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Simulation of Dynamic 3D Crack Propagation within the Material 

Point Method 

Y.J. Guo1 and J.A. Nairn2 

Abstract: This paper presents the principles and algorithms for simulation of dynamic 

crack propagation in elastic bodies by the material point method (MPM), from relatively 

simple two-dimensional cases to full three-dimensional, mixed-mode crack propagation. 

The paper is intended to give a summary of the latest achievements on simulation of 

three-dimensional dynamic crack propagation, which is essentially an unexplored area. 

Application of the methodology presented in this paper to several dynamic crack 

propagation problems has shown that the MPM is a reliable and powerful approach for 

simulating three-dimensional, mixed-mode crack propagation. 

Keywords: Material point method (MPM), dynamic fracture, crack propagation, three-

dimensional cracks, mixed-mode fracture. 

1 Introduction 

Numerical simulation of dynamic crack propagation is an extremely important research 

subject not only for academic interest but also for the establishment of a safety design 

methodology that prevents structures from catastrophic failures. Numerical simulation of 

dynamic crack propagation, however, remains a challenging problem due to various 

inherent difficulties. Even though a variety of methods are available for using fracture 

mechanics in two-dimensional dynamic crack propagation analysis, much less progress 

has been made on three-dimensional dynamic fracture simulation. 

The major numerical techniques currently used in fracture mechanics are the finite element 

method (FEM) and the boundary element method (BEM). The suitability of those 

techniques for crack propagation simulation depends on the complexity and versatility of 

handling crack evolution, computational accuracy and efficiency. For mesh methods, such 

as FEM, additional techniques are usually needed to simulate crack propagation since the 

crack is part of the discretized material body. A commonly used technique is the nodal 

release method [Chen and Wilkins (1977); Kishimoto and Sakata (1987); Ivankovic and 

Williams (1995)]. The major disadvantage of nodal release is that the crack propagation 

path is limited to pre-existing mesh lines. It may therefore have severe limitations for 
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modeling mixed-mode crack propagation (where cracks may propagate in unknown 

directions), and presents even more challenges for modeling three-dimensional 

propagation. Basically, the node-release method is only reliable for two-dimensional self-

similar crack propagation. A second frequently used technique is the moving mesh 

method developed by Nishioka, Murakami and Takemoto (1990); Nishioka, Okada and 

Nakatani (1997), and extended by Koh, Lee and Haber (1988); Gallego and Dominguez 

(1992); Koh, Lee and Jeong (1995). The method seems difficult for modeling arbitrarily 

curved crack growth since excessive mesh distortion might occur, and its versatility is 

still questionable. 

FEM and BEM can be adapted to handle arbitrary crack propagation simulations by using 

remeshing techniques after each increment of crack propagation, which involves 

implementation of some automatic remeshing scheme [Swanson and Ingraffea (1988); 

Bittencourt, Wawrzynek and Ingraffea (1996)]. The disadvantages are obvious: remeshing is 

complicated and takes time. The situation only gets worse when considering arbitrary three-

dimensional, mixed-mode crack propagation problems. 

The extended finite element (XFEM) was developed to avoid some FEM issues by 

representing the crack independently of the mesh [Belytschko and Black (1999); Moës, 

Dolbow and Belytschko (1999)] and adding enriched shape functions near crack tips and 

crack planes. The need to remesh is replaced by the need to alter shape functions and to 

make assumptions about crack tip displacements that make modeling of plastic materials 

a challenge. Furthermore, XFEM cannot handle interacting cracks, such as two cracks 

propagating through the same element. 

The challenges faced by FEM crack methods might explain the limited progress made in 

numerical crack propagation, most importantly in three-dimensional crack propagation 

simulation. The question arises, can some meshless method, such as the smooth particle 

hydrodynamics (SPH) method [Monaghan (1992)], the element free Galerkin (EFG) 

method [Belytschko, Lu and Gu (1994)], or the material point method (MPM) [Sulsky, 

Chen and Schreyer (1994)] provide an alternate to FEM for problems involving crack 

propagation? In meshless methods, a crack is treated as an independent entity, which may 

provide greater potential in crack propagation simulations, especially for three-

dimensional problems. 

