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The Stable Explicit Time Stepping Analysis with a New
Enrichment Scheme by XFEM
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Abstract: This paper focuses on the study of the stability of explicit time integration

enrichment scheme of crack tip is proposed within the framework
governing equations are derived and evolved into the discretj

The effectiveness of the proposed scheme is demonstr:
and the critical time stepping in different situation
factors that affect stability.
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1 Introduction

The fracture analysis of struc

can be influenC§prdirectly by crack, the enrich functions are introduced. Heaviside function
and the Westergaard stress function are used frequently for the discontinuities and the tip’s
stress singularity, respectively. XFEM is used to simplify the discontinuous problems and
perform well in stress analysis concerned with fracture mechanics.

Dealing with the dynamic fracture, Belytschko, Chen, Xu et al. (2003) proposed a tip
element in which the crack opens linearly and developed a propagation criterion with loss
of hyperbolic. Later on, a singular tip enrichment function is proposed for the elastodynamic
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cracks with explicit time integration scheme [Belytschko and Chen (2004)]. In order to
deeply study the stability and energy conservation to get a more accurate result, R&horé
Gravouil and Combescure (2005a, 2005b) combined Space and Time XFEM (STX-FEM)
to obtain a unified space-time discretization, and concluded that the STX-FEM is a suitable
technique for dynamic fracture problems. On the other hand, a new lumping technique for
mass matrix was proposed in order to be more suitable for dynamic problems by
Menouillard, R&horé& Combescure et al. (2006); Menouillard, Ré&horé& Noes et al. (2008)
and the robustness and stability of the approach has been proved.

As we noticed, the previous study is all based on the classical enrichment scheme, and a

large number of additional degrees of freedom (DOFs) are required. In the meantime,
various improved enrichment methods have been studied. Song, Arei3 )

proposed a new enrichment method with only
accuracy for stationary cracks. The similar re
Geretenberger et al. (2008). Without crack tip e
been improved. Nistor, Pantale and Cape
the dynamic crack growth. Kumar, Singh
based Heaviside function along wi

only Heaviside function to model
al. (2015) presented a new approach
nctidn which contains information like crack
ed by Wen and Tian (2016); Tian and Wen

For all the study disdUss he stability of the method is always concerned.
Generally, using e i r dynamic problem, one goes through a very small time
stepping that le i utation cost, while with a larger one the numerical result
may be divergent. in thy present paper, we will focus on the stability of the numerical
scheme. scheme is used for the elements influenced by crack tip based

on the
Integration, and different parameters are tested to investigate their
influence on t ability. In addition, DSIF is calculated as an important parameter which
represents the Variation of the stress field around the crack tip, and also can determine the
stability of the simulation.

This paper is organized as following: Section 2 illustrates the governing equations and the
XFEM; The explicit time algorithm and the lumping technique are introduced in Section
3; The DSIF is shown in Section 4; In Section 5, in order to verify the feasibility and
accuracy of the simulation, several numerical examples are provided.
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2 Governing equations and XFEM formulation

2.1 Governing equations

In order to develop the equations governing the problem, a homogeneous two-dimensional
domain Q with cracks is considered. As described in Figure 1, the domain Q is bounded
by I' which is composed of T, T,andI}.Throughout this paper, prescribed displacements
are imposed onT; ,while traction is imposed on [ .T,is referred to as the crack surface
and assumed to be traction-free. The strong form of the linear momentum equation and the
boundary conditions are

Vie+b=pl in Q (1a)
U=u on T, (1b)
6-n=t on I (1c)
6-n=0 on T, (1d)
e=Vu (le)
6=C: ¢ (1)
where 6 is prescribed the Cauchy stress tensor, @ and U afe the displacement field vector
and the vector of acceleration, respectiygly. D1 ody force vector, pis the mass

density, U is the prescribed displacemey the unit outward normal, Vis the

symmetric operator, C is the elastjggiodule €nsor'’and & is the strain tensor. In the present

the equilibrium momentu QT e constitutive relation in the weak form, we
have

constructed from the Heaviside function H(x). H(x) is defined as a unit magnitude for

the elements cut completely by crack, and takes 1 on the two sides of the crack. For the

nodes with crack tip enrichment, they are enriched frequently by eight addition DOFs. The
basic enrichment functions are inspired from the near tip displacement fields of mode | and
mode I cracks in FEM, and can be written as the functions v, (r,8) [Belytschko and

