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The Stable Explicit Time Stepping Analysis with a New 

Enrichment Scheme by XFEM 

Xue-cong Liu1, Qing Zhang1,2 and Xiao-zhou Xia1 

Abstract: This paper focuses on the study of the stability of explicit time integration 

algorithm for dynamic problem by the Extended Finite Element Method (XFEM). A new 

enrichment scheme of crack tip is proposed within the framework of XFEM. Then the 

governing equations are derived and evolved into the discretized form. For dynamic 

problem, the lumped mass and the explicit time algorithm are applied. With different grid 

densities and different forms of Newmark scheme, the Dynamic Stress Intensity Factor 

(DSIF) is computed by using interaction integral approach to reflect the dynamic response. 

The effectiveness of the proposed scheme is demonstrated through the numerical examples, 

and the critical time stepping in different situations are listed and analyzed to illustrate the 

factors that affect stability. 
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1  Introduction 

The fracture analysis of structures and components has been widely applied and highly 

valued in recent years, and modeling discontinuities like crack is one of the important parts 

in the simulation of failure. In order to model the crack and crack growth behavior, the way 

of remeshing is used by classic finite element method (FEM) in order to align the mesh 

with discontinuities. In addition, other solutions such as meshfree method, boundary 

element method and extended finite element method (XFEM) are available. 

As proposed by Belytschko and Black (1999); Noes, Dolbow and Belytschko (1999); 

Belytschko and Noes (2001), XFEM based on the concept of partition unity becomes a 

dominant numerical scheme. The crack can be modeled independent of finite element mesh. 

All the elements are divided into the normal parts and the enriched parts. Since the elements 

can be influenced directly by crack, the enrich functions are introduced. Heaviside function 

and the Westergaard stress function are used frequently for the discontinuities and the tip’s 

stress singularity, respectively. XFEM is used to simplify the discontinuous problems and 

perform well in stress analysis concerned with fracture mechanics. 

Dealing with the dynamic fracture, Belytschko, Chen, Xu et al. (2003) proposed a tip 

element in which the crack opens linearly and developed a propagation criterion with loss 

of hyperbolic. Later on, a singular tip enrichment function is proposed for the elastodynamic 
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cracks with explicit time integration scheme [Belytschko and Chen (2004)]. In order to 

deeply study the stability and energy conservation to get a more accurate result, Réthoré, 

Gravouil and Combescure (2005a, 2005b) combined Space and Time XFEM (STX-FEM) 

to obtain a unified space-time discretization, and concluded that the STX-FEM is a suitable 

technique for dynamic fracture problems. On the other hand, a new lumping technique for 

mass matrix was proposed in order to be more suitable for dynamic problems by 

Menouillard, Réthoré, Combescure et al. (2006); Menouillard, Réthoré, Noes et al. (2008) 

and the robustness and stability of the approach has been proved.  

As we noticed, the previous study is all based on the classical enrichment scheme, and a 

large number of additional degrees of freedom (DOFs) are required. In the meantime, 

various improved enrichment methods have been studied. Song, Areias and Belytschko 

(2006) has reinterpreted the conventional displacement field, described discontinuities by 

using phantom nodes and superimposed extra elements onto the intrinsic grid for dynamic 

fracture problems. The method doesn’t require subdomain integration for the discontinuous 

integrand and has a highly efficient but nevertheless quite accurate formulation. Further, 

Duan, Song, Menouillard et al. (2009) has shown its practicability on the shell problem as 

well as three-dimension problem [Song and Belytschko (2009)]. Besides, changing the 

basic enrichment function is another solution. Menouillard, Song, Duan et al. (2010) 

proposed a new enrichment method with only a singular enrichment, which shows great 

accuracy for stationary cracks. The similar research has been done by Rabczuk, Zi and 

Geretenberger et al. (2008). Without crack tip enrichment, the Heaviside function has also 

been improved. Nistor, Pantale and Caperaa (2008) used only Heaviside function to model 

the dynamic crack growth. Kumar, Singh, Mishra et al. (2015) presented a new approach 

based Heaviside function along with a ramp function which contains information like crack 

length and angle. A similar method was proposed by Wen and Tian (2016); Tian and Wen 

(2016), which is based on an extra-dof-free partition of unity enrichment technique, and no 

more extra DOFs are added in the dynamic crack growth simulation. 

For all the study discussed above, the stability of the method is always concerned. 