This paper focuses on the MPM particle-based method for crack modeling with an 

emphasis on three-dimensional explicit cracks. MPM is a numerical method to solve 

dynamic solid mechanics problems [Sulsky, Chen and Schreyer (1994); Sulsky, Zhou and 

Schreyer (1995); Sulsky and Schreyer (1996)]. The motivation for MPM development 

was to simulate problems with history-dependent internal state variables, contact, impact, 

penetration/perforation, and metal forming without needing master/slave nodes or global 

remeshing. For modeling cracks, MPM was extended to handle explicit cracks by a 

method called CRAMP (for CRAcks in MPM) [Nairn (2003)], which was shown to 

provide excellent results for crack-front fracture parameters such as J integral [Guo and 

Nairn (2004, 2006)]. CRAMP can be described as an “extended” MPM, but it is a more 

straightforward extension MPM than XFEM is of FEM. It does not require addition of 

"enriched shaped" functions that depend on crack tip stress state and can handle two 

interacting cracks in the same background grid cell [Nairn and Aimene (2016)]. As a 
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consequence, MPM may have advantages for some fracture problems. Some examples 

are problems with crack contact, cracks in inelastic, large-deformation materials, and 

crack fronts propagating up to and intersecting with or passing through other cracks 

[Nairn and Aimene (2016)]. 

In brief, in 2D CRAMP, an explicit crack is described by a series of massless particles 

connected by line segments, with the first and last particle being the crack tips. Like 

MPM particles, crack particles are not tied to the background grid. Crack propagation is 

modeled by adding a new particle ahead of the current crack tip and that propagation can 

move and propagate in any direction. Each time step in MPM involves extrapolating 

particle state to the grid, solving the equations of motions on the grid, and then updating 

the particles. When explicit cracks are present, geometric relations between particles, 

crack planes, and nodes are used to subdivide the extrapolated grid velocity into two 

separate velocity fields describing motion “above” and “below” the crack plane. By 

tracking these two fields, the standard MPM algorithm can be extended to model the 

crack and implement contact laws on crack surfaces [Nairn (2003), Guo and Nairn 

(2004)]. In 3D CRAMP, a crack is discretized into a set of triangular elements instead of 

line segments, but otherwise the 3D algorithm is essential the same as the 2D one [Guo 

and Nairn (2006)]. A major difference in 3D CRAMP is for crack propagation problems. 

Rather then dealing only with two crack tips, 3D crack propagation requires analysis of 

the entire crack front and propagation of that front can be predicted by 3D J integral 

methods. 

This paper presents the principles and algorithms to simulate arbitrary dynamic crack 

propagation with the material point method (MPM). MPM has previously been used to 

model explicit, 2D crack propagation in wood [Nairn (2007)], crack growth with 

cohesive zones [Nairn (2009); Bardenhagen, Nairn and Lu (2011)] or fiber bridging 

[Matsumoto and J. A. Nairn (2009)], fracture during cutting [Nairn (2015, 2016)], and 

geomechanical modeling of hydraulic fracturing [Aimene and Nairn (2014, 2016)]. This 

paper summarizes CRAMP and J integral methods as a 3D crack modeling tool. Two 2D 

examples are discussed and directly compared to FEM and experiments, but the emphasis 

of this paper is on the extra work needed for simulation of mixed-mode, 3D crack 

propagation. Two examples show 3D crack propagation in a bar and around the 

circumference of a hollow tube. 

2 Numerical methods 

2.1  Stress analysis of cracks in MPM 

The numerical methods for stress analysis of cracks with the material point method 

(MPM) have been developed by the authors of the paper for two-dimensional [Nairn 

(2003)] and three-dimensional problems [Guo and Nairn (2004)]. Here we give a brief 

summary as a 3D problem for completeness of description. 

In MPM, a material body is discretized into a set of particles, as shown in Figure 1. A 

particle carries all the information of the material body at that position, such as mass, 

volume, velocity, strains, and stresses during the simulation. There is no geometrical 
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connection among the particles; they interact through a background grid, which is 

typically a regular mesh of orthogonal elements. When modeling cracks using CRAMP, 

the material point description of the object is supplemented by one or more explicit crack 

planes. In 2D, each crack plane is divided into a set of massless points connected by line-

segments [Nairn (2003)] as shown in Figure 1. In 3D, each crack surface is described by 

a collection of massless points connected by triangular elements [Guo and Nairn (2006)].  

 

Figure 1: Discretization of a material body and a crack. The solid circles represent 

material points. The hollow circles are massless particles that define the path of the 2D 

crack. The background grid is used for solving MPM equations of motion. 

