative calculation 
amount, slow training speed and poor generalization ability. In Tavares et al. [Tavares, 
Saldanha and Vieira (2015)], the PELM is applied to solve twelve different regression 
and six classification problems. The experiment results show that the PELM with high 
speed can achieve very good generalization performance. Furthermore, the PELM has the 
same regression ability as extreme learning machine (ELM) [Huang, Zhu and Siew 
(2006); Huang, Zhou, Ding et al. (2012)], but it only uses just a half of hidden neurons 
and has a much less complex hidden representation. So, the PELM is an efficient 
modeling tool, which can be used to solve various regression problems in real life. 
Therefore, in this study, the PELM is considered to build the model of NOX emissions of 
a boiler. Because the PELM randomly selects the input weights and thresholds of hidden 
layer in the nonlinear part, the regression precision and generalization ability may be 
affected. It is necessary to select the optimal input weights and thresholds in the PELM. 
Therefore, we need to find an efficient optimization algorithm to optimize the PELM. 
Teaching-learning-based optimization (TLBO) algorithm is an intelligent optimization 
algorithm based on the teaching-learning in classroom [Rao, Savsani and Vakharia 
(2011); Rao, Savsani and Vakharia (2012)]. This algorithm needs fewer parameters 
setting, but it can achieve higher calculation precision. The TLBO algorithm is simple in 
the concept, easy to understand, and fast in the calculation speed. Therefore, the TLBO 
algorithm has attracted many scholars’ attention and has been applied in many fields 
[Pawar and Rao (2013); Rao and Kalyankar (2013); Bhattacharyya and Babu (2016)]. 
The TLBO algorithm has many advantages, but it also inevitably has some shortcomings. 
When it is used to solve some global optimization problems, the diversity of the 
population decreases with increasing number of iterations. It is very easy to fall into the 
local minimum and even stagnate. On the other hand, the convergent speed in the early 
stage is fast, but the convergent speed in the late stage gradually becomes slow. So the 
effectiveness of the TLBO algorithm is affected. 
To overcome the shortcomings and improve the exploration ability and the exploitation 
performance of the TLBO, an improved TLBO (I-TLBO) algorithm is proposed in this 
study. In the I-TLBO algorithm, there are four major highlights. Firstly, quantum 
initialization by using the qubits on Bloch sphere replaces random initialization in 
original TLBO. This highlight can improve the quality of the initial population. Secondly, 
two kinds of angles in Bloch sphere are generated by using cube chaos mapping. The 
introduction of the cube chaos mapping can increase the diversity of the initial population. 
The search ability of ergodic to the solution space is improved. Thirdly, an adaptive 
control parameter is added into the teacher phase to speed up the convergent speed. And 
then, according to actual teaching-learning phenomenon of a classroom, students learn 
some knowledge not only by their teacher and classmates, but also by themselves. 
Therefore, a self-study strategy by using Gauss mutation is introduced after the learning 
phase to improve the exploration ability. The effectiveness of the I-TLBO algorithm is 
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benchmarked on eight well-known testing functions. The performance of the I-TLBO 
algorithm is compared with particle swarm optimization (PSO) algorithm [Kennedy and 
Eberhart (1995)], grey wolf optimizer (GWO) algorithm [Mirjalili, Mirjalili and Lewis 
(2014)], TLBO algorithm, mTLBO algorithm [Satapathy and Naik (2013)], and TLBO 
with crossover (C-TLBO) algorithm [Ouyang and Kong (2014)]. Wilcoxon signed rank 
test shows that the proposed I-TLBO algorithm is able to provide very good results 
compared to five other algorithms. So, the I-TLBO algorithm becomes a good selection 
to optimize the PELM, and a well-generalized I-TLBO-PELM model is obtained to 
predict NOX emissions of a boiler. 
The rest of this study is arranged as follows. In Section 2, the PELM model and the 
TLBO algorithm are reviewed, respectively. In Section 3, the I-TLBO algorithm is 
proposed. In Section 4, the experimental study shows the validity of the I-TLBO 
algorithm. In Section 5, the I-TLBO-PELM model is proposed and is applied to model 
NOX emissions of the boiler. Finally, Section 6 concludes this study. 

2 Basic concepts and related works 
2.1 The model of the PELM 
The PELM was proposed by Tavares et al. [Tavares, Saldanha and Vieira (2015)]. The 
structure of the PELM is described in Fig. 1. 
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Figure 1: The structure of the PELM 
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Suppose a data set with N arbitrary distinct samples ( ) 1, n N N
l lx y R R× ×∈ × , 1,2, , ,l N=   

the PELM has m hidden layer nodes. U is the matrix of the weights and the thresholds of 
hidden layer in the upper network. V is the matrix of the input weights and thresholds of 
hidden layer in the lower network. ( ) ( ),β γ⋅ ⋅ and ( )φ ⋅ are activation functions. Then, the 
PELM is mathematically modeled as 

( ) ( )
1

m

l jl jl
j

y a bβ γ φ
=

 
 =   

 
∑                                                                                               (1) 

where jla and jlb are 
1

1

n

jl ji il
i

a u x
+

=

= ∑                                                                                                                     (2) 

1

1

n

jl ji il
i

b v x
+

=

= ∑                                                                                                                      (3) 

jiu and jiv are the elements of U and V ; ilx is the i th input of the l th sample and ly is the 
output of the l th sample. In the PELM, the input-output mapping is made by applying the 
product of functions [Tavares, Saldanha and Vieira (2015)]. 
As a particular case of Eq. (1), when ( )β ⋅ and ( )γ ⋅ are linear functions, the network 
output ly is computed as 

( )
1

m

l jl jl
j

y a bφ
=

 =  ∑                                                                                                             (4) 

Substituting Eqs. (2) and (3) into Eq. (4), we can obtain Eq. (5) 
1 1

1 1 1

m n n

l ji il ji il
j i i

y u x v xφ
+ +

= = =

  
=   

  
∑ ∑ ∑                                                                                            (5) 

In Eq. (5), jiv of the nonlinear part is randomly selected in [ 1,1]− , and then jiu  of the 
linear part is obtained by the least square method. 

