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Abstract: Microbial population and enzyme activities are the significant indicators of 

soil strength. Soil microbial dynamics characterize microbial population and enzyme 

activities. The present study explores the development of efficient predictive modeling 

systems for the estimation of specific soil microbial dynamics, like rock phosphate 

solubilization, bacterial population, and ACC-deaminase activity. More specifically, 

optimized subtractive clustering (SC) and Wang and Mendel's (WM) fuzzy inference 

systems (FIS) have been implemented with the objective to achieve the best estimation 

accuracy of microbial dynamics. Experimental measurements were performed using 

controlled pot experiment using minimal salt media with rock phosphate as sole carbon 

source inoculated with phosphate solubilizing microorganism in order to estimate rock 

phosphate solubilization potential of selected strains. Three experimental parameters, 

including temperature, pH, and incubation period have been used as inputs SC-FIS and 

WM-FIS. The better performance of the SC-FIS has been observed as compared to the 

WM-FIS in the estimation of phosphate solubilization and bacterial population with the 

maximum value of the coefficient of determination )9988.0( 2 R in the estimation of 

previous microbial dynamics. 

Keywords: Phosphate solubilizing bacteria, bacterial population, ACC-deaminase activity, 

subtractive clustering, fuzzy rule-based prediction system. 

1 Introduction 

The soil is the lively part of the terrestrial environment that supports all forms of life. 

Soil condition is the result of continuous conservation and degradation processes and 

represents its continued capacity to function as vital living ecosystems [Carter, Gregorich, 

Anderson et al. (1997); Doran, Jones, Arshad et al. (1999); Doran and Zeiss (2000); 

Ghosh, Palsaniya and Kumar (2017)]. A unique balance of chemical, physical and 

biological (including microbial) components contribute to maintaining soil strength [Or, 
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Smets, Wraith et al. (2007); Schoenholtz, Van Miegroet and Burger (2000); Doran (2002); 

Nielsen, Winding, Binnerup et al. (2002)]. Consequently, the assessment of soil strength 

necessitates the estimations of its components. Microorganisms possess the ability to 

contribute an integrated measure of soil condition that cannot be obtained with 

physical/chemical measures [Nielsen, Winding, Binnerup et al. (2002); Winding, Hund-

Rinke and Rutgers (2005); Fine, Van Es and Schindelbeck (2017)]. Microorganisms respond 

quickly to changes, hence they rapidly adapt to environmental conditions. The 

microorganisms that are best adapted will be the ones that flourish [Singh, Pandey and 

Singh (2011); Ali, Hayat, Begum et al. (2017)]. This adaptation potentially allows 

microbial analyses to be discriminating in soil fitness assessment, and changes in 

microbial populations and activities, therefore, function as an excellent indicator of 

change in soil condition [Schloter, Dilly and Munch (2003); Gil-Sotres, Trasar-Cepeda, 

Leirós et al. (2005); Van Bruggen and Semenov (2000); Hermans, Buckley, Case et al. 

(2016)]. Microbial indicators of soil condition cover a diverse set of microbial capacities 

due to the multifunctional properties of microbial communities in the soil ecosystem that 

support to (i) control plant diseases as well as insect and weed pests; (ii) form beneficial 

symbiotic associations with plant roots (e.g. nitrogen-fixing bacteria and mycorrhizal 

fungi); (iii) recycle plant nutrients; (iv) improve soil structure with positive repercussions 

for its water- and nutrient-holding capacity; and (v) increase crop production [Ros, 

Goberna, Moreno et al. (2006); Alkorta, Aizpurua, Riga et al. (2003); Havlicek, (2012); 

Garbach, Milder, DeClerck et al. (2017); Tamez-Hidalgo, Christensen, Lever et al. 

(2016)]. One of the most important objectives in assessing the condition of a soil is the 

establishment of indicators for evaluating its current status [Doran, Jones, Arshad et al. 

(1999); Doran (2002); Schipper and Sparling (2000)]. Microbial population and enzyme 

activity are significant soil microbial condition indicators. These factors can be modeled 

using statistical and artificial intelligence techniques with significantly less engineering 

effort [Barberán, Bates, Casamayor et al. (2012); Hughes, Hellmann and Ricketts et al. 