During each MPM time step, particle information is extrapolated to the background grid, 

which is used to solve the momentum equation. In the absence of cracks, particle 

momenta are extrapolated to a single velocity field resulting in discretized momentum 

equation for time step n of: 

 (1) 

where pi
(n), fi

(n) and fi,T
(n) on momentum, internal force, and external traction force on node 

i [Sulsky, Chen and Schreyer (1994); Bardenhagen and Kober (2004)]. But such an 

update enforces a continuous deformation field that cannot describe displacement 

discontinuities at crack planes. The extension of CRAMP is to introduce two velocity 

fields to represent motion on opposite sides of the crack plane [Nairn (2003)]. Let each 
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node accommodate one or two velocity fields. When cracks are present, each CRAMP 

time step starts by assigning a set of crack velocity fields, v (p,i)=0 or 1, to each particle 

p-node i pair. These fields are determined by tracing a line from the particle to the node 

to see if it crosses any crack plane. Field 0 is when the line crosses no crack (particle and 

node on same side of the crack) or field 1 is when it crosses one crack (particle and node 

on opposite sides of the crack). This calculation is best done during the initialization 

phase of the MPM time step. Note that two velocity fields on each node can handle any 

number of cracks, but assumes non-interacting cracks such that no node “sees” a line 

crossing for more one crack. An extension to explicitly handle two cracks by allowing up 

to four velocity fields per node is give elsewhere [Nairn and Aimene (2016)]. This paper 

limits discussion to one crack or non-interacting crack problems. 

Because v (p,i) has to look at all possible particle–node pairs, it is the most time 

consuming task of the CRAMP algorithm. Although it appears to scale as N*n*c where N 

is number of particles, n is number of nodes, and c is number of cracks and therefore to 

be very expensive for large calculations, the scaling can be made much better. First, by 

exploiting the local nature of shape functions, only a small number of nodes (which does 

not increase with problem size) near each particle need to be checked. The CRAMP 

algorithm thus scales with N*c (or just N for a constant number of cracks). Second, its 

efficiency can be greatly improved by screening out the vast-majority of crack-crossing 

calculations by describing the crack plane using a hierarchical binary tree. The methods 

are analogous to hidden line removal methods in 3D graphics [Kay and Kajiya (1986)]. 

Once all v (p,i) are found, the remaining MPM tasks are similar to standard MPM [Sulsky, 

Chen and Schreyer (1994); Bardenhagen and Kober (2004)] except that they must solve 

the equations in each crack velocity field, resolve crack contact situations at nodes with 

more that one crack velocity field [Nairn (2003, 2013)], and update positions of crack 

surfaces. The revised MPM explicit update for momentum, by solving Eq. (1) for each 

velocity field, becomes: 

 (2) 

where subscript j indicates velocity field j on node i. The momenta and forces are given 

by slightly modified MPM extrapolations: 

 (3) 

 (4) 

 (5) 

where Sip
(n) and Gip

(n) are the GIMP shape functions and shape function gradients 

[Bardenhagen and Kober (2004)], mp is particle mass, τp
(n) is particle Kirchoff stress, ρ0 is 
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undeformed particle density, bp is particle body force, Fp
(n) is external force on the 

particle, and Ni (x) is nodal shape functions on the grid, and Tp is traction applied to a 

particle’s surface. These extrapolations are modified from standard MPM extrapolations 

by the Kronecker δj,v(p,i) that selects the appropriate crack velocity field on each node (i.e., 

standard MPM extrapolations omit δj,v(p,i) and drop subscript j). 

Once the grid momenta are updated, the forces and velocities on the grid are used to 

update the particle velocities (vp) and positions (xp) using: 

 (6) 

 (7) 

where agp
(n) and vgp

(n) are accelerations and velocities extrapolated from the grid to the 

particle. But, these extrapolations must use the appropriate velocity fields: 

 (8) 

 (9) 

where mi,j
(n) is nodal mass extrapolated from the particles: 

    (10) 

This particle update can be extended to include various damping schemes as explained in 

Nairn (2015). The reader is referred to standard MPM papers for more details on these 

basic equations, without cracks [Sulsky, Chen and Schreyer (1994); Bardenhagen and 

Kober (2004)] or with cracks [Nairn (2003); Guo and Nairn (2004)] 