Black (1999)].
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_ o) . (6) . (6 0\ . ~
wk(r,H)—\/F{cos(Ej, sm(EJ, sm(;jcos(e), cos(zjsm(e)} k=12,34 (3)

where (r,0) are the local polar coordinates at the crack tip. We note that the second

function in Eq. (3) is commonly referred to branch function, while the others are continuous
and added to improve the accuracy. Besides, y, (r,0) can be presented with other function

set or just with the branch function, and it is well-documented and verified by Dolbow,
Noes and Belytschko (2000).

t

Figure 1: Domain with cracks and pNggcribeg/boundary conditions

Node set by crack tip enrichnment O Node set by Heavisde enrichnment

Figure 2: ical discretization of a domain with crack and enriched nodes by XFEM

As mentioned/above, the enrichment functions are developed based the asymptotic
displacement fields of the crack tip, and can take different forms. In the present paper, a
new form of enrichment functions is used, which derives from the asymptotic displacement
fields directly. By shifting the enrichment functions, we are able to correspond the enriched
nodes’ displacement to the true displacement with XFEM. The displacement can be written
approximately as

u() =2 N, (u, + - N; [ HO) = H (%) Ja; + D N (0B, [F) —F(x)]b,  (4)

iel jed keK

where / is the set of all nodes in the mesh, J is the set of nodes enriched by Heaviside
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function and KX is enriched by F(x). N; (x) is shape functions of finite element. a; and

b, are the addition DOFs associated with H(x) and F(x), respectively. P; is the
transformation matrix between the local coordinate and global coordinate. F(X) is the
crack tip function in matrix form

7 .0
1 [ COSE(K—COSQ) SInE(K—2+COSQ)

F(X)=—,—

2G\2x ®)

sin g (x —cos0) cosg (k—2+c0s6)

E
2(1+v)

where G is the shear modulus of material, G =

crack tip. The two base
functions in first row of matrix F(X) are assogiated with the’horizontal axis in the local

Without concerning the damping effect,
the weak form Eq. (2). It then yields a sys
can be expressed as

e displacement field Eq. (4) into
ipear algebraic matrix equations, which

MU +KU =f (6)
where M is the mass matig is W& stiffness matrix and f is the force matrix:

M= (7.a)
K= (7.b)
. . T

O=[o & t]', u=[u a t], f=[f f f] (7.0)

The sub-matrices and vectors that come in the foregoing equations are defined as below
for four-node element (i, j=1,2,3,4):

Mi’f:jp(N{)T NSdQ, rs=uat (®)

Qe
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K{fzj(B{)T BldQ, rs=uat 9)
f! :jijibdguj N.Tdr (10.a)
fe =£} N; [H (x)r‘— H (x)]bdQ+ j N, [H (x) = H (x)]Tdr (10.b)
ft = FNiBT [F()—F(x )]bdQ+r} N;B; [F(x)—F(x)] tdr (10.c)

where N? and N are the matrices of additional shape functions i

B! are the matrices of shape function derivatives and can be expres

o | HOO=H(x) 0
N _N{ 0 H(X)-H(x) (& (e

N; = N;B; [F(x) - F(x)] (11.b)
(N, (H()-H (%)),

B? = 0 (N; (H( (12.a)
(Ni(H(x)—H(xi)))’y(Ni(
Jox 0

Bi=| 0 9 [(NBNgW %)) (12.b)
7 9
L/ oY

3 The time Mtegration

3.1 Time inte ion

As the most commonly used for dynamic problems, the Newmark scheme is chosen as the
time integration algorithm. As we know, the time integration algorithm can be divided into
two types: the explicit and the implicit. With the implicit method, there is no intrinsic limit
to the time step. But we need to solve the global equations by iterating in each step. For
dynamic problems, lots of iterations are needed, which has many disadvantages such as
vast computation and low efficiency by implicit scheme. Compared with the implicit
scheme, the explicit scheme solves the equations independently with no iterative, which is
chosen in this paper.