Generally, using explicit scheme for dynamic problem, one goes through a very small time 

stepping that leads to high computation cost, while with a larger one the numerical result 

may be divergent. So, in the present paper, we will focus on the stability of the numerical 

scheme. A new enrichment scheme is used for the elements influenced by crack tip based 

on the analytical solution of the displacement fields near crack tip. The Newmark scheme 

is adopted for time integration, and different parameters are tested to investigate their 

influence on the stability. In addition, DSIF is calculated as an important parameter which 

represents the variation of the stress field around the crack tip, and also can determine the 

stability of the simulation. 

This paper is organized as following: Section 2 illustrates the governing equations and the 

XFEM; The explicit time algorithm and the lumping technique are introduced in Section 

3; The DSIF is shown in Section 4; In Section 5, in order to verify the feasibility and 

accuracy of the simulation, several numerical examples are provided. 
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2  Governing equations and XFEM formulation 

2.1 Governing equations 

In order to develop the equations governing the problem, a homogeneous two-dimensional 

domainwith cracks is considered. As described in Figure 1, the domain   is bounded 

bywhich is composed of u , t and c . Throughout this paper, prescribed displacements 

are imposed on u ,while traction is imposed on t . c is referred to as the crack surface 

and assumed to be traction-free. The strong form of the linear momentum equation and the 

boundary conditions are 

  σ b u∇

  

in  (1a) 

u u on u (1b) 

 σ n t

  

on t (1c)

0 σ n

   

on c

                                                     

(1d)

s ε u

                                                              

(1e)

 

=σ C ε：

                                                             

(1f) 

whereσ is prescribed the Cauchy stress tensor, u andu are the displacement field vector

and the vector of acceleration, respectively. b  is the body force vector,   is the mass 

density, u  is the prescribed displacement, n  is the unit outward normal, s  is the 

symmetric operator, C is the elastic module tensor and ε  is the strain tensor. In the present 

investigation, we consider the small strains and displacements as shown in Eq.(1e). Using 

the equilibrium momentum equation and the constitutive relation in the weak form, we 

have 

: : d + d = d d
t

T

s s 
    

   
          u C u u u u b u t (2) 

2.2 The XFEM formulation 

Consider a typical finite element mesh with four-node elements as shown in Fig.2, in which 

the geometry of crack is independent of the mesh. As in the classical XFEM, the nodes by 

Heavisde enrichment are enriched with two addition DOFs, and the shape functions are 

constructed from the Heaviside function  xH .  xH  is defined as a unit magnitude for

the elements cut completely by crack, and takes ±1 on the two sides of the crack. For the 

nodes with crack tip enrichment, they are enriched frequently by eight addition DOFs. The 

basic enrichment functions are inspired from the near tip displacement fields of mode I and 

mode II cracks in FEM, and can be written as the functions  ,rkψ  [Belytschko and

Black (1999)]. 
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 , = cos ,  sin ,  s in cos( ),  cos sin( )    1, 2,3,4
2 2 2 2
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        

ψ (3) 

where  ,r   are the local polar coordinates at the crack tip. We note that the second

function in Eq. (3) is commonly referred to branch function, while the others are continuous 

and added to improve the accuracy. Besides,  ,rkψ can be presented with other function 

set or just with the branch function, and it is well-documented and verified by Dolbow, 

Noes and Belytschko (2000). 

t

u


c

u

t

n

Figure 1: Domain with cracks and prescribed boundary conditions 

Node set by crack tip enrichnment Node set by Heavisde enrichnment

Figure 2: Typical discretization of a domain with crack and enriched nodes by XFEM 

As mentioned above, the enrichment functions are developed based the asymptotic 

displacement fields of the crack tip, and can take different forms. In the present paper, a 

new form of enrichment functions is used, which derives from the asymptotic displacement 

fields directly. By shifting the enrichment functions, we are able to correspond the enriched 

nodes’ displacement to the true displacement with XFEM. The displacement can be written 

approximately as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i j j j k T k k

i I j J k K

x N x N x H x H x N x x x
  

        u u a β F F b (4)

where I is the set of all nodes in the mesh, J is the set of nodes enriched by Heaviside 
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function and K is enriched by F(x).  xNi is shape functions of finite element. 
ja and 

kb are the addition DOFs associated with  xH  and )(xF , respectively. Tβ   is the 

transformation matrix between the local coordinate and global coordinate. )(xF  is the 

crack tip function in matrix form 


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where G  is the shear modulus of material, 
)1(2 


E

G . E  is the modulus of 

elasticity,   is the Poisson’s ratio.  is the Kolosov constant, 











stress plane

1

-3

strain plane4-3

，

，







 . 