An additional task need for MPM simulations with cracks is to move the crack plane 

according to the velocities fields on the two sides of the crack. An improvement over the 

initial development of CRAMP, which moved crack particles in the center-of-mass 

velocity field [Nairn (2003)], is for each crack particle to track its’ position as well as 

locations for the crack surfaces above and below the crack plane. The locations on top 

and bottom crack surfaces are moved in velocity field associated with that surface. In 

other words, the crack surfaces move by 

 (11) 
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 (12) 

Here subscript “s” indicates side of the crack (0 or 1) being updated and vgs
(n) is velocity 

extrapolated from the grid to the location for that surface of the crack. It is similar to the 

velocity extrapolation for particle updates (see Eq. (9)) except that is uses velocity field v 

(s,i) appropriate for the surface location s-node i pair, which is determined by same 

methods used to determine v (p,i). 

Note that the GIMP shape function, Sip
(n), in Eq. (9) is replaced by a grid shape function 

Ni
*(xs

(n)). This replacement occurs because GIMP shape functions integrate over particle 

domain. Because crack particles are massless with no domain, they should use GIMP shape 

functions with a Dirac delta function for domain, which converts them to ordinary grid 

shape functions [Bardenhagen and Kober (2004)]. The “*” on grid shape function arises 

because the extrapolation may need renormalization to preserve partition of unity caused by 

potentially inactive nodes near the crack surface (i.e., Ni
*(xs

(n)) is Ni(xs
(n)) divided by Σi 

Ni(xs
(n))). The crack particle location can update by center-of-mass velocity [Nairn (2003)], 

or, more efficiently, by moving to the midpoint between the two crack surfaces. Some 

advantages of tracking locations of crack surfaces are that it allows for improved contact 

modeling [Nairn (2013)] and implementation of imperfect interface [Nairn (2007)] or 

cohesive laws [Nairn (2009)] that depend on crack opening displacement. These 

displacements are also used to partition J integral into mode I and II stress intensity factors, 

as explained in the next section. 

2.2 Dynamic j-integral and stress intensity factors 

The CRAMP algorithm in the previous section explains how MPM can account for 

explicit discontinuities caused by cracks. To handle crack propagation, the next task is to 

calculate crack front fracture parameters that are needed to predict when and in which 

direction a crack will propagate. The general method is to use the crack front J-integral. 

MPM methods for finding J integral and stress intensity factors in 2D and 3D simulations 

are in Guo and Nairn (2004, 2006). The two results are summarized here together for 

completeness. 

The dynamic J-integral components in crack-front coordinates was formulated by 

Nishioka and Atluri (1983) and Nishioka (1995), as follows: 

(13) 

where k=1 or 2 for the two components. W and K denote the stress-work density and 

kinetic energy density, respectively; σij is a component of Cauchy stress, ui a component 

of displacement (accordingly, ∂ui/∂xk is an element of displacement gradient), nk is a 

component of the unit normal vector to the near-field J-integral contour Γc, ρ is density, 

and repeated indices i and j are summed. For 2D problems, the Γc contour is most 

conveniently drawn along background grid mesh lines near the crack tip [Guo and Nairn 

(2004)]. For 3D problems, the J-integral is calculated at each crack-front node with near-
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field integral contour (Γc) being a circular section of a short cylinder on an x1-x2 plane in 

crack-tip local coordinates with the origin located at the crack front node and a radius of r, 

as shown in Figure 2. Here x2 coincides with the direction of the normal to the crack 

plane at the node, x3 (which is the thickness direction of the cylinder) is tangent to the 

crack front, and x1 points in the direction of bi-normal at that position [Guo and Nairn 

(2006)]. The second term is an integral over the volume contained by Γc. It is zero for 

quasi-static problems but is needed to provide path-independent results in dynamic 

problems [Nishioka (1995)]. In MPM, the second term can be found by using the material 

points within the contour as numerical integration points [Guo and Nairn (2004)]. 

Figure 2: Dynamic J-integral calculation scheme for 3D crack problems: (a) crack plane 

discretization; (b) J-integral contour (Γc), which is a circle on x1-x2 plane with the origin 

located at crack front node with a radius of r.  