(2001); Haider, Pakshirajan and Singh et al. (2008); Liang, Das and McClendon (2003); 

Tajik, Ayoubi and Nourbakhsh (2012); Kim, Yoo and Ki et al. (2011); Ebrahimi, 

Sinegani and Sarikhani et al. (2017); Ludwig, Vormstein and Niebuhr et al. (2017); 

Mukhlisin, El-Shafie and Taha (2012); Taghavifar and Mardani (2014)]; meanwhile, soil 

microbial, enzyme activity prediction by mathematical models is a tough task. In recent 

years, the trends towards modeling of machining processes using artificial intelligence 

methods have been increased due to their advanced computing capability. Researchers 

have used various intelligent techniques, including artificial neural network (ANN), 

fuzzy logic, neuro-fuzzy, adaptive neuro-fuzzy inference system (ANFIS) etc., for the 

prediction of machining parameters and to enhance manufacturing automation [Sen, 

Mandal and Mondal (2017); Yu, Yu, Wang et al. (2016); Hanafy, Zaini, Shoush et al. 

(2014)]. ANN and fuzzy logic are two important methods of artificial intelligence in 

modeling nonlinear problems. For example, ANN model has been implemented in the 

prediction of biosurfactant production under variable environmental conditions [Ahmad, 

Crowley, Marina et al. (2016)]. A neural network can learn from the data and feedback, 

however understanding the knowledge or the pattern is difficult. On the other hand, 

fuzzy logic models are easy to comprehend because they use linguistic terms in the form 

of if-then rules. A neural network with their learning capabilities can be also used to 
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learn the fuzzy decision rules, to create a hybrid intelligent system. A powerful 

subtractive clustering (SC) and Wang and Mendel’s (WM) rule-based fuzzy inference 

systems (FIS) have been implemented in various application domains [Eftekhari and 

Katebi (2008); Lohani, Goel and Bhatia (2014); Wang (2003); Yang, Yuan, Yuan et al. 

(2010)]. Both methods use the advantages of fuzzy systems in a different way in efficient 

predicting and modeling. Though, we hardly noticed the implementation of FIS methods 

in soil microbial dynamics prediction in published literature. The FIS method in 

modeling and optimization problems is an effective way for the number of trials, and 

saving time and materials as well as offering a complete evaluation of the experimental 

process through creating a regression relation between dependent and independent 

variables. With this motivation, in the present research, evaluation and comparison of the 

prediction and simulation efficiency of SC-FIS and WM-FIS methods have been 

accomplished for estimation of soil microbial dynamics under fluctuating environmental 

situations.  

2 Fuzzy rule based systems 

Fuzzy logic is based on degrees of truth than completely true or false, which is similar to 

the functioning of the human brain. Both gather data about an incident, create a number 

of partial truths, and finally compose them into a higher truth. In data mapping, fuzzy 

logic assigns partial membership to each data point rather than the complete membership. 

After that, partial memberships are composed using certain if-then rules to find out the 

complete membership [Klir and Yuan (1995)]. Fuzzy inference is the process of 

constructing the map from a given input to an output using the fuzzy logic approach. 

Mainly, clustering methods, including the c–means clustering, fuzzy c–means clustering, 

mountain clustering, and subtractive clustering are used for generating the fuzzy rules in 

inference system. In the present study, most widely used subtractive clustering method is 

used in the implementation of fuzzy inference system and their performance is compared 

with the general fuzzy inference system based on Wang and Mendel’s rule. A short 

description of both methods is as follows. 