Two parameters £ and y are considered in the Newmark scheme and combined in Eq. (6).
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The derived equation is given as

U, = U, +AtU, +At2[%— ,BjUt +AL0,, (13.a)
MUt+At =Fa —KU (13.b)
U = U, +At0L= )0, + A0, (13.c)

where At is the time step, U, is the vector of displacement, l'Jt and Ut are the vector
of velocity and acceleration at time t, respectively.

For a numeric scheme, the stability, consistency and convergence are the main reference
standard. As instability is a sufficient condition for non-convergence, thg park scheme

are deduced in detail by Réthoré, Gravouil and Combescure
notations. They can concluded as

1
1.if 3 <y <2p,itis an unconditionally stable scheme.

1
2.1f 2 <y and 2f <y, the stable condition is

where @,

Furtheripg a restriction of stability condition, there must be a critical time
step At;. i e step At beyond the critical value, the numerical instability and
convergence ppplem will happen at some point. In contrast, the numerical results are very
stable within tHe critical time.

In this paper, we will focus on figuring out the critical time step, and finding out the factors
that can affect it. Thus, tests with different grid densities and different parameters in the
Newmark scheme will be conducted.

3.2 The lumped mass

The matrix above in Eq. (8) known as the consistent mass matrix, includes standard terms,
block-diagonal enriched terms, and coupling terms [Menouillard, R&horé& Combescure et
al. (2006)]. However, for the problem of dynamic, the mass matrix lumped is used more
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frequently in order to simplify the numerical calculations. Due to the existence of
additional DOFs which have no clear physical significance, the distribution of mass is not
just as a simple average as in traditional FEM. Menouillard, Ré&horé& Noes et al. (2008)
had in-depth study of the lumping technique for the mass matrix based on the conservation
of mass and momentum, and proved its effectiveness with explicit scheme for dynamics
by XFEM. Besides, the lumping technique was also researched by Zi, Chen, Xu et al.
(2005); Elguedj, Gravouil and Maigre (2009); Song and Belytschko (2009); Jim, Zhang,
Fang et al. (2016). In this paper, the lumped mass proposed by Menouillard, Ré&horé&
Combescure et al. (2006) is used

m 1
Myag = ————— |, HdQ (14)
Mooge MES(C,) I
where €3, is the element being considered, M is the element’g ma (),) is the

area of element in 2D, N, is the number of nodes in elenggnt, apd H e Heaviside

function.

4 DSIF

As the relevant quantities of crack tip may be qugstionable pn aCcuracy such as stress fields,
the SIF based on energetic consideration is used ter of the strength of singularity.
There are a few schemes to calculate the displacement extrapolation

method, the virtual crack extension mef§ virtual crack closure method and the
interaction integral method. The interacti§gAnte@al method is used here which has the
highest accuracy according to t Nagashima, Omoto and Tani (2003). In the

actual fields.

For dynamic loading ¢g8e Q@ item rdfated to inertia is added, and the interaction integral
with force-free on ¢ sur can be given as

I :.[A(aijuiﬁx K w0 )q,JdA+_[Apui Uy qdA (15)

where (fi?ux , Si?ux, uia ”X) are the actual state and the auxiliary state,
respective fhteraction integral between the actual state and the auxiliary state, 4
is the integral§omain. ¢ is the weight function which is going to be 0 outside the contour
boundary and i8 one inside in the present paper. The DSIF can be written as

_ | Mmode | =~
{K, =1 E*/2 06

K“ — Imode I, E*/Z
where E” isequalto E for the plane stress and for the plane strain E = E/ (l—z)2 )

The basic algorithm used here for the DSIF is concluded as following:
(1) Give an integral rang R, then search for all the integral elements;
(2) Loop through all the integral elements;
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(3) Loop through all the Gauss points in each integral element;
(4) Calculate the actual state and the auxiliary state of each Gauss point;
(5) Get the value of DSIF through Eq. (15) and Eq. (16).

where R is the ratio between the actual integral radius » and the minimum size Lmin of all
elements as shown in Figure 3.