Once the dynamic J-integral is calculated, it can be converted into mode I and mode II 

crack tip stress intensity factors-KI and KII (these first calculations were for problems with 

little or no mode III and therefore ignores KIII). For linear elastic, isotropic materials, the 

formulae are given by Nishioka (1995): 

 (14) 

 (15) 

where J1 is the first component of dynamic J-integral vector in crack-front coordinates. It 

equals the total strain energy release rate for elastic materials.  is the shear modulus and 

δI and δII denote crack opening and shearing displacements near the crack tip. βI, βII, AI, 

and AII are parameters related to crack propagating velocity C. They are given by: 
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 (16) 

 (17) 

where Cs and Cd are the shear and dilatational wave speeds: 

 (18) 

where κ=(3-ν)/(1+ν) for 3D or 2D plane stress, κ=3-4ν for 2D plane strain, and ν is 

Poisson’s ratio. For slow crack growth, the calculations can use C=0, βI=βII=1 and 

AI=AII=(κ+1)/4. This slow limit applies well unless the crack speeds get very close to 

wave speed of the material. 

2.3 Modeling of crack propagation 

2.3.1  Crack propagation criteria 

Because the effect of the tearing mode stress intensity (KIII) on crack propagation 

direction in general 3D mixed-mode loading is not well understood, we neglect the effect 

of mode III stress intensity, and assume that only modes I and II affect the direction of 

crack propagation (it could be added in the future, when needed). It is common to find 

that KIII is small compared to KI or KII in many real-world problems, and examples 

chosen here all have negligible mode III component. As a result, a crack-front node will 

propagate in the x1-x2 plane in the crack-front local coordinates at that node. In order to 

perform crack propagation analysis, we need to predict on what conditions the crack will 

propagate, and the propagation direction for the crack under mixed-mode loading, where 

mixed-mode ratio is α=KI/KII. Several criteria have been proposed, and the following two 

are widely used: (1) the maximum hoop (or principal) stress criterion proposed by 

Erdogan and Sih (1963); (2) the minimum strain energy density criterion presented by 

Sih (1972, 1974). 

The maximum hoop stress criterion [Erdogan and Sih (1963)] states that the crack will 

propagate in the direction normal to the maximum principal stress when the equivalent 

stress intensity factor reaches a critical value, KIc, i.e., when 

 (19) 

where θc is angle for the direction with the maximum principal stress. It is given by: 

 (20) 

where we take the positive sign for KII ≤0, and the negative sign otherwise. 
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The minimum strain energy criterion [Sih (1972, 1974)] assumes that the crack propagates in 

the direction along which the strain energy density is minimum when the equivalent stress 

intensity reaches the critical value KIc, i.e., when 

 (21) 

where 

,  (22) 

 (23) 

where θc is the direction along which the stain energy density is minimum. It is found by 

numerically solving: 

 (24) 

Note that the two propagation direction criteria (Eqs. (20) and (24)) give nearly identical 

functions for θc as a function of α, which makes it impossible to prefer one over the other by 

comparison to experimental observations of propagation direction with typical uncertainties 

in measuring θc. 

2.3.2  Crack evolution algorithms 

In dynamic fracture analysis within MPM, we calculate dynamic stress intensity factors 

(KI and KII) through dynamic J-integral at crack-front nodes in crack-front local 

coordinates. These values are compared to a material critical value (using Eq. (19) or (21)) 

to predict whether or not the crack should propagate. If it propagates, Eq. (20) or (24) are 

used to determine the direction of propagation. Propagation in 2D involves adding a new 

crack particle in the calculated direction at a distance of less than a background cell (we 

typically extend it half a grid cell length). The new particle becomes the new crack tip. 

The situation in 3D is more complex and described next. 

After propagating 3D crack-front nodes, we need to build additional crack elements to 

represent the new crack growth. Figure 3 illustrates the scheme used for 3D MPM crack 

propagation analysis, where A through G are assumed to be the crack-front nodes before 

crack propagation, and B' through G' are the new positions of the nodes that result from 

propagation. If only one end of a crack segment propagates (such as segment AB), a 

single new crack surface element will be created (such as ABB'). If both ends of a 

segment propagate (such as segment BC), then four new crack surface elements are 

created (such as the four elements within BCC'B'). If a new crack-front segment becomes 

too long after propagation, say two times longer than the initial length, the segment will 

be broken into two, and five new crack elements will be created (such as five elements 

within CDD'C' with added point P1 along the long segment in the new crack front). If a 

crack-front segment becomes too short after propagation, say less than 25% of the initial 

length, the segment will be shrunk into a point, and only one new crack element will be 
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created (such as E'F' combining to P2). This adaptive crack-front discretization procedure 

is needed to simulate curved crack fronts and to assure computational accuracy. 