2.2 An introduction of the TLBO algorithm 
The TLBO algorithm simulates the influence of a teacher on learners in a class teaching 
to obtain the global optimal solution. Compared with other nature-inspired algorithms, 
The TLBO algorithm has the advantages of the simple principle, the few parameters and 
the high precision. In the TLBO, the learners are considered as the population X .The 
teacher is considered as the most knowledgeable person in a class and shares the 
knowledge to the students to improve the marks of class. The learning result of a learner 
is analogous to the fitness ( )if X , 1:i M= , where M is the size of the population. There 
are two parts in the TLBO: The teacher phase and the learner phase. The teacher phase 
means that students learn the knowledge from the teacher. The learner phase means that 
students learn the knowledge from the classmates by communicating with each other. 
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2.2.1 The teacher phase 
In this stage, the teacher teaches individual knowledge to their students to improve the 
average level of the students in whole class. The students learn the knowledge from 
teachers to narrow the gap between the teachers and the students. Let iX and ,new iX , 1:i =  
M denote scores before and after study, respectively. The average level of the students in 
the whole class is meanX . The teacher tries to raise the level of students to teacherX by 
differential teaching. Then the whole teaching process can be expressed as 

( )( ),new i i teacher F meanX X r X T X= + − ⋅                                                                                (6) 

where [ ]0,1r ∈ is a random number, and FT is a teaching factor as shown below  

[ ]1 (0,1)FT round rand= +                                                                                                 (7) 

Accept ,new iX , if it gives a better function value. 

2.2.2 The learner phase 
After the teacher has finished teaching, the knowledge levels of the students have been 
improved. However, the individual level of every student is different from others, so the 
students can still learn new knowledge from other superior individuals. At the stage of 
mutual learning among students, the student iX randomly selects another student 

jX ( i j≠ ) by contrast learning. The process of learning among the classmates is  

( ) ( ) ( )
( ) ( ) ( ),

i i i j i j

new i

i i j i i j

X r X X f X f X
X

X r X X f X f X

 + − <= 
+ − >

                                                                  (8) 

Accept ,new iX , if it gives a better function value. The algorithm will continue its iterations 
until reaching the maximum number of iterations. 

3 An improved TLBO （I-TLBO）algorithm 
The parameter setting of the TLBO algorithm is fewer and the calculation precision is 
higher. However, the TLBO is also easy to fall into a local minimum, and it can not find 
the optimal solutions. Therefore, an improved TLBO algorithm called I-TLBO algorithm 
is proposed. In the I-TLBO algorithm, there are four major highlights, which are 
expressed in detail as follows. 

3.1 Quantum initialized population by using the qubits on Bloch sphere 
In general, population-based optimization techniques start the optimization process with a 
set of random solutions, but they need sufficient individuals and iterations to find the 
optimal solution [Mirjalili (2016)]. Vedat et al. [Vedat and Ayşe (2008)] pointed out that 
initial population of high quality could reduce the number of search to reach the optimum 
design in the solution space. The initial solutions were coded by using Bloch spherical 
coordinates, which expanded the quantity of the global optimal solution and improved the 
probability to obtain the global optimal solution [Huo, Liu, Wang et al. (2017)]. Because 
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the original TLBO algorithm uses a randomly initialized population, it is difficult to 
guarantee that the population has good quality solutions. For overcoming the defect, the 
population is generated by using qubits based on Bloch spherical coordinate. The detailed 
scheme is described in this part. 
In quantum computing, a qubit represents the smallest unit of the information, whose 
state can be expressed by Eq. (9) 

( )=cos / 2 0 sin( / 2) 1ie ϕθ θΦ〉 〉 + 〉                                                                                   (9) 

where the angles ϕ and θ can determine the point on the Bloch sphere [Li (2014)]. 
Representation of the qubit on Bloch sphere is shown in Fig. 2.  
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Figure 2: Representation of the qubit on Bloch sphere 

According to Fig. 2, a qubit corresponds to a point on the Bloch sphere. Therefore, a 
qubit Φ〉 can be presented by using the Bloch spherical coordinate in Eq. (10). 

[ ]T= cos sin sin sin cosϕ θ ϕ θ θΦ〉                                                                             (10) 

Let iP  be i th candidate solution of the population, and the coding scheme is shown in Eq. 
(11). 

1 1

1 1

1

cos sin cos sin
sin sin sin sin
cos cos

i i id id

i i i id id

i id

P
ϕ θ ϕ θ
ϕ θ ϕ θ
θ θ

=






                                                                                  (11) 

2ij randϕ π= ×                                                                                                                (12) 

ij randθ π= ×                                                                                                                   (13) 

where d  is the dimension of the optimization space, 1,2, ,i M=  and 1,2, ,j d=  . Each 
initial solution iP corresponds to three locations on Bloch sphere, which is shown in Eq. 
(14). They are on X axis, Y axis and Z axis, respectively. 
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( )
( )
( )

1 1

1 1

1 2

cos sin , ,cos sin

sin sin , ,sin sin

cos ,cos , ,cos

ix i i id id

iy i i id id

iz i i id

P

P

P

ϕ θ ϕ θ

ϕ θ ϕ θ

θ θ θ

 =


=
 =







                                                                           (14) 

According to the relationship between the qubits and the coordinates of the points on 
Bloch sphere, the global optimal solution P∗ is possibly obtained on the three circles [Li 
(2014)], which is shown in Fig. 3. 
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Figure 3: A point P∗ corresponds to three circles on Bloch sphere 

Let j th dimension of iP be 
T

, ,ij ij ijx y z   on Bloch sphere. The range of the j th dimension 

is ,j ja b   in the original solution space. So, the transformation formula from Bloch 
sphere to the original solution space is shown in Eq. (15) 

( ) ( )

( ) ( )

( ) ( )

1 1 1
2
1 1 1
2
1 1 1
2

j
ix j ij j ij

j
iy j ij j ij

j
iz j ij j ij

X b x a x

X b y a y

X b z a z

  = + + −  

  = + + −  

  = + + −  

                                                                                  (15) 

Then select M individuals with the best fitness values as the initial population among all 
3M candidate solutions. Because the initial solutions of high quality are possibly 
obtained from three coordinate axes, the number of initial solutions of high quality is 
extended. Thereby, the introduction of quantum mechanism increases the convergent 
probability. This highlight makes the I-TLBO algorithm more easily find the global 
optimal solution. 

3.2 The angles ijϕ  and ijθ  are generated by using cube chaos mapping 

The angles ijϕ and ijθ in Eqs. (12-13) are randomly generated by using the uniform 
distribution. Therefore, a random initialization reduces the search efficiency of the 
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algorithm to some extent. Chaos is a kind of universal nonlinear dynamic phenomenon, 
and the chaotic motion can traverse all states according to its own law within a certain 
range. This advantage can be used as an effective method to avoid falling into a local 
minimum. Because of the ergodicity of the chaos, the initialized population by using 
chaos is diverse enough to potentially reach every mode in the multimodal functions 
[Gandomi and Yang (2014)]. Jothiprakash et al. [Jothiprakash and Arunkumar (2013)] 
generated the initial population for Genetic algorithm (GA) and Differential Evolution 
(DE) algorithm by chaos theory and applied it to a water resource system problem. They 
showed that GA and DE with initial chaotic populations outperformed those of the 
standard GA and DE algorithm. Furthermore, the combination of chaos and meta-
heuristic optimization algorithms has a faster iterative search speed than the uniform 
distribution [Coelho and Mariani (2008)]. All these studies show the potential of chaos 
theory for improving the performance of the optimization algorithms.  
The literature [Zhou, Liu and Zhao (2012)] proved that cube chaos mapping based on 
time series has good homogeneity. Therefore, we generate ijϕ and ijθ by using the cube 
chaos mapping, which is shown in Eq. (16). 