The integral elements

7

5 Numerical examples

5.1 Stationary mode | cra

First, let us consider t
geometry is shown g
Freund (1990).
with an initial €
stress was

mesh of 399 uniform square was used for tests. The theoretical DSIF of the problem
with a stational§crack was given by Freund (1990):

cyt(1-2

K, (t) = 20, Nt@=20)/7 (17)
1-v

where C, is the dilatational wave speed, t=0 is the time stress wave reach the crack tip

from the edge. The theoretical solution is used to compare our present results. Certainly,
the theoretical solution has some limitation, and it is valid only at t<3t, when the

reflected stress wave reaches the crack tip. t,=H/C; is the time that stress wave reaches
the crack tip from the edge.
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As time step is chosen as At=0.1 s, the values of DSIF with different integral path are

presented in Figure 5. The DSIF was normalized by Ko=o+a and compared with the
theoretical solution. As shown in Figure 5, the results with different integral domains are
in good agreement with each other. At t <tc, the value of DSIF is 0 due to the stress wave
has not reach the integral domain. The numerical solution is consistent with the theoretical
solution after stress wave reaches the crack tip.

Figure 6 presents the results of DSIF with different time stepping At while R=5. It
shows good consistency and the results are not sensitive to the time step. So, this inspires
us to improve the computational efficient with a larger step time Which is less than the

divergent. As a consequence, there is a critical time stepplng,
shortly.

T 0 0 0 0O 0O 0 000 000000

2.0

—<+— R=5,At=0.1pus
[ [——R=5At=1 ps

——R=5, At=0.1ps
I |—— R=4, At=0.1ps

15 FRngtgius / 15 |——R=5,At=5 ps -
Pl At= e
—+— Anlytiacl ffults | == R=Sat= 10 f,-"

1.
g |

< N
0

T

-0.5 s 1 n 1 . -0.5 n 1 n 1 "
0 Tot/t, 2 3 0 Tyt 2 3

Figure 5: The DSIF with different Figure 6: The DSIF with different time
integral path step
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5.2 Finite size edge plate with an arbitrarily oriented central crack

A schema of the problem is shown in Figure 7. A plate with a central crack under uniaxial
tensions o, =100MPa. The dimensions of the plate are 24=0.04 m and 26=0.02 m, and the

length of the central crack is 2a=0.0048 m. The material’s properties are: £=199.99Gpa,
v=0.3, p=5000kg/m*. A mesh of 49x 99 uniform elements is used.

First of all, @=0°, a horizon central crack is considered. For the cases of different integral
domains that affect the left crack tip, Figure 8 shows that the range R has little effect on the
crack tip’s DSIF. The results agree very well with the conclusion that the stress intensity
factor under different integral path are the same. The numerical results yeiilgghifferent time
step are given in Figure 9, and the same conclusion can be drawn as g igure 6.

Secondly, the central cracks of different inclined angle are consi

in the tip. Fig.10b reveals that DSIF in mode II
=15° and @=75°, and the pair of €=3@2and

2b

HIH

Figure 7: The rectangular plate with crack of different angle
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—— At=1e-8s|
3.0 |- |—— At=2e-8s|

KI/KO

0 2 4 6 8 10 12 14
Time(s)
Figure 8: The DSIF with different Figure 9: Th€ DSIpof th§€tt crack tip
integral path of the left crack tip with A el timepncrements

16 A S
Phan(20
—— Phan(2010) l
—— present result]

20

presented in Fi§pfe 7 with @=0°. The material’ properties and the other parameters are the
same as that used in last example. In order to get the critical time At., the method of
numerical approximation is used.