 

Figure 3: Illustration of building new crack plane elements after crack propagation 

2.3.3  Interaction between crack plane and material boundary 

Special treatment is needed when crack propagation interacts with the boundary of an 

object. For example, Figure 4 shows a crack front (solid blue lines) propagating within a 

cross section of a material where the dashed lines represent the real material boundaries. 

After increments of propagation (the solid blue lines are the crack fronts at increments of 

time that move from bottom to top and toward both sides). In 2D crack growth, when a 

crack tip reaches the boundary its’ propagation stops. But, in 3D, only part of the front 

may reach a boundary while the rest should continue to propagate. 3D crack propagation 

methods have to deal with these boundary interactions. 

In MPM, a material body is discretized into a set of particles. Although this discretization 

does not explicitly track locations of boundaries, we can determine them approximately 

along the grid lines with the aid of the gradient of extrapolated nodal volume. We call 

these approximate boundaries the MPM material boundaries, resulting in boundaries such 

as the dotted red lines in Figure 4. At each time step, if a newly generated crack-front 

reaches the MPM material boundaries, it will get trimmed at the MPM material 

boundaries, as shown in Figure 4. If both ends of a crack-front segment are at or outside 

the MPM material boundary, that segment is beyond the material, such as segments AB 

and BC. Such segments will be eliminated as a crack-front, which means they can no 

longer propagate. It is the 3D analogy of 2D model that stops all propagation when a 

crack tip reaches the edge, but now only a portion of the crack front stops propagating. 
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Figure 4: Illustration showing interaction between crack front and material boundaries 

during crack propagation, where dashed lines are real material boundaries, dotted lines 

are MPM material boundaries on the grid, and solid lines are crack fronts showing 

increments in crack propagation. 

3  Numerical crack propagation examples 

Prior papers have used MPM for 2D crack propagation [e.g., Nairn (2007, 2015, 2016); 

Bardenhagen, Nairn and Lu (2011); Aimene and Nairn (2014, 2016)]. This section 

supplements 2D results by direct comparison to FEM and experiments. It also adds, for 

the first time, two examples of 3D crack propagation using MPM. 

3.1  Crack propagation length versus time 

A three-point bending specimen subjected to central impact was modeled (see Figure 5). This 

problem was experimentally investigated, and crack length versus time was measured by 

Nishioka, Tokudome and Kinoshita (2001). The specimen was made of PMMA, and the 

following material properties were used in the analysis: modulus E=2.94 GPa, Poisson’s ratio 

ν=0.3, density ρ=1190 kg/m3, and fracture toughness KIc=1.2 MPa√m (adjusted to match 

experiments). The dimensions of the specimen were as follows: span 2l=400 mm, height 

h=100 mm, thickness=10 mm, and the initial crack length a0=50 mm. A stiff, 5.05 kg drop 

weight (modeled with Ew=100 GPa and νw=0.25) impacted the specimen’s middle with the 

velocity of 5 m/s. The geometry of the drop weight was estimated from images in Nishioka, 

Tokudome and Kinoshita (2001) with its density adjusted to give proper final weight (the full 

drop weight details were not available). Because the drop weight mass was 10 times the beam 

mass, it moved at nearly constant velocity (<10% reduction during the impact event). The 2D 

calculations used plane strain conditions. The J integral calculations used both terms in Eq. 

Background grid 

A B C 
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(13). As expected, due to specimen symmetry, the crack propagated along the initial direction 

as self-similar crack growth. 

 

Figure 5: A three-point bending specimen subjected to central impact. 

The results for crack length versus time predicted by MPM using the minimum strain 

energy criterion with various cell sizes (c=1, 2, and 4 mm) are plotted in Figure 6 and 

compared to experimentally measured results. The results were nearly identical (and 

hence converged) for all cell sizes. Thus, not only is remeshing not needed, but also 

MPM crack calculations converge well. The largest cell size (c=4 mm), however, showed 

discrete jumps caused by each increment in crack length being half a cell length or 2 mm. 