3
1 4 3 , 1 1, 1,2,k k k kz z z z k+ = − − ≤ ≤ =                                                                              (16) 

The detailed implement process of the cube chaos mapping in the I-TLBO algorithm are 
given as follows: 
Randomly generate two d-dimensional vectors 1 2[ , , , ]dσ σ σ= σ  and 1 2[ , , , ]dτ τ τ τ=  . 
Each component of these two vectors is between 0 and 1. 
for 1:j d=  

    1 j jϕ σ=  

    1 jθ = jτ  

        for 1: 1i M= −  
3

1 4 3i j ij ijϕ ϕ ϕ+ = −  
3

1 4 3i j ij ijθ θ θ+ = −  

        end 
end 
Because the introduction of cube chaos mapping can increase the diversity of the 
population, it expands the ergodic ability to search solution space. Therefore, the 
highlight improves the quality of the initial population once again and enhances the 
global exploration ability of the TLBO algorithm. 

3.3 An Adaptive control parameter in the teacher phase 
In order to balance the local exploitation ability and the global exploration ability of 
TLBO algorithm, an adaptive control parameter, as shown in Eq. (17), is proposed in the 
teacher phase. 

javascript:void(0);
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1

( ) ( / )start start end
tw w w w Gt= − ×−                                                                                        (17) 

Eq. (6) is changed into Eq. (18) below in the teacher phase.  

( )( ),new i i teacher F meanX w X r X T X= × + − ⋅                                                                        (18) 

In Eq. (17), startw  and endw  are the maximum value and the minimum value of the control 
parameter, respectively; t  is the current iteration number, and G  is the maximum 
iteration number. A larger value of w  facilitates the global exploration, while a smaller 
value of w facilitates the local exploitation. Selecting suitable value of w can provide a 
balance between the global exploration and the local exploitation. Therefore, in Eq. (17), 
the control parameter w nonlinearly decreases with increasing of the number of iterations. 
This highlight makes the algorithm advantageous to the global exploration in the early 
stage and the local exploitation in the late stage of the iteration.  

3.4 A self-learning process by using Gauss mutation after the learner phase 
In the TLBO algorithm, the students only improve their marks by learning from their 
teacher and classmates. In fact, the students not only rely on others to learn some 
knowledge, but also they often make unremitting efforts by themselves to improve their 
marks in actual learning. So inspired by the idea of self-learning to gain some knowledge, 
we add the self-learning process after the student phase. We implement the self-learning 
process by using Gauss mutation. This highlight is used to improve the exploration ability 
against the premature convergence. The self-learning process is illustrated as follows. 

,

( ) 1
(1 ) ( ) 1

i i
new i

i i

X randn h abs X
X

X randn h abs X
+ × <

=  × + × >
                                                                 (19) 

where h  is the step size; iX  is the current best solution in learner phase; ( )iabs X  denotes 
the absolute value of the elements of iX , and randn is a Gauss random number. Accept 

,new iX , if it gives a better function value.  

The flow chart of the I-TLBO algorithm is shown in Fig. 4. By adding above four 
improvements, we enhance the exploration ability and exploitation ability of the TLBO 
algorithm. Therefore, the optimization capability of the I-TLBO algorithm is better than 
the TLBO algorithm. This analysis is consistent with the following simulation results. 
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Figure 4: The flow chart of the I-TLBO algorithm 
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4 The simulation experiments on the benchmark functions 
The optimization performance of the I-TLBO algorithm on a test of benchmark functions 
is compared with the PSO, GWO, TLBO, C-TLBO, and mTLBO. The performance of 
the proposed algorithm is verified on eight classic benchmark functions.  

4.1 The classical benchmark functions 
These benchmark functions [Rashedi, Nezamabadi-Pour and Saryazdi (2009); Mirjalili, 
Mirjalili and Lewis (2014)] are the classical functions utilized by many researchers, 
which are shown in Tab. 1. F1-F4 is unimodal benchmark functions, which are used to 
verify exploitation ability of fast finding the optimal solutions. The convergent speeds of 
unimodal benchmark functions are more interesting than the final results of optimization. 
F5-F8 are used to verify the exploration ability of finding the global optimal solutions. For 
the multimodal functions, the computation results are much more important. They reflect 
an algorithm’s abilities of escaping from poor local optima and finding a good near-
global optimum [Xin, Liu and Lin (2002)]. 

Table1: The classical benchmark functions 

Benchmark function Domain Optimum 
location Optimal value 

2
1

1
( )

d

i
i

F x x
=

= ∑  [-100,100]d  [0]d  0 

2 ( ) max( )iF x x=  [-100,100]d  [0]d  0 

2
3

1
( ) [ 0.5 ]

d

i
i

F x x
=

= +∑  [-100,100]d  [0.5]d  0 

2
4

1
( ) (0,1)

d

i
i

F x ix rand
=

= +∑  [-1.28,1.28]d  [0]d  0 

( )( )5
1

( ) sin
d

i i
i

F x x x
=

= −∑  [-500,500]d  [420.9687]d  -418.9829 d×  

( )2
6

1
( ) 10cos(2 ) 10

d

i i
i

F x x xπ
=

= − − +∑  [-5.12,5.12]d  [0]d  0 

2
7

1

1

1( ) 20exp 0.2

1              exp cos 2 20

d

i
i

d

i
i

F x x
D

x e
D

π

=

=

 
= − − −  

 
 

+ + 
 

∑

∑
 [-32,32]d  [0]d  0 

2
8

1 1

1( ) cos 1
400

dd
i

i
i i

xF x x
i= =

 
= − + 

 
∑ ∏  [-600,600]d  [0]d  0 
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4.2 The experiment study and results analysis  
All the programs are run under MATLAB 2009a environment in Windows 7, 2.2 GHZ 
CPU. Every experiment is repeated 10 times. The best value, the mean and the standard 
deviation (S.D.) of the best function values have been recorded for six algorithms. In 
order to fairly compare the computation results, six algorithms use the same population 
size 30M =  and the maximum number of generations 500G = . In the PSO, 1 1 1.8c c= = . 
In the C-TLBO, the crossover factor (CR) is set as 0.95, which is the same as [Ouyang 
and Kong (2014)]. In the I-TLBO, after a lot of experiments, the values of h , startw  and 

endw  are all set as 0.03, 0.08 and 0.01 respectively. The experiment results are given in 
Tabs. 2-3 and Fig. 5. The best results are displayed in the bold face.  