2.1  Wang and Mendel’s fuzzy rule based system 

Wang and Mendel’s (WM) fuzzy rule based system (FRBS) is the simplest type of 

inference system. It is implemented in the present study by using the frbs package in R 

[Riza, Bergmeir, Herrera et al. (2015)]. For a particular data set       nnn yxxyxxyxx ,,,.....,,,,, 21
22

2
2
1
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where ny  represent the output of input pair nx , basic steps of method are as follows 

[Wang and Mendel (1982)]: (a) partitioning of input and output spaces into fuzzy regions 

by dividing the domain interval of each input and output variable into 12 N regions, 

where N may be different for each of the variables with either equal or unequal length, 

and assigning membership function to each partition; (b) generating fuzzy rules for the 

data pairs using the training data set after partitioning from the previous step by deciding 

the degrees of each input-output pairs to different regions, assigning pairs to a maximum 

degree and obtaining one if-then rule for one pair; (c) assigning a degree to each rule, 

this is done to avoid the inconsistent rules of similar if part and different then part for 
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different data pairs; (d) creating a combined rule base, and (e) mapping based on a 

combined fuzzy rule. The details of the method can be seen in Ref. [Wang and Mendel 

(1982)].  

2.2  Subtractive clustering fuzzy rule based system 

The Subtractive clustering (SC) finds fuzzy clusters by assigning each data point a 

potential ip  for the likelihood of it according to a Gaussian measure 
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where 2/4 ar  and ar  represents the cluster radius. The Euclidean norm .  signifies the 

vector distance between data points ),( ji xx . The data point with maximum potential is 

selected as the first cluster center and all the data points within distance ar  of cluster 

center are linked to the first cluster. The second cluster center is determined in a similar 

way after excluding the data points associated with the first cluster. The process is 

continued until all data points lie within ar  of a cluster center [Chiu (1994); Chiu (1997)]. 

In this way, the subtractive clustering method produces a number of clusters in the data 

set for generating fuzzy rules in following steps: (a) degree of fulfillment of ith fuzzy rule 

from ith cluster center is calculated as
2

iXY
i e





 ; (b) defining the membership function 

for each jth input to ith fuzzy rule as; 
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  (c) estimation of output variable by 

using the fuzzy thenif   rule. The details of fuzzy rule extraction are described in [Chiu 

(1994); Chiu (1997)]. The method is implemented using the frbs package in R [Riza, 

Bergmeir, Herrera et al. (2015)]. 

3 Materials and methods 

3.1  Soil sampling 

The rhizospheric soil was collected from the wheat field. For this purpose, wheat plants 

were uprooted at tillering stage and stored in polythene bags. The non-rhizospheric soil 

was removed by agitating the roots strongly and the soil strictly adhering to the roots was 

used for the desired soil sample. Seven different wheat rhizospheric samples were 

collected and pooled up to make a composite sample and designated wheat root 

rhizospheric samples (WRS). The measured input experimental parameters using the 

Taguchi design are summarized in Table 1. Measured values of the bacterial population, 

rock phosphate solubilization, and ACC deaminase activity is given in Table 2. 

Table 1: Values of different input variables. 

Independent variables Units Value 

Temperature °C 25 30 35 40 

pH Adim 6 7 8 9 

Incubation period Days 3 6 9 12 
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Table 2: Measured average value of rock phosphate solubilization, bacterial population, 

and ACC deaminase activity. 

Incubation 

period 
Temperature pH 

Rock phosphate 

solubilization 

Bacterial 

population 

ACC-

deaminase 

activity 

3 25 6 10.520 5102  1240.05 

3 25 7 10.520 7101  657.230 

3 25 8 123.24 7104  1311.63 

3 25 9 169.29 5103  430.010 

3 30 6 146.27 5103  821.970 

3 30 7 151.53 3106  1399.11 

3 30 8 6.8800 2101  3.81000 

3 30 9 170.39 6104  848.100 

3 35 6 142.10 5102  1063.96 

3 35 7 79.820 5101  252.780 

3 35 8 120.83 4103  269.820 

3 35 9 74.560 6103  859.460 

3 40 6 3.7700 2101  2.34000 

3 40 7 124.56 5104  393.660 

3 40 8 0.1300 2101  
7.02000 

3 40 9 5.1300 2101  3.37000 

6 25 6 131.79 5105  94.8600 

6 25 7 103.72 6101  422.060 

6 25 8 113.59 6102  440.240 

6 25 9 71.710 6102  531.120 

6 30 6 119.51 4101  305.040 

6 30 7 9.2900 2101  1.15000 

6 30 8 119.95 4107  366.390 

6 30 9 133.11 5101  401.610 

6 35 6 122.58 5101  61.9100 
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6 35 7 117.10 4101  138.030 