The results for cell sizes of 1 mm and 2 mm were smoother. The calculations were very 

fast (from 2 s for 4 mm cells to 90 s for 1 mm cells on a desktop computer with a 2.7 

GHz 12-Core Intel Xeon E5 processor). The MPM simulations and experiments agreed 

well. Perhaps the MPM results had slightly faster crack growth at later times, which 

could be due to dynamic changes in stress intensity factor. According to Eq. (14), KI 

decreases at higher crack growth rates, which could cause propagation to slow, but these 

simulations did not implement that adjustment. Because the maximum simulated (and 

experimental) crack velocity was about 450 m/s and Cd=1240 m/s for PMMA, this 

refinement would only change KI by 7% at most. The slight discrepancies are more likely 

caused by details about the impactor or the contact conditions on bottom edge of the 

beam; these effects could be modeled with more information on the experimental 

arrangement. The corresponding results using the maximum hoop stress criterion were 

identical (and therefore not shown).  
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Figure 6: Comparison of the results of crack length versus time predicted by MPM with 

various mesh sizes (cell size c=1, 2, and 4 mm) to experimental results. 

3.2 Two-dimensional crack propagation path 

The same three-point bending specimen was modeled to simulate mixed-mode crack 

propagation path caused by the drop weight impacting off the center of the specimen, as 

shown in Figure 7. The dimensions and material properties of the specimen were the 

same in section 3.1. The loading eccentricity, e/l, was 0.1. Due to asymmetry of the 

specimen, the crack tip is loaded under mixed-mode conditions, which is expected to lead 

to a change in crack direction during crack propagation. This specimen was studied 

experimentally and also simulated with the finite element method (FEM) by Nishioka, 

Tokudome and Kinoshita (2001). 

 

Figure 7: A three-point bending specimen subjected to impact with the eccentricity of e/l=0.1. 
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Crack paths predicted by MPM simulations with 1 mm cells using either the maximum 

hoop stress (“mh”) or minimum strain energy (“mse”) criterion are shown in Figure 8 

where they are compared to experimental results and two alternate FEM predictions 

[Nishioka, Tokudome and Kinoshita (2001)]. The FEM predictions used either the 

maximum hoop stress criterion (“mh”) or a local symmetry criterion based on the 

direction where KII=0. The experimental and numerical results are for total crack growth 

at t=210 μs after the impact. All methods, including both MPM and FEM simulations, 

agreed reasonably well with experimental results; the crack paths are within 2 mm of 

experimental results. The maximum hoop stress criterion worked best for these 

experiments, with MPM slightly improved over FEM (especially in the beginning). The 

KII=0 criterion by FEM had the worst agreement. The MPM results were fast (about 80 

sec on desktop computer with a 2.7 GHz 12-Core Intel Xeon E5 processor) and did not 

need to use remeshing that was required for FEM results. 

X Position (mm)

Y
 P

o
s
it
io

n
 (

m
m

)

-14 -12 -10 -8 -6 -4 -2 0
 0 

 2 

 4 

 6 

 8 

 10 

 12 

 14 

 16 

 18 

 20 

FEM (mh)

FEM (KII=0)

MPM (mh)

MPM (mse)

Experiment

 

Figure 8: Comparison of crack growth paths simulated by the MPM and FEM using 

maximum hoop stress (“mh”), minimum strain energy (“mse”), and local symmetry 

condition (“KII=0”) criteria to the experimentally measured path. The experiments and 

simulations were for t=210 µs after the impact. The inset shows experimental snap shot 

from Nishioka, Tokudome and Kinoshita (2001). The black circle is a caustic used to 

monitor crack tip stress state. 

3.3  Three-dimensional dynamic crack propagation 

Three-dimensional (3D) dynamic crack propagation simulation is essentially an 

unexplored area, with very few reports available [Nishioka and Stan (2003); Krysl and 

Belytschko (1999)]. The next two examples are used to demonstrate the capabilities of 

MPM to simulate full 3D, mixed-mode crack propagation. As mentioned previously, a 
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crack plane in MPM is treated as an independent entity, not connected geometrically to 

the material body or background grid. Therefore, the initial mesh can be used throughout 

the whole process of crack propagation, and no remeshing is needed, which makes it 

possible to model full 3D, mixed-mode crack propagation in arbitrary directions. 