It is important to point out that although )(xF  still has 4 base functions, the number of 

additional DOFs is reduced from 8 to 2 for the nodes enriched by crack tip. The two base 

functions in first row of matrix )(xF  are associated with the horizontal axis in the local 

coordinate at crack tip, and the second row corresponds to the vertical axis. 

Without concerning the damping effect, we substitute the displacement field Eq. (4) into 

the weak form Eq. (2). It then yields a system of linear algebraic matrix equations, which 

can be expressed as  

fKUUM  (6) 

where M is the mass matrix, K is the stiffness matrix and f is the force matrix: 

=

uu ua ut

au aa at

tu ta tt

 
 
 
 
 

M M M

M M M M

M M M

(7.a)

=

uu ua ut
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 
 
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K K K

K K K K

K K K

(7.b)

T

   U u a t ,  
T

U u a t

 

, 
T

u a t   f f f f

                  

(7.c) 

The sub-matrices and vectors that come in the foregoing equations are defined as below 

for four-node element ( 4 3, 2, ,1, ji ): 

  d  ,    , , ,
e

T
rs r s

ij i j r s u a t


  M Ν N (8)
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  d  ,  , , ,
e

T
rs r s
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  K B B (9)
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t

u

i i iN N
 

   f b t (10.a)
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t

a

i i i i iN H x H x N H x H x
 

     f b t (10.b)

   ( ) ( ) d ( ) ( ) d

t

t

i i T i i T iN x x N x x
 

     f β F F b β F F t (10.c) 

where a
iN   and t

iN   are the matrices of additional shape functions in XFEM, a
iΒ   and 

t
iB  are the matrices of shape function derivatives and can be expressed as: 

( ) ( ) 0

0 ( ) ( )
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i i

i

H x H x
N

H x H x

 
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  
 
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B β F F (12.b) 

3  The explicit time integration 

3.1 Time integration 

As the most commonly used for dynamic problems, the Newmark scheme is chosen as the 

time integration algorithm. As we know, the time integration algorithm can be divided into 

two types: the explicit and the implicit. With the implicit method, there is no intrinsic limit 

to the time step. But we need to solve the global equations by iterating in each step. For 

dynamic problems, lots of iterations are needed, which has many disadvantages such as 

vast computation and low efficiency by implicit scheme. Compared with the implicit 

scheme, the explicit scheme solves the equations independently with no iterative, which is 

chosen in this paper. 

Two parameters  and  are considered in the Newmark scheme and combined in Eq. (6). 
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The derived equation is given as 

ttttttt ttt  







 UUUUU   22

2

1
(13.a)

 
tttttt   KUFUM 

  

(13.b)

  tttttt tt   UUUU  1

              

(13.c) 

where t  is the time step, 
tU is the vector of displacement, 

tU and
tU are the vector

of velocity and acceleration at time t , respectively. 

For a numeric scheme, the stability, consistency and convergence are the main reference 

standard. As instability is a sufficient condition for non-convergence, the Newmark scheme 

and their stability are discussed in this paper. The stability conditions of Newmark scheme 

are deduced in detail by Réthoré, Gravouil and Combescure (2004) with their custom 

notations. They can concluded as 

1. if  2
2

1
 , it is an unconditionally stable scheme. 

2. If 
2

1
 and  2 , the stable condition is 




 



2

1

max

t . 

where max  is the maximum frequency of the structure. 

As mentioned by Réthoré, Gravouil and Combescure (2004), if the parameters are chosen 

to be 
4

1
 and 

2

1
  , the updating equations are unconditionally stable. However, 

according to Eq. (13), if the acceleration item tt U  exists in Eq. (13. a), the equations

still need to be solved iteratively. Thus, for an explicit time integrator, 0  is used in 

the present paper. We noticed that if 0  and 
2

1
 , the Newmark scheme evolves into 

the central difference method. 

Furthermore, due to such a restriction of stability condition, there must be a critical time 

step ct . With the time step t  beyond the critical value, the numerical instability and 

convergence problem will happen at some point. In contrast, the numerical results are very 

stable within the critical time.  

In this paper, we will focus on figuring out the critical time step, and finding out the factors 

that can affect it. Thus, tests with different grid densities and different parameters in the 

Newmark scheme will be conducted.  