6 35 8 8.6800 2101  8.60000 

6 35 9 91.660 4102  295.950 

6 40 6 138.59 4107  170.980 

6 40 7 0.7400 2101  0.46000 

6 40 8 12500 5103  433.420 

6 40 9 111.40 5101  336.850 

9 25 6 50.870 7101  587.930 

9 25 7 123.90 5105  309.580 

9 25 8 124.78 4101  199.380 

9 25 9 122.36 4102  255.050 

9 30 6 128.28 3109  677.680 

9 30 7 270.39 3109  551.570 

9 30 8 116.66 4102  328.900 

9 30 9 100.00 5101  906.040 

9 35 6 102.85 5101  
215.290 

9 35 7 111.62 5102  308.450 

9 35 8 95.610 5102  408.420 

9 35 9 105.92 5103  1118.49 

9 40 6 9.8600 2101  6.61000 

9 40 7 117.54 3107  516.350 

9 40 8 96.920 5101  128.940 

9 40 9 138.37 5101  257.320 

12 25 6 132.67 4102  1155.98 

12 25 7 0.2400 2101  0.53000 

12 25 8 4.6400 2101  2.88340 

12 25 9 0.4200 2101  0.99890 

12 30 6 113.59 4101  311.861 
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12 30 7 122.58 5101  
267.553 

12 30 8 119.73 4109  472.052 

12 30 9 0.5200 2101  1.83640 

12 35 6 112.71 6102  351.625 

12 35 7 117.10 4103  431.152 

12 35 8 125.21 5104  343.672 

12 35 9 137.50 6101  168.712 

12 40 6 1600.0 51016  20.6100 

12 40 7 3700.0 51037  8.77000 

12 40 8 9500.0 51095  13.8100 

12 40 9 3400.0 51034  13.8100 

3.2 Analytical measurements 

3.2.1 Phosphate solubilization activity measurements 

The phosphorus solubilizing activity of bacterial isolates present in soil sample was 

determined on the basis of the extent of solubilization of rock phosphate in NBRIP broth 

media [Nautiyal (1999)]. Briefly, 0.1 g rhizospheric soil sample was dissolved in 100 mL 

Tryptic soy broth in a conical flask and placed in shaking incubator at 100 rpm at 28oC. 

After 18 h incubation, the bacterial growth was observed by turbidity. For rock 

phosphate solubilization, 20 µL of prepared inoculums was added to 50 mL, modified 

NBRIP broth (Glucose 10 g, Rock phosphate 5 g, MgCl2.6H2O 5 g, MgSO4.7H2O 0.25 g, 

KCl 0.2 g, (NH4)2SO4 0.1 g/L). Respective control was run without inoculums from 

rhizospheric soil samples. After 72 h of incubation, in shaking incubator, broth 

inoculated media was filtered and available P contents were measured at 410 nm [Olsen 

and Sommers (1982)]. The experiment was performed in replicate.  

3.2.2 Bacterial population measurement 

Cultivable attached rhizospheric bacteria were counted by the spread plate method on 

Marine Agar (Difco 2216) sterilized by autoclaving (121°C, 1 atm for 20 min). Dilutions 

were performed in 34 g/L sterile sodium chloride solution. Plates were set up in duplicate 

for each dilution. Incubation times were, according to the experimental at 25°C. 

Bacterial concentrations were expressed as CFU per ml for cultivable bacteria [Leonard, 

Blancheton and Guiraud (2000)].  

3.2.3 Quantification of ACC deaminase activity measurement 

ACC deaminase activity was assayed according to the method described by Penrose and 

Glick [Penrose and Glick (2003)], which measures the amount of α-ketobutyrate 
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produced after the enzyme ACC deaminase, cleaves ACC. The quantity of α-

ketobutyrate (Sigma-Aldrich Co., U.S.A.) produced by this reaction was determined by 

comparing the absorbance of a sample to a standard curve of α-ketobutyrate ranging 

between 0.1-1.0 nmol at 540 nm. A stock solution of α-ketobutyrate was prepared in 0.1 

M Tris-HCl (pH 8.5) and stored at 4oC. In order to measure the specific activity of the 

cultures, protein estimation was carried out according to the procedure detailed in 

[Lowly, Rosebrough, Farr et al. (1951)]. The data were subjected to analysis of variance 

using Statix software and means were compared by Duncan’s multiple range tests at 5% 

probability [Steel and Torrie (1980)]. 