Firstly, the results were obtained with different grid densities. Three uniform meshes are
considered, which are of CCT: 49x99, CCT1: 24x49, CCT2: 13x24 elements. With
parameters =0, y=1/2 of Newmark scheme, the critical time step of different meshes

can be turned out. As shown in Fig.11(a), the critical time we got is about At,=4.825x10*
s with 49 x 99 elements. When the time step At is less than At,, the numerical
calculation results are completely consistent and do not produce divergence. Conversely,
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divergence is presented in the calculation when At > At,. The divergence occur at about
4.750us, 7.154 us, 11.495ps , 15.141 us when At is 5.000%10%s, 4.900%10%s, 4.850%x10®

s, 4.838%1078 s, respectively. As a comparison, Figure 11(b) is presented with the mesh of
24x49. It is seen that the critical time is 10.025%10% s which is improved than the one in
Figure 11(a). The divergence occurs at about 4.095us, 9.494us, 12.090pus, 17.085 us

when At is 10.500x10%s, 10.100x108s, 10.075%10%s, 10.050%10® s, respectively.

c
1

4.8375 | et

|—— r5t4.8e8f|

—— r5t4.9e8fl
——4.85f
—— 4.8251
|——4.8375f

49 | 485

KI/KO
Hhh bbb ihoanwsoo N oo
LI S S B S B B B e S |
oy

o
=)
o
[N)
S
N
o

(b)

Figure 11: Numerical stability with differ
49x99, (b) CCT1: 24x49.

epping (R=5, =0,y =1/2): (a) CCT:

Table 1: The critical ti fferent densities of grid (R=5, =0, y =1/2)

€CcN>99 CCT1:24>49 CCT2:13%4
At, (us) 825x102 10.025x102 16.568x102
At! 479%1072 11.012x102 18.138x%102
At, /AL 88.064% 91.037% 91.344%

To clarify this case further, we repeated the above steps with CCT2: 13 x 24 elements, and
the comparison results are shown in the Table 1. The critical time step is about 16.568%10"
85 in the case of CCT2, which is larger than the case of CCT1. It is hence concluded that
the critical time step decreases with the increase of grid density. Besides, the critical time

step of the standard FEM for the lumped mass is also listed. With more elements, the critical

time step AtimP is decreased, and this is consistent with the case of At,. The values of
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At, / AP are similar, which range from 88.064% to 91.344%. As Menouillard, Réthoré,

2
Combescure et al. (2006); Elgued;j, Gravouil and Maigre (2009) suggested, At = §At'“mp

fem

for the stationary crack, the value 2/3 is within the numerical range listed in this paper. So,
the numerical stability can be guaranteed.

In addition, we took into account the effect of Newmark scheme for the critical time step.
Four cases are concerned. Before studying the impact of iterative format on critical time
step, all the cases are listed under the same conditions: CCT1, a mesh of 24x49 elements,
R=5, At =5%10%s. We listed the first 30 microseconds with different parameter values y

in Figure 12. An approximately identical result can be obtained. The st nditions of
the Newmark scheme are also verified directly.

arl esult with
8us, 75.168

In Figure 11(b), we presented the test result with y =1/2. Asac

y =2/3 is shown in Figure 13. The divergence occur at abou
us whenAt is 9.000%10%s, 8.800%10%s, 8.700%10%s, critical time we
obtained is about At,=8.685%10%s, which is smaller =1/2. For further
investigation, the cases of y =3/4, y =1 are teste e listed in Table 2. The

lump

seen that the critical time step decreases witRthe incyease of » . So, does Atg,".

are nearly the same (about 91%)),

and the different parameter y have nearl injfuence on the values of At / At

t(us)

Figure: 12 Numerical results with different Figure: 13 Numerical stability with different
parameters y (CCT1: 24x49, R=5, S =0, time stepping (CCT1: 24x49, R=5, =0,
At=5x107Fs) y =2/3)
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Table 2: The critical time stepping for different parameters y (CCT1: 24x49, R=5, 5 =0)

y=12 y=23 y=3/4 y=1

At (ps) 10.025x102  8.685x102 8.190%10°2 7.100102
AU (us)  11.012x102  9.537x1072 8.992x102 7.787%102

At /ALE™  91.037% 91.066% 91.081% 91.178%

fem

6 Conclusions

different densities of grid and different parame
The conclusions are shown as:
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