Table 2: Computational results of six algorithms when 30d =  

Function P.T. PSO GWO TLBO C-TLBO mTLBO I-TLBO 

F1 

Best 5.6692e+002 2.5410e-028 5.6784e-109 1.1179e-097 5.4745e-137 0 
Mean 4.5224e+003 1.5463e-027 1.8898e-104 2.8250e-089 1.5312e-128 0 
S.D. 2.4709e+003 1.3553e-027 4.4671e-104 8.9284e-089 3.0131e-128 0 

F2 
Best 2.0597e+000 3.3000e-017 3.4924e-062 1.8062e-051 9.2114e-097 0 

Mean 4.3112e+000 8.7321e-017 9.2415e-058 3.0742e-048 1.3522e-086 0 
S.D. 2.6903e+000 7.3823e-017 2.8742e-057 9.4545e-048 3.3641e-086 0 

F3 
Best 9.6490e+002 2.5093e-001 4.5090e+000 1.0770e+000 5.8059e+000 7.4420e-003 

Mean 6.6702e+003 6.2577e-001 5.5461e+000 1.5142e+000 6.4642e+000 9.4372e-003 
S.D. 4.4675e+003 3.5977e-001 6.7364e-001 4.1869e-001 4.5061e-001 1.8115e-003 

F4 
Best 7.1834e-004 3.4349e-004 1.4381e-003 6.8791e-004 8.5543e-004 8.4759e-006 

Mean 2.0932e-003 2.1347e-003 3.4714e-003 1.8940e-003 2.5537e-003 1.2209e-003 
S.D. 1.0063e-003 1.4812e-003 1.3236e-003 1.2337e-003 1.5676e-003 9.2795e-004 

F5 
Best -5.3674e+003 -6.9367e+003 -5.7710e+003 -8.5501e+003 -5.1081e+003 -9.6351e+003 

Mean -3.8689e+003 -6.1003e+003 -4.6600e+003 -7.4291e+003 -4.4785e+003 -8.5263e+003 
S.D. 7.3830e+002 7.2657e+002 5.5730e+002 7.8395e+002 

  
 

3.7110e+002 5.8876e+002 

F6 
Best 5.7551e+001 5.6843e-014 0 0 0 0 

Mean 9.8204e+001 1.8409e+000 0 1.1527e+001 0 0 
S.D. 2.0059e+001 3.3256e+000 0 2.3457e+001 0 0 

F7 
Best 1.9450e+001 7.5495e-014 4.4409e-015 4.4409e-015 8.8818e-016 8.8818e-016 

Mean 1.9772e+001 9.0772e-014 6.2172e-015 7.6383e-015 8.8818e-016 8.8818e-016 
S.D. 1.7093e-001 1.2313e-014 1.8724e-015 3.1107e-015 0 0 

F8 
Best 3.0690e+002 0 0 0 0 0 

Mean 4.4463e+002 1.0024e-003 5.7398e-003 7.8008e-004 0 0 
S.D. 1.0398e+002 3.1698e-003 1.8151e-002 2.4668e-003 0 0 

As seen from Tab. 2, when 30d = , the I-TLBO algorithm presents the best value and the 
lowest mean in all eight functions and the lowest S.D. in seven functions except F5. The 
mTLBO algorithm shows the lowest S.D. on F5, but the best value and the mean are 
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much worse than the I-TLBO algorithm. The mTLBO algorithm also presents the best 
value, the lowest mean and S.D. on F6-F8. The TLBO algorithm also presents the best 
value, the lowest mean and S.D. on F6. However, from Fig. 5, we can see that the 
convergent speed of the I-TLBO algorithm is much faster than the mTLBO and the 
TLBO on F6-F8. 
As seen from Tab. 3, when 50d = , the I-TLBO algorithm presents the best value and the 
lowest mean in all eight functions and the lowest S.D. in seven functions except F5. The 
mTLBO algorithm shows the lowest S.D. on F5, but the best value and the mean are 
much worse than the I-TLBO algorithm. The TLBO algorithm also presents the best 
value, the lowest mean and S.D. on F6 and F8. The mTLBO algorithm also presents the 
best value, the lowest mean and S.D. on F6-F8. However, from Fig. 5, we can see that the 
convergent speed of the I-TLBO algorithm is much faster than the TLBO and the 
mTLBO on F6-F8.. 

Table 3: Computational results of six algorithms when 50d =  

Function P.T. PSO GWO TLBO C-TLBO mTLBO I-TLBO 

F1 

Best 7.7681e+003 9.0536e-021 1.3064e-110 1.8895e-096 4.7345e-136 0 
Mean 1.7562e+004 4.9485e-020 2.9328e-103 8.0931e-092 6.0380e-119 0 
S.D. 7.7786e+003 6.7452e-020 5.3523e-103 1.7123e-091 1.9094e-118 0 

F2 
Best 9.0643e+000 1.0774e-012 6.6841e-066 1.4529e-052 3.7106e-092 0 

Mean 1.8680e+001 2.6337e-012 3.4967e-060 
 

6.2358e-048 3.5912e-084 0 
S.D. 5.7413e+000 1.2405e-012 4.5889e-060 1.1680e-047 1.1350e-083 0 

F3 
Best 6.6713e+003 1.8754e+000 8.6676e+000 3.8844e+000 1.0617e+001 2.5374e-002 

Mean 1.8603e+004 2.7127e+000 1.0235e+001 5.0728e+000 1.1701e+001 3.5439e-002 
S.D. 7.6168e+003 5.3399e-001 7.8459e-001 7.5808e-001 5.9991e-001 5.7472e-003 

F4 
Best 8.8815e-003 1.5034e-003 2.4495e-004 1.0035e-003 2.8945e-004 1.9541e-004 

Mean 3.9382e-002 2.9301e-003 2.9070e-003 3.0162e-003 3.9057e-003 7.5882e-004 
S.D. 3.2274e-002 9.3282e-004 1.7938e-003 2.7191e-003 2.4299e-003 5.3823e-004 

F5 
Best -8.2867e+003 -9.7367e+003 -8.3468e+003 -1.2760e+004 -7.3004e+003 -1.6543e+004 

Mean -5.5771e+003 -8.6260e+003 -6.2701e+003 -1.0673e+004 -6.1143e+003 -1.3778e+004 
S.D. 1.1607e+003 1.0109e+003 9.6979e+002 1.0542e+003 6.4453e+002 1.3340e+003 