The first 3D example simulated crack propagation process far an inclined corner crack (a 

quarter penny-shaped crack) in a square rod subjected to step loading (=400 MPa), see 

the “Initial” condition in Figure 9. The length of the specimen was 100 mm, and the cross 

section of the specimen was 5050 mm. The angle between the load direction and the 

initial crack plane was 60o. The origin of the corner crack was located on a generator of 

the specimen, and the center of the crack plane crossed the middle cross-section of the 

specimen. The radius of the initial corner crack was 18.475 mm. The material properties 

used in the analysis were: modulus E=200 GPa, Poisson’s ratio ν=0.298, density ρ=7900 

kg/m3, and fracture toughness KIc=20 MPa√m. The J integral calculations used only the 

first term in Eq. (13). This change was done for efficiency (i.e., to avoid searching for 

material points within the contour) when needing all the extra J integral calculations 

compared to 2D problems. Previous results have shown that the second term is small 

when the contour is within a few cells of the crack front [Guo and Nairn (2004)]. 

Crack patterns at different time instants simulated by MPM are shown in Figure 9 with 

the last frame being when the entire crack front has reached the specimen edge. It can be 

seen that the crack pattern changed suddenly from mixed-mode to mode I dominated type 

after it starts to propagate. The crack front contour length grew in length during the first 

stage of propagation, but then got shorter and shorter after it reached the diagonal of the 

cross section of the specimen. The proposed method for dealing with crack front 

propagation and interactions with material boundaries worked well throughout the 

propagation process. In particular, the method correctly interacted with edges and was 

able to propagate through to complete failure where the entire front had reached a 

specimen edge. 
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Figure 9: Crack patterns at different time increments simulated by MPM for an inclined 

corner crack in a square rod subjected to step tension. 

The second 3D example was a thin, hollow tube with an inclined, through-the-wall crack 

subjected to step tension (=400 MPa), as shown in the initial condition of Figure 10. 

The length of the tube was 300 mm and outer the radius of the tube was R=45 mm. The 

wall thickness was t=10 mm. The angle between the crack plane and the loading 

direction was 45°. The through-the-wall crack plane was centrally located along the 

length direction of the tube with a crack length of 14.142 mm. The material properties 

used in the analysis were the same as those for the square rod. 
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Figure 10: Crack patterns at different time increments simulated by MPM for an inclined, 

through-the-wall crack in a hollow tube subjected to step tension. 

The initial crack and subsequent crack propagation patterns at different time increments 

are shown in Figure 10. Both ends of the inclined crack turned quickly from the mixed-

mode to mode I propagation and then continued to propagate around the entire 

circumference of the tube. The two cracks did not meet because they started from offset 

crack tips. This example demonstrated the robust capability of this 3D MPM crack 
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propagation method to interact with materials boundaries while still propagating within 

the material. 

The above two examples of full 3D, mixed-mode dynamic crack propagation was not 

compared to experiments because none are available [Nishioka and Stan (2003)]. One 

challenge of experiments is how to map crack plane surfaces within opaque materials. 

The modeling results, however, are giving expected results (crack turning to mode I 

conditions) and robustly modeling crack propagation through to complete failure and 

separation (had the simulations continued) along with stable interactions with edges. 

4  Conclusions 

This paper presented the principles and algorithms of dynamic crack propagation 

simulations within the material point method (MPM). The two-dimensional crack 

propagation summarized and expanded on some previous results and included new 

comparisons to experiments and FEM. The full three-dimensional, mixed-mode crack 

propagation was described and demonstrated for the first time. MPM exhibits the 

flexibility of meshless methods in crack propagation simulation due to the fact that the 

crack plane is treated as an independent geometrical entity. The crack is not restrained by 

the background grid and is able to follow any arbitrary path dictated by the crack tip 

stress state. Furthermore, the initial grid can be used repeatedly throughout the whole 

process of crack propagation, and no remeshing is needed. These features are advantages 

of MPM compared to the typical and widely used mesh methods such as the finite 

element method (FEM) or the boundary element method (BEM). This paper also 

described an adaptive crack plane scheme for crack-front division, and the algorithms to 

interact and trim the crack plane at the material boundaries. The applications of the 

methodology to several typical problems have shown that MPM is a reliable and 

powerful approach to simulate dynamic crack propagation. The convergence in terms of 

background cell size is efficient. The methods were shown to work from relative simple 

two-dimensional problems to very complicated three-dimensional, mixed-mode problems. 
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