3.2 The lumped mass 

The matrix above in Eq. (8) known as the consistent mass matrix, includes standard terms, 

block-diagonal enriched terms, and coupling terms [Menouillard, Réthoré, Combescure et 

al. (2006)]. However, for the problem of dynamic, the mass matrix lumped is used more 
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frequently in order to simplify the numerical calculations. Due to the existence of 

additional DOFs which have no clear physical significance, the distribution of mass is not 

just as a simple average as in traditional FEM. Menouillard, Réthoré, Noes et al. (2008) 

had in-depth study of the lumping technique for the mass matrix based on the conservation 

of mass and momentum, and proved its effectiveness with explicit scheme for dynamics 

by XFEM. Besides, the lumping technique was also researched by Zi, Chen, Xu et al. 

(2005); Elguedj, Gravouil and Maigre (2009); Song and Belytschko (2009); Jim, Zhang, 

Fang et al. (2016). In this paper, the lumped mass proposed by Menouillard, Réthoré, 

Combescure et al. (2006) is used 

e

2

diag

e

1
d

( )node

m
m H

n mes 
 

 

                                         

(14) 

where e   is the element being considered, m  is the element’s mass, e( )mes   is the

area of element in 2D, 
noden is the number of nodes in element, and H is the Heaviside 

function. 

4  DSIF 

As the relevant quantities of crack tip may be questionable on accuracy such as stress fields, 

the SIF based on energetic consideration is used as a parameter of the strength of singularity. 

There are a few schemes to calculate the SIF, such as the displacement extrapolation 

method, the virtual crack extension method, the virtual crack closure method and the 

interaction integral method. The interaction integral method is used here which has the 

highest accuracy according to the research of Nagashima, Omoto and Tani (2003). In the 

interaction integral method, the auxiliary fields are introduced and superimposed onto the 

actual fields. 

For dynamic loading case, an item related to inertia is added, and the interaction integral 

with force-free on crack surface can be given as 

 aux aux aux aux

,1 ,1 1 , ,1
A A

dA dAij i ij i ik ik j j i iI u u q u u q          (15) 

where  iijij u,,   and  auxauxaux ,, iijij u are the actual state and the auxiliary state, 

respectively. I is the interaction integral between the actual state and the auxiliary state, A 

is the integral domain. q is the weight function which is going to be 0 outside the contour 

boundary and is one inside in the present paper. The DSIF can be written as 











  2

 2  

*II  emod

*I  emod

EIK

EIK

II

I

                                                

(16) 

where 
*E  is equal to E  for the plane stress and for the plane strain  * 21E E   . 

The basic algorithm used here for the DSIF is concluded as following: 

(1) Give an integral rang R, then search for all the integral elements; 

(2) Loop through all the integral elements;  
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(3) Loop through all the Gauss points in each integral element;  

(4) Calculate the actual state and the auxiliary state of each Gauss point; 

(5) Get the value of DSIF through Eq. (15) and Eq. (16).  

where R is the ratio between the actual integral radius r and the minimum size Lmin of all 

elements as shown in Figure 3. 

Distribution of Gauss pointThe integral elements

Figure 3: The integral elements for DSIF 

5  Numerical examples 

5.1 Stationary mode I crack 

First, let us consider the problem of an infinite plate contains a semi-infinite crack whose 

geometry is shown in Figure 4. A theoretical solution of the problem was obtained by 

Freund (1990). To model this configuration, a rectangular plate of size L2H=104 m 

with an initial edge crack of length a=5m under uniaxial tensile stress was used. The tensile 

stress was a type of Heaviside step loading, and 0  =500 MPa. The material properties 

Young’s modulus E =210 Gpa, Poisson’s ratio =0.3 and the density =8000 kg/m3. A 

mesh of 3999 uniform square was used for tests. The theoretical DSIF of the problem 

with a stationary crack was given by Freund (1990):

  0

(1 2 )
2

1

d

I

c t
K t

 









                                                 

(17) 

where 
dc  is the dilatational wave speed, t =0 is the time stress wave reach the crack tip 

from the edge. The theoretical solution is used to compare our present results. Certainly, 

the theoretical solution has some limitation, and it is valid only at ctt 3   when the 

reflected stress wave reaches the crack tip. 
ct = dcH  is the time that stress wave reaches 

the crack tip from the edge. 
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As time step is chosen as t =0.1 s , the values of DSIF with different integral path are 

presented in Figure 5. The DSIF was normalized by aK 0  and compared with the 

theoretical solution. As shown in Figure 5, the results with different integral domains are 

in good agreement with each other. At ctt  , the value of DSIF is 0 due to the stress wave 

has not reach the integral domain. The numerical solution is consistent with the theoretical 

solution after stress wave reaches the crack tip.  