F6 
Best 1.2180e+002 1.1369e-012 0 0 0 0 

Mean 1.7827e+002 3.4459e+000 0 1.3082e-001 0 0 
S.D. 3.0794e+001 3.5364e+000 0 4.1368e-001 0 0 

F7 
Best 1.9631e+001 3.1027e-011 4.4409e-015 4.4409e-015 8.8818e-016 8.8818e-016 

Mean 1.9857e+001 4.6950e-011 6.5725e-015 6.9278e-015 8.8818e-016 8.8818e-016 
S.D. 9.0011e-002 1.2807e-011 1.8346e-015 1.7161e-015 0 0 

F8 
Best 5.1275e+002 0 0 0 0 0 

Mean 9.1101e+002 8.5487e-016 0 1.2216e-003 0 0 
S.D. 2.4298e+002 2.7033e-015 0 3.8629e-003 0 0 
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Figure 5: Performance comparison of six algorithms on the benchmark functions 
Wilcoxon signed rank test is devoted to detecting possible differences between the I-
TLBO and five other optimization algorithms. The “+”, “=” and “-” denote that the 
performance of the I-TLBO algorithm is better than, similar to and worse than that of the 
corresponding algorithm, respectively. The significance level is set as 0.05. As seen from 
the results of statistical tests in Tabs. 4-5, the I-TLBO algorithm is significantly better 
than five other algorithms on the unimodal functions and the multimodal functions.  
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From the above analysis of the experimental results, it has been found that whether on 
unimodal or multimodal functions, whether 30d =  or 50d = , the I-TLBO algorithm is 
superior to five other optimization algorithms. Therefore, the I-TLBO algorithm is an 
excellent optimization algorithm, and can be applied to optimize the PELM for modeling 
NOX emissions of a boiler. 

Table 4: The statistical comparison of the six algorithms by Wilcoxon signed-rank test 
for 30d =  

Function 
I-TLBO vs. PSO I-TLBO vs. GWO 
p-valve T– T+ winner p-valve T– T+ winner 

F1 1.9531e-003 55 0 + 1.9531e-003 55 0 + 
F2 1.9531e-003 55 0 + 1.9531e-003 55 0 + 
F3 1.9531e-003 55 0 + 3.9063e-003 54 1 + 
F4 1.3672e-002 51 4 + 4.8828e-002 47 8 + 
F5 1.9531e-003 55 0 + 1.9531e-003 55 0 + 
F6 1.9531e-003 55 0 + 1.9531e-003 55 0 + 

F7 1.9531e-003 55 0 + 1.9531e-003 55 0 + 

F8 1.9531e-003 55 0 + 1 1 0 = 
Total (+/–/=)    8/0/0    7/0/1 

(Continued) 

Function 
I-TLBO vs. TLBO I-TLBO vs. CTLBO I-TLBO vs. mTLBO 
p-valve T– T+ winner p-valve T– T+ winner p-valve T– T+ winner 

F1 
1.9531e-
003 55 0 + 1.9531e-

003 55 0 + 1.9531e-
003 55 0 + 

F2 
1.9531e-
003 55 0 + 1.9531e-

003 55 0 + 1.9531e-
003 55 0 + 

F3 
1.9531e-
003 55 0 + 1.9531e-

003 55 0 + 1.9531e-
003 55 0 + 

F4 
3.9063e-
003 54 1 + 1.9336e-

001 41 14 = 8.3984e-
002 45 10 = 

F5 
1.9531e-
003 55 0 + 2.7344e-

002 49 6 + 1.9531e-
003 55 0 + 

F6 1 0 0 = 1.2500e-
001 10 0 = 1 0 0 = 

F7 
1.9531e-
003 55 0 + 1.9531e-

003 55 0 + 1 0 0 = 

F8 
5.0000e-
001 1 0 = 1 3 0 = 1 0 0 = 

Total (+/–/=)   6/0/2    5/0/3    4/0/4 
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Table 5: The statistical comparison of the six algorithms by Wilcoxon signed-rank test 
for 50d =  

Function 
I-TLBO vs. PSO I-TLBO vs. GWO 
p-valve T– T+ winner p-valve T– T+ winner 

F1 1.9531e-003 55 0 + 1.9531e-003 55 0 + 
F2 1.9531e-003 55 0 + 1.9531e-003 55 0 + 
F3 1.9531e-003 55 0 + 3.9063e-003 54 1 + 
F4 1.9531e-003 55 0 + 1.9531e-003 55 0 + 
F5 1.9531e-003 55 0 + 1.9531e-003 55 0 + 
F6 1.9531e-003 55 0 + 1.9531e-003 55 0 + 

F7 1.9531e-003 55 0 + 1.9531e-003 55 0 + 

F8 1.9531e-003 55 0 + 1 1 0 = 
Total (+/–/=)    8/0/0    7/0/1 

(Continued) 

Function 
I-TLBO vs. TLBO I-TLBO vs. CTLBO I-TLBO vs. mTLBO 
p-valve T– T+ winner p-valve T– T+ winner p-valve T– T+ winner 

F1 
1.9531e-
003 55 0 + 1.9531e-

003 55 0 + 1.9531e-
003 55 0 + 

F2 
1.9531e-
003 55 0 + 1.9531e-

003 55 0 + 1.9531e-
003 55 0 + 

F3 
1.9531e-
003 55 0 + 1.9531e-

003 55 0 + 1.9531e-
003 55 0 + 

F4 
1.9531e-
003 55 0 + 9.7656e-

003 52 3 + 1.9531e-
003 55 0 + 

F5 
1.9531e-
003 55 0 + 5.8594e-

003 53 2 + 1.9531e-
003 55 0 + 

F6 1 0 0 = 1 1 0 = 1 0 0 = 

F7 
1.9531e-
003 55 0 + 1.9531e-

003 55 0 + 1 0 0 = 

F8 1 0 0 = 1 1 0 = 1 0 0 = 
Total (+/–/=)  6/0/2    6/0/2    5/0/3  

5 Model the NOX emissions based on the I-TLBO algorithm and PELM 

With the development of coal-fired power stations, combustion technology of low NOX 
emission has become an important research direction of boiler engineering. In order to 
reduce pollutant emissions, NOX emissions model firstly needs to be built. The NOX 
emissions model depends on various operating parameters, such as air velocity, coal 
feeder rate, oxygen content in the flue gas, exhaust gas temperature. However, due to the 
complexity, uncertainty, strong coupling, and the nonlinearity of the combustion process, 
it is difficult to use the theory of thermodynamics to model the NOX emissions. The 
PELM is a new intelligent modeling tool based on the history combustion data of a boiler. 
In the PELM, the input weights and thresholds of hidden layers in the nonlinear part are 
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randomly generated. To improve the generalization performance of the PELM, it is 
necessary to select the optimal input weights and hidden thresholds. Therefore, we select 
proposed I-TLBO algorithm to optimize the PELM and build I-TLBO-PELM model of 
NOX emissions. 