4 Modeling outcomes of FRBS 

The predicted values of phosphate solubilization (PS), bacterial population (BP), and 

ACC deaminase activity (ACCA) by WM-FIS and SC-FIS methods are exhibited in 

Figure 1-3 respectively. The accuracy of both FIS methods has been evaluated in terms 

of the Pearson correlation coefficient (ρ), root mean square error (RMSE), and 

coefficient of determination (R2) are computed according to Eqs. 1-3 [Steel and Torrie 

(1980)], respectively and have been summarized in Table 3.  
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where iA  and iP  represents the actual and FIS method predicted values of experimental 

measurements, respectively. 
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5 Discussion 

WM-FIS and SC-FIS methods have been implemented in the estimation of phosphate 

solubilization, bacterial population and ACC deaminase activity and their performance 

are compared in terms of the Pearson correlation coefficient, root mean square error and 

coefficient of determination. The Pearson correlation coefficient indicates the strength of 

the relationship between the actual values of phosphate solubilization, bacterial 

population and ACC deaminase activity and their estimated values by WM-FIS and SC-

FIS methods, but the coefficient of determination measures the definite strength.  

 

Figure 1: Phosphate solubilization estimation results using WM-FIS and SC-FIS 

methods. 
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Figure 2: Bacterial population estimation results using WM-FIS and SC-FIS methods. 

 

Figure 3: Bacterial population estimation results using WM-FIS and SC-FIS methods. 
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Table 3: Values of different input variables. 

FIS 

methods 

Soil microbial 

dynamics types 
Accuracy measures 

  

Pearson 

correlation 

coefficient (ρ) 

Root mean 

square error 

(RMSE) 

Coefficient of 

determination 

(R2) 

WM-FIS 

1. PS 0.7762 1020.00 0.6025 

2. BP 0.4992 4660000 0.2492 

3. ACCA 0.5410 363.000 0.2926 

SC-FIS 

1. PS 0.9994 45.2800 0.9988 

2. BP 0.9673 1350000 0.9356 

3. ACCA 0.7179 271.000 0.5153 

 

The correlation coefficient close to one indicates an approximately linear relationship 

between the actual and model predicted values of a dependent variable as well as better 

performance of model used for estimation. The RMSE is a significant measure to explain 

the precision of the model used for prediction, though; it is sensitive to large errors. The 

coefficient of determination is a significant measure to check the performance of models 

used in the estimation as it helps to understand the inconsistency of dependent variables. 

Figure 1 presents the actual phosphate solubilization vs. WM-FIS and SC-FIS model 

predicted phosphate solubilization on a log scale. It is obvious that the SC-FIS model 

predicted values of phosphate solubilization are comparable to the experimental values 

of phosphate solubilization (except for measurement number 40). Though, the WM-FIS 

model predicted values of phosphate solubilization exhibit larger deviation to the 

experimental values. This fact is further confirmed by the minimum value of 28.45RMSE  

and maximum values of the correlation coefficient 9994.0 and the coefficient of 

determination 9998.02 R (Table 3) for the SC-FIS model than the WM-FIS model 

predicted values of phosphate solubilization. Also, SC-FIS model has a better estimation 

efficiency for the phosphate solubilization than bacterial population and ACC deaminase 

activity in terms of RMSE ,   and 2R . The prediction results of the bacterial population 

using SC-FIS and WM-FIS methods have been shown in Figure 2. Again, SC-FIS 

method exhibits better estimation efficiency than the WM-FIS method (except 

measurement number 2). This is also established with the lesser value of 

1350000RMSE and higher values of the correlation coefficient 9673.0 and the coefficient 