Figure 6 presents the results of DSIF with different time stepping t   while R  =5. It 

shows good consistency and the results are not sensitive to the time step. So, this inspires 

us to improve the computational efficient with a larger step time which is less than the 

critical time. With a much larger time stepping, t =20 s , the numerical result is rapidly 

divergent. As a consequence, there is a critical time stepping, which we will discuss it 

shortly. 

a

L

2H

0

Figure 4: The geometry and loading of a homogeneous material plate with crack 

0 1 2 3
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Figure 5: The DSIF with different 

integral path   

Figure 6: The DSIF with different time 

step 
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5.2 Finite size edge plate with an arbitrarily oriented central crack 

A schema of the problem is shown in Figure 7. A plate with a central crack under uniaxial 

tensions 
0 =100MPa. The dimensions of the plate are 2h=0.04 m and 2b=0.02 m, and the 

length of the central crack is 2a=0.0048 m. The material’s properties are: E=199.99Gpa, 
 =0.3,  =5000 kg/m3. A mesh of 4999 uniform elements is used.

First of all,  =0°, a horizon central crack is considered. For the cases of different integral 

domains that affect the left crack tip, Figure 8 shows that the range R has little effect on the 

crack tip’s DSIF. The results agree very well with the conclusion that the stress intensity 

factor under different integral path are the same. The numerical results with different time 

step are given in Figure 9, and the same conclusion can be drawn as shown in Figure 6. 

Secondly, the central cracks of different inclined angle are considered. The length of crack 

is the same, and the angles,  =15°, 30°, 45°, 60°, 75° are examined. The problem has 

been discussed by Phan, Gray and Salvadori (2010) with Symmetric-Galerkin Boundary 

Element Method and by Liu, Bui, Zhang et al. (2012) with Smoothed Finite Element 

Method. The results are shown and compared with Phan, Gray and Salvadori (2010) in 

Figure 10. As depicted in Figure 10a, for the case of mode I, the values in the peak of DSIF 

curves decrease by the increase of   for a small period of time after the stress wave arrive 

in the tip. Fig.10b reveals that DSIF in mode II are practically the same for the pair of 
=15°and  =75°, and the pair of  =30° and  =60°. At the meanwhile, the curve of 
=45° has the highest peak value.  

2h 2a

2b



x

y



Figure 7: The rectangular plate with crack of different angle 
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Figure 8: The DSIF with different 

integral path of the left crack tip   

Figure 9: The DSIF of the left crack tip 

with different time increments 
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Figure 10: The DSIF of crack tip with different rotation angle: (a) Mode I; (b) Mode II 

5.3 The stable explicit time stepping analysis 

This part focuses on the main factors that influence the critical time step. The grid density 

and iteration form are the two main subjects. The experiment configuration model is 

presented in Figure 7 with  =0°. The material’ properties and the other parameters are the 

same as that used in last example. In order to get the critical time ct , the method of 

numerical approximation is used. 

Firstly, the results were obtained with different grid densities. Three uniform meshes are 

considered, which are of CCT: 49  99, CCT1: 24  49, CCT2: 13  24 elements. With 

parameters  =0，  =1/2 of Newmark scheme, the critical time step of different meshes 

can be turned out. As shown in Fig.11(a), the critical time we got is about ct =4.825×10-8 

s with 49   99 elements. When the time step t   is less than ct  , the numerical 

calculation results are completely consistent and do not produce divergence. Conversely, 
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divergence is presented in the calculation when ctt  . The divergence occur at about 

4.750μs , 7.154μs , 11.495μs , 15.141μs  when t  is 5.000×10-8 s, 4.900×10-8 s, 4.850×10-8 

s, 4.838×10-8 s, respectively. As a comparison, Figure 11(b) is presented with the mesh of 

2449. It is seen that the critical time is 10.025×10-8 s which is improved than the one in 

Figure 11(a). The divergence occurs at about 4.095μs , 9.494μs , 12.090μs , 17.085μs

when t  is 10.500×10-8 s, 10.100×10-8 s, 10.075×10-8 s, 10.050×10-8 s, respectively. 
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Figure 11: Numerical stability with different time stepping (R=5,  =0, =1/2): (a) CCT: 

4999, (b) CCT1: 2449. 