5.1 An introduction of the data 

There are 240 data samples collected from a boiler, which are sampled once every 30 s 
and listed in Tab. 6. 100% load, 75% load and 50% load have 80 samples, respectively. 
In this study, the total 240 cases are divided into two parts: 192 cases (64 for 100% load, 
64 for 75% load, and 64 for 50% load) as the training data, and the remaining 48 cases as 
the testing data. The NOX emission is as the output variable, and 20 operational 
conditions closely related to the output variable are as the input variables of the I-TLBO-
PELM model. The 20 operational conditions are given as follows. 
The boiler load (%); 
The fluid bed temperature (FBT, oC); 
The coal feeder rate (CFR, th-1), including A level, B level, C level and D level; 
The primary air velocity (PAV, kNm3h-1), including left level and right level;  
The primary air temperature (PAT, oC), including left level and right level; 
The secondary air velocity (SAV, kNm3h-1), including left and inside level, left and 
outside level, right and inside level, right and inside level. 

Table 6: The boiler operating conditions 

Data 
load 
(%) 

FBT 
(oC) 

CFR(th-1) PAV(kNm3h-1) PAT(oC) 

A B C D Left Right Left Right 

1 54.008 877.622 28.466 28.756 28.534 28.474 186.985 136.176 249.287 247.397 

2 54.008 877.622 28.466 28.756 28.534 28.474 237.336 176.915 249.287 247.397 

3 54.117 877.962 28.932 28.892 28.95 28.831 183.552 238.48 248.786 247.397 

4 53.973 878.422 29.179 29.392 29.22 29.202 219.027 275.099 248.786 246.881 

…    …   … 

81 71.845 868.626 52.009 44.378 20.031 54.715 222.46 201.404 262.958 260.565 

82 71.845 868.626 52.009 44.378 20.031 54.715 249.237 331.401 262.958 260.565 

83 71.837 867.801 51.894 44.157 19.935 54.396 260.909 259.078 262.958 260.565 

84 71.806 867.912 51.759 44.026 20.013 53.687 212.389 255.417 262.958 260.565 

…           

161 101.28 867.59 61.435 55.491 55.379 61.098 414.709 311.718 281.339 278.605 

162 101.28 867.59 61.435 55.491 55.379 61.198 377.174 288.145 281.339 278.605 

163 101.066 865.975 61.435 55.394 55.671 61.35 388.389 268.462 281.339 278.605 

164 100.616 864.498 61.082 55.085 55.29 61.178 343.531 333.232 281.339 278.605 

…    …    … 

240 101.382 875.358 59.004 53.164 53.136 59.168 242.371 318.813 283.886 281.819 
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Continued 

Data 
SAV(kNm3h-1) SAT(oC) EPFA(A) OC EGT NOX 

A B C D Left Right Left Right (%) (oC) MgNm-3 

1 44.126 41.367 41.164 55.661 258.233 250.204 88.419 102.685 8.647 147.803 155.02 

2 44.126 41.238 40.975 55.156 258.233 250.204 88.648 102.304 8.647 147.803 155.02 

3 45.103 40.938 41.704 53.785 258.233 250.204 88.763 101.922 8.647 147.803 154.257 

4 46.71 40.31 43.925 54.364 257.686 249.674 88.877 100.587 8.647 147.803 157.309 

…    ...    … 

81 72.022 77.484 76.963 57.798 272.063 261.516 86.245 106.004 5.96 148.741 155.783 

82 71.34 78.664 76.748 59.223 272.063 261.516 85.825 106.652 5.96 148.741 155.783 

83 74.389 82.61 77.033 57.479 272.063 261.516 86.321 105.012 5.96 148.741 155.859 

84 71.15 78.514 78.764 57.081 272.063 261.516 85.864 104.02 5.96 148.741 156.469 

…      …     … 

161 101.937 104.988 108.895 87.504 292.292 276.819 122.94 136.291 4.734 160.848 176.381 

162 101.481 106.241 108.735 88.814 292.292 276.819 125.763 134.384 4.734 160.848 176.381 

163 101.089 93.541 108.998 85.024 292.292 276.819 126.03 137.321 4.734 160.848 181.492 

164 101.131 99.22 107.843 87.112 292.292 276.819 125.763 134.04 4.734 160.848 183.705 

…    …     … 

240 99.793 110.157 110.716 88.392 294.575 279.506 104.135 0.153 3.883 165.677 131.523 

The secondary air temperature (SAT, oC), including left level and right level; 
The electricity of powder feeding machine (EPFM, A), including A level and B level; 
The oxygen content in the flue gas (OC, %); 
The exhaust gas temperature (EGT, oC). 

5.2 Model the NOX emissions by using the I-TLBO-PELM  

According to Caminhas et al. [Caminhas, Vieira and Vasconcelos (2003); Tavares, 
Saldanha and Vieira (2015)], although the PELM requires much smaller number of 
hidden neurons than other ANNs, it can still obtain the good generalization capability and 
approximation performance. After a lot of experiments, 3 neural nodes are set in the 
PELM. The activation function is sigmoid function ( ) 1 1 xg x e−= + . The maximum 
iteration number of six optimization algorithms is set as 100. All other parameter settings 
are the same as those of the Fourth part. The optimization object function is the root 
mean square error (RMSE) on the training data as follows: 

( )

2
1 1

1 1 1 1 2

N m n n

ji il ji il l
l j i i

u x v x y
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+ +

= = = =
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                                                                (20) 
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where N is the number of the training data and [ ]1,1jiv ∈ − .  

The detailed modeling process by using the I-TLBO-PELM is summarized in the 
following steps. 
Step 1: Set the control parameters of the I-TLBO algorithm, such as the size of the 
population M , the maximum number of iterations G , the values of startw  and endw ; 
Step 2: Initialize the population based on the quantum mechanism and cube chaos 
mapping. The population is composed of M  individuals; 
Step 3: Evaluating the fitness ( )f η  of each individual η  by using Eq. (20); 

Step 4: Optimize η  based on the teacher phase, student phase and self-learning phase; 
Step 5: If the maximum number of iterations M is reached, the I-TLBO algorithm is 
stopped; otherwise, renew the population of the I-TLBO algorithm and the iteration is 
repeated from Step 4; 
Step 6: The optimal η  is obtained, and then η  is substituted in Eq. (5). We can obtain 
the optimal PELM model and then the model is applied to predict the NOX emissions on 
the testing data. 

Initialize the population based on 
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chaos mapping

Is the maximum number 
of iterations reached ?