of determination 9356.02 R for the SC-FIS model than the WM-FIS model in the 

prediction of bacterial population (Table 3). The ACC deaminase activity estimation 

results are shown in Figure 3. In most of the measurements, the SC-FIS model estimated 

values of ACC deaminase activity are closer to their real measured values. This confirms 

the better performance of the SC-FIS model than the WM-FIS model. This fact is further 

approved in terms of a lesser value of RMSE and higher values of   and 2R for the SC-FIS 

model than the WM-FIS model (Table 3). During the analysis, it is observed that there is 

some combination of input variables that results in the SC-FIS and WM-FIS model 
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predicted values of phosphate solubilization, bacterial population and ACC deaminase 

activity close to their actual values. Table 4 summarizes three best combinations of such 

variables. In case of phosphate solubilization, SC-FIS method for the combination of 

input parameters: 6INC , 25Temp , and 8pH results in almost 100% accuracy in 

prediction (actual value of phosphate solubilization 113.59 and SC-FIS method predicted 

value of phosphate solubilization 113.56). A similar situation is observed for two 

combinations of input parameters ( 9INC , 25Temp , 7pH , and 12INC , 25Temp , 6pH ) 

in the estimation of bacterial population using the SC-FIS method (Table 4). For ACC 

deaminase activity estimation using the SC-FIS method three combinations of input 

parameters ( 3INC , 35Temp , 8pH , 6INC , 25Temp , 7pH , 

and 12INC , 25Temp , 9pH ) results in almost 100% prediction accuracy. The best 

combinations of input parameters summarized in Table 4 can be used in searching the 

optimal environmental conditions that result in the best estimation of microbial dynamics. 

Fuzzy methods are accurate in the modeling of data while controlling the imprecision. 

Due to this reason, WM-FIS method has been implemented in several applications, like 

the prediction of dissolved oxygen in river water [Shaghaghian (2010)], operator 

performance using electroencephalographic (EEG) variables [Zhang, Xia and Garibaldi 

et al. (2017)], and energy forecasting [Jozi, Pinto and Praça et al. (2016)]. Also, the WM-

FIS method has reliable prediction performance than ANN and support vector machine 

(SVM) methods in the latter application. Though, the application of WM-FIS method in 

microbial dynamics estimation is not noticed in published literature. Also, the 

performance of WM-FIS method has been enhanced in some recent studies, like using an 

evolutionary algorithm in controlling fuzzy sets [Kato, Morandin, Sgavioli et al. (2009)], 

and inducing cooperation for fuzzy rules [Casillas, Cordón and Herrera (2000)], etc. 

Another option is to evaluate the performance of WM-FIS method with some other FIS 

method like SC-FIS which has better efficiency in several applications like road header 

performance prediction [Yazdani-Chamzini, Razani, Yakhchali et al. (2013)], fault 

detection [Chudasama, Shah and Shah (2016)], modeling demand response of smart grid 

[Pereira, Fagundes, Melicio et al. (2014)], and soil cation exchange capacity [Keshavarzi, 

Sarmadian, Rahmani et al. (2012)], etc. The better performance of the SC-FIS method is 

noticed than the WM-FIS method in the present analysis. Since the SC method 

recognizes similarities in the data set and creates an FIS to model the data behavior using 

a minimum number of efficient fuzzy rules. The prediction of ACC deaminase is 

significant as it is an important factor to promote the growth of a plant. 

6 Conclusion 

The study presents the estimation of microbial dynamics, including phosphate 

solubilization, bacterial population, and ACC-deaminase activity by using SC-FIS and 

WM-FIS methods and their performance is compared in terms of correlation coefficient, 

root mean square error and coefficient of determination. The temperature, pH, and 

incubation period show variation during the measurement and affects microbial 

dynamics, therefore used as input of SC-FIS and WM-FIS methods. The SC-FIS method 

has abetter estimation efficiency than the WM-FIS method of estimation of microbial 
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dynamics. Also, the best estimation efficacy is observed for the phosphate solubilization 

by using the SC-FIS method. Estimation of ACC-deaminase activity by using WM-FIS 

method results in the least accuracy.  
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