Table 1: The critical time stepping for different densities of grid (R=5, =0,  =1/2) 

CCT:49×99 CCT1:24×49 CCT2:13×24 

ct (μs ) 4.825×10-2 10.025×10-2 16.568×10-2 

lump
femt (μs ) 5.479×10-2 11.012×10-2 18.138×10-2 

lump
femc tt  88.064% 91.037% 91.344% 

To clarify this case further, we repeated the above steps with CCT2: 1324 elements, and 

the comparison results are shown in the Table 1. The critical time step is about 16.568×10-

8 s in the case of CCT2, which is larger than the case of CCT1. It is hence concluded that 

the critical time step decreases with the increase of grid density. Besides, the critical time 

step of the standard FEM for the lumped mass is also listed. With more elements, the critical 

time step lump
femt

 
is decreased, and this is consistent with the case of ct . The values of 
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lump
femc tt  are similar, which range from 88.064% to 91.344%. As Menouillard, Réthoré, 

Combescure et al. (2006); Elguedj, Gravouil and Maigre (2009) suggested, 
lump
fem

3

2
tt 

for the stationary crack, the value 2/3 is within the numerical range listed in this paper. So, 

the numerical stability can be guaranteed. 

In addition, we took into account the effect of Newmark scheme for the critical time step. 

Four cases are concerned. Before studying the impact of iterative format on critical time 

step, all the cases are listed under the same conditions: CCT1, a mesh of 24×49 elements, 

R=5, t =5×10-8s. We listed the first 30 microseconds with different parameter values 

in Figure 12. An approximately identical result can be obtained. The stability conditions of 

the Newmark scheme are also verified directly. 

In Figure 11(b), we presented the test result with  =1/2. As a comparison, the result with 

 =2/3 is shown in Figure 13. The divergence occur at about 6.030μs , 12.848μs , 75.168

μs  when t  is 9.000×10-8 s, 8.800×10-8 s, 8.700×10-8 s, respectively. The critical time we 

obtained is about ct =8.685×10-8 s, which is smaller than the case of  =1/2. For further 

investigation, the cases of  =3/4,  =1 are tested. The results are listed in Table 2. The 

critical time step of the standard FEM for the lumped mass are also listed. In Table 2, it is 

seen that the critical time step decreases with the increase of   . So, does lump
femt  . 

Furthermore, we observed that the values of lump
femc tt  are nearly the same (about 91%), 

and the different parameter  have nearly no influence on the values of lump
femc tt  . 
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Figure: 12 Numerical results with different 

parameters   (CCT1: 24  49, R=5,   =0, 

t =510-8s)  

Figure: 13 Numerical stability with different 

time stepping (CCT1: 2449, R=5,  =0, 

 =2/3) 
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Table 2: The critical time stepping for different parameters  (CCT1: 2449, R=5, =0) 

1/2  2/3  3/4  1

ct (μs ) 10.025×10-2 8.685×10-2 8.190×10-2 7.100×10-2 

lump
femt (μs ) 11.012×10-2 9.537×10-2 8.992×10-2 7.787×10-2 

lump
femc tt  91.037% 91.066% 91.081% 91.178% 

6  Conclusions 

In the present paper, we carried out some numerical experiments of the stable explicit time 

stepping within the XFEM framework. A new enrichment scheme for crack tip is proposed 

and its applicability and availability has been sufficiently verified. The DSIF is used as an 

important parameter of the dynamic response and is also a parameter of judging the 

stability of numerical method. Objective to studying the factors that can affect the stability, 

different densities of grid and different parameters of Newmark scheme have been tested. 

The conclusions are shown as:   

 The grid density and the form of iterative method have obvious effects on stability; 

 The critical time stepping ct  decreases with the increase of grid density; 

 The critical time stepping ct   decreases with the increase of the parameter 

between 0.5 and 1 of Newmark scheme; 

 A similar conclusion can be obtained by the standard FEM with the lumped mass, and 

the values of lump
femc tt  are relatively stable. 

Furthermore, the simulation results are found in good agreement with each other when they 

are stable. Therefore, increasing time stepping appropriately in the range of critical value 

can improve the computational efficiency.  
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