End

Evaluate the fitness  
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Figure 6: The modeling process of the I-TLBO-PELM  
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For a more vivid observation, the realization flowchart of the proposed I-TLBO-PELM is 
shown in Fig. 6. 
In addition, RMSE, mean absolute error (MAE) and mean absolute percentage error 
(MAPE) are used to evaluate the performance of the I-TLBO-PELM model.We compare 
with the PELM model, the PSO-PELM model, the GWO-PELM model, the TLBO-
PELM model, the mTLBO-PELM model and the C-TLBO-PELM model. Additionally, 
in order to test the superiority of the I-TLBO-PELM model, we also compare with BP 
neural network and linear regression (LR). Although there are many variants of BP 
algorithm, a faster BP algorithm called Levenberg-Marquardt algorithm provided by 
MATLAB package is used in our simulations. The comparison results of the training data 
and the testing data are given in Tabs. 7-8 and Figs. 7-8. 

5.3 The experiment results and analysis 
As shown in Tab. 7, for the I-TLBO-PELM model, the RMSE is 4.1763, the MAE is 
3.1867, and the MAPE is 0.0228. Three performance indexes of the I-TLBO-PELM are 
smaller than those of eight other models. Therefore, the approximate ability of the I-
TLBO-PELM is the best in nine models.  

For the testing data, for the I-TLBO-PELM model in Tab. 7, we can see that the RMSE is 
4.9068, the MAE is 3.9174, and the MAPE is 0.0276. Every performance index is also 
the smallest in nine models. So, the I-TLBO-PELM model has the best generalization and 
predicted performance in nine models.  

Table 7: Performance comparison for the NOX emissions 

Model 
Training data Testing data 
RMSE MAE MAPE RMSE MAE MAPE 

LR 6.3332 4.6865 0.0332 7.2788 5.7064 0.0429 
BP 7.5347 5.3627 0.0396 10.1224 7.4826 0.0562 
PELM 7.3198 5.5429 0.0389 8.5144 7.2308 0.0502 
PSO-PELM 4.4477 3.3120 0.0236 6.6290 5.2202 0.0381 
GWO-PELM 4.4278 3.2559 0.0232 6.8367 5.7148 0.0403 
TLBO-PELM 5.2355 4.0177 0.0286 6.3604 5.3264 0.0378 
mTLBO-PELM 4.6954 3.5044 0.0249 6.0795 5.0516 0.0343 
C-TLBO-PELM 4.4409 3.2897 0.0233 6.0324 4.9660 0.0350 
I-TLBO-PELM 4.1763 3.1867 0.0228 4.9068 3.9174 0.0276 

Fig. 7 shows predicted NOX emissions of nine models on the testing data. As seen from it, 
the predicted values of the I-TLBO-PELM model are very closer to the actual values than 
eight other models. The relative errors of the testing data are given in Fig. 8. The range of 
the error fluctuation of the I-TLBO-PELM model is about in [-0.06, 0.06]. The ranges of 
eight other models are larger than the I-TLBO-PELM. Therefore, the I-TLBO-PELM is 
more accurate for modeling the NOX emissions of the boiler than eight other models. 
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Figure 7: Predicted NOX emissions of nine models on testing data 
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Figure 8: Relative errors of nine models on testing data 
Moreover, in order to further verify that I-TLBO-PELM is a better modeling tool under 
different experiments conditions, 5% white noise is added into the target attribute of the 
data. For noise-added data, the parameters of employed methods are the same as the data 
without noise in order to well compare the robustness of all models to perturbations [Li 
and Niu (2013)]. The comparison results of the training data and the testing data are 
shown in Tab. 8. 

Table 8: Performance comparison for the NOX emissions under the condition of 5% 
noise 

Model 
Training data Testing data 
RMSE MAE MAPE RMSE MAE MAPE 

LR 7.4938 5.9615 0.0423 8.1511 6.6380 0.0499 
BP 8.3494 6.5325 0.0482 8.5632 7.4047 0.0536 
PELM 7.2543 5.9055 0.0421 7.3135 5.9223 0.0412 
PSO-PELM 6.4958 5.2664 0.0370 7.1598 6.0314 0.0439 
GWO-PELM 6.0736 5.0893 0.0359 7.6978 6.5813 0.0463 
TLBO-PELM 6.3924 5.1808 0.0365 7.1871 5.7742 0.0416 
mTLBO-PELM 6.7622 5.3553 0.0377 6.8791 5.3532 0.0376 
C-TLBO-PELM 6.3552 5.0709 0.0358 7.5353 6.1594 0.0450 
I-TLBO-PELM 5.8408 4.8062 0.0336 6.3999 5.3556 0.0390 

As seen from Tab. 8, whether on the training data or on the testing data, every 
performance index of the I-TLBO-PELM model is also the smallest in all nine models. It 
shows that the I-TLBO-PELM model owns a good robustness and can competently 
reduce the adverse effects which are caused by the perturbation. 
In summarize, the proposed I-TLBO-PELM model is relative accurate. This model has 
very good approximate ability, generalization performance and robustness. So, the I-
TLBO-PELM can provide an effective method to predict the NOX emissions of the boiler 
working. 
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6 Conclusions  
In order to improve the exploration ability and exploitation performance of the TLBO 
algorithm, an I-TLBO algorithm is proposed. In the I-TLBO, there are four 
improvements. Firstly, the quantum initialized population based on qubits replaces the 
randomly initialized population. Secondly, two kinds of angles in Bloch sphere are 
generated by using the cube chaos mapping. Thirdly, an adaptive control parameter is 
added into the teacher phase. And then, a self-learning process by using Gauss mutation 
is proposed after the learner phase. The optimization performance of the I-TLBO 
algorithm is verified on eight classical optimization functions. The experimental results 
show that the I-TLBO algorithm not only can jump out of the local optimal solution so as 
to achieve the global optimal solution, but also the convergent speed is the fastest in the 
six algorithms. Finally, a hybrid I-TLBO-PELM model is built to predict NOX emissions 
of a boiler. Compared with eight other models, the I-TLBO-PELM model has good 
regression precision and generalization performance. Therefore, the I-TLBO-PELM 
model is more suitable to predict the NOX emissions of the boiler. In the future, the I-
TLBO algorithm and the I-TLBO-PELM model will be used to make combustion 
optimization of the boiler to reduce the NOX emissions.  

Acknowledgement: The authors would also like to acknowledge the valuable comments 
and suggestions from the Editors and Reviewers, which vastly contributed to improve the 
presentation of the paper. This work is supported by the National Natural Science 
Foundations of China (61573306 and 61403331), 2018 Qinhuangdao City Social Science 
Development Research Project (201807047 and 201807088), the Program for the Top 
Young Talents of Higher Learning Institutions of Hebei (BJ2017033) and the Marine 
Science Special Research Project of Hebei Normal University of Science and Technology 
(No. 2018HY021). 

References  
Bhattacharyya, B.; Babu, R. (2016): Teaching learning based optimization algorithm 
for reactive power planning. International Journal of Electrical Power & Energy Systems, 
vol. 81, pp. 248-253. 
Caminhas, W. M.; Vieira, D. A. G.; Vasconcelos, J. A. (2003): Parallel layer 
perceptron. Neurocomputing, vol. 55, no. 3, pp. 771-778.  
Coelho, L. D. S.; Mariani, V. C. (2008): Use of chaotic sequences in a biologically 
inspired algorithm for engineering design optimization. Expert Systems with Applications, 
vol. 34, no. 3, pp. 1905-1913. 
Gandomi, A. H.; Yang, X. S. (2014): Chaotic bat algorithm. Journal of Computational 
Science, vol. 5, no. 2, pp. 224-232. 
Ilamathi, P.; Selladurai, V.; Balamurugan, K.; Sathyanathan, V. T. (2013): ANN-
GA approach for predictive modeling and optimization of NOx emission in a tangentially 
fired boiler. Clean Technologies & Environmental Policy, vol. 15, no. 1, pp. 125-131.  



 
 
 
56   Copyright © 2018 Tech Science Press                CMES, vol.117, no.1, pp.29-57, 2018 

Huo, F. C.; Liu, Y.; Wang, D.; Sun, B. X. (2017): Bloch quantum artificial bee colony 
algorithm and its application in image threshold segmentation. Signal Image and Video 
Processing, vol. 11, no. 8, pp. 1585-1592. 
Huang, G. B.; Zhou, H.; Ding, X.; Zhang, R. (2012): Extreme learning machine for 
regression and multiclass classification. IEEE Transactions on Systems Man & 
Cybernetics Part B, vol. 42, no. 2, pp. 513-529. 
Huang, G. B.; Zhu, Q. Y.; Siew, C. K. (2006): Extreme learning machine: theory and 
applications. Neurocomputing, vol. 70, no. 1-3, pp. 489-501. 
Jothiprakash, V.; Arunkumar, R. (2013): Optimization of hydropower reservoir using 
evolutionary algorithms coupled with chaos. Water Resources Management, vol. 27, pp. 
1963-1979. 
Kennedy, J.; Eberhart, R. C. (1995): Particle swarm optimization. Proceedings of IEEE 
International Conference on Neural Networks, pp. 1942-1948.  
Li, G. Q.; Niu, P. F. (2013): An enhanced extreme learning machine based on ridge 
regression for regression. Neural Computing and Applications, vol. 22, pp. 803-810. 
Li, P. (2014): A quantum-behaved evolutionary algorithm based on the bloch spherical 
search. Communications in Nonlinear Science & Numerical Simulation, vol. 19, no. 4, pp. 
763-771. 
Mirjalili, S. (2016): Sca: A sine cosine algorithm for solving optimization problems. 
Knowledge-Based Systems, vol. 96, pp. 120-133. 
Mirjalili, S.; Mirjalili, S. M.; Lewis, A. (2014): Grey wolf optimizer. Advances in 
Engineering Software, vol. 69, no. 3, pp. 46-61. 
Ouyang, B.; Kong, X. Y. (2014): Teaching-learning based optimization algorithm with 
crossover operation. Journal of Northeastern University (Natural Science), vol. 35, no. 3, 
pp. 323-328.  
Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. (2009): GSA: A gravitational search 
algorithm. Information Sciences, vol. 179, no. 13, pp. 2232-2248. 
Rao, R. V.; Savsani, V. J.; Vakharia, D. P. (2011): Teaching-learning-based 
optimization: A novel method for constrained mechanical design optimization problems. 
Computer-Aided Design, vol. 43, pp. 303-315. 
Rao, R. V.; Savsani, V. J.; Vakharia, D. P. (2012): Teaching-learning-based 
optimization: an optimization method for continuous non-linear large scale problems. 
Information Sciences, vol. 183, pp. 1-15. 
Rao, R. V.; Kalyankar, V. D. (2013): Parameter optimization of modern machining 
processes using teaching-learning-based optimization algorithm. Engineering Applications 
of Artificial Intelligence, vol. 26, no. 1, pp. 524-531. 
Pawar, P. J.; Rao, R. V. (2013): Parameter optimization of machining processes using 
teaching-learning-based optimization algorithm. International Journal of Advanced 
Manufacturing Technology, vol. 67, no. 5-8, pp. 995-1006. 
Satapathy, S. C.; Naik, A. (2013): A modified teaching-learning-based optimization 
(mTLBO) for global search. Recent Patents on Computer Science, vol. 6, pp. 60-72.  

http://www.baidu.com/link?url=3noflUVESEdbvkz7gl8nSjlvfXMgzxi_rFvMQ7COC8XKu88Sv1IjWwFgpIzHYCu2
https://www.sciencedirect.com/science/journal/00200255


 
 
 
Improved Teaching-Learning-Based Optimization Algorithm                                   57 

Tavares, L. D.; Saldanha, R. R.; Vieira, D. A. G. (2015): Extreme learning machine 
with parallel layer perceptrons. Neurocomputing, vol. 166, pp. 164-171.  
Vedat, T.; Ayşe, T. D. (2008): An improved genetic algorithm with initial population 
strategy and self-adaptive member grouping. Computers & Structures, vol. 86, no. 11-12, 
pp. 1204-1218. 
Wang, Z.; Yan, M. (2011): Online adaptive least squares support vector machine and its 
application in utility boiler combustion optimization systems. Journal of Process Control, 
vol. 21, no. 7, pp. 1040-1048.  
Xin, Y.; Liu, Y.; Lin, G. M. (2002): Evolutionary programming made faster. IEEE 
Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82-102.  
Zhou, H.; Cen, K.; Fan, J. (2004): Modeling and optimization of the NOx emission 
characteristics of a tangentially fired boiler with artificial neural networks. Energy, vol. 
29, no. 1, pp. 167-183.  
Zhou, Y.; Liu, P. Y.; Zhao, J.; Wang, Q. L. (2012): Chaos particle swarm optimization 
based on the adaptive inertia weight. Journal of Shandong University (Natural Science), 
vol. 47, no. 3, pp. 27-32． 

https://www.sciencedirect.com/science/article/pii/S004579490700301X#!
https://www.sciencedirect.com/science/article/pii/S004579490700301X#!

	Xia Li0F , 2, Peifeng Niu1, *, Jianping Liu2 and Qing Liu2
	4 The simulation experiments on the benchmark functions
	6 Conclusions

