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Abstract: Radius of ceramic cone can largely contribute into final solution of analytic 

models of penetration into ceramic/metal targets. In the present research, a modified 

model based on radius of ceramic cone was presented for ceramic/aluminum targets. In 

order to investigate and evaluate accuracy of the presented analytic model, obtained 

results were compared against the results of the Florence’s analytic model and also 

against numerical modeling results. The phenomenon of impact onto ceramic/aluminum 

composites were modeled using smoothed particle hydrodynamics (SPH) implemented 

utilizing ABAQUS Software. Results indicated that, with increasing initial velocity and 

ceramic thickness and decreasing support layer thickness, the radius of ceramic cone 

decreases; this ends up increasing residual velocity of the projectile and penetration time 

and extending the area across which the pressure is distributed. These findings indicate 

enhanced levels of target energy absorption and the required energy for bending and 

tensioning the target. As such, it can be observed that, at the same thickness and areal 

density, the ceramic target has its efficiency enhanced with increasing ceramic thickness 

and decreasing the support layer thickness. Finally, the results revealed that the 

associated data with SPH confirm the modified analytic model at higher accuracy than 

the Florence’s analytic model. 

Keywords: Smoothed particle hydrodynamics, Florence’s analytic model, modified 

analytical model, energy absorption, ABAQUS, penetration. 

1 Introduction 

Resistance against impacts, whether at high velocity or low velocity, is among the important 

parameters considered in the design of shields. According to available literature on shield 

design, a shield can provide high efficiency when it is of such characteristics as low density, 

high resistance against failure by tensile stresses, and large volumetric and shear module, i.e. 

high stiffness. Single-layer metallic shields cannot satisfy all of the mentioned features because 

of high density of metallic materials. Materials such as ceramic, however, can provide all of the 

features except for high resistance against failure by tensile stresses. As such, researchers have 

                                                      
1 Department of Mechanical Engineering, College of Technical Engineering, Saveh Branch, Islamic Azad 

University, Saveh, Iran. 

2 Department of Mechanical Engineering, College of Technical Engineering, Saveh Branch, Islamic Azad 

University, Saveh, Iran. 



 

 

296    Copyright © 2017Tech Science Press         CMES, vol.113, no.3, pp.295-323, 2017 

attempted to design composite shields with a ceramic layer in front and a metallic/composite 

layer behind that (serving as a support layer), so as to optimally provide all characteristics of an 

efficient shield. In different applications, ceramic shields are usually reinforced using some 

support. The support layer absorbs residual kinetic energy of the intender once the ceramic layer 

is failed, enhancing ceramic stability in the course of absorption process. The thicker the 

support layer, the lower will be the likelihood of ceramic failure due to deformation of the 

support sheet [Tate (1967); Chocron Benloulo et al. (1998); Taylor (1948); liaghat et al. (2013)]. 

Support composite absorbs kinetic energy of crushed fragments, stopping them from 

further movement. Given these factors, the design of these shields was an extremely 

complicated task which required modern pieces of equipment for conducting the required 

tests [Taylor (1948); liaghat et al. (2013)]. 

This is while, multi component shields, particularly those with a hard ceramic upper layer 

together with a deformable support sheet, can address the mentioned problems. Accordingly, 

once a projectile collide a ceramic target supported with a metallic sheet, conical failure 

happens due to the reflection of tensile waves, so that this ceramic cone transfers the load 

resulted from the projectile collision to the support layer across an area of larger extension at 

cone base [Tate (1967); Chocron Benloulo et al. (1998); Taylor, 1948; liaghat et al. (2013)]. 

Development and evolution of light-weight shields for such applications as vehicles, aircrafts, 

and security equipment, where the weight is a key design factor, has been very remarkable. As 

the shield weight increases, vehicles and aircrafts end up with higher fuel costs. As such, 

ceramic/metal shields are among composite shields which can provide required characteristics 

for better efficiency of a shield. Optimally designing ceramic/metal shields for minimizing areal 

density of the shield, it is found that, bran carbide and silicon carbide ceramics are preferred for 

such a purpose, because of their low density and high strength. As such, when applied together 

with metallic materials (as support), ceramic targets (shields) have gained larger deals of 

attention during recent years because of their high efficiency against small to medium 

projectiles [Chocron Benloulo et al. (1998); Taylor (1948); liaghat et al. (2013)]. 

Numerous works have been performed to investigate the phenomenon of penetration into 

ceramics analytically, among which one can refer to the models presented by Tate, 

Fellows, Florence, Liaghat, Chocron Benloulo, etc. [liaghat et al. (2013)]. 

The first significant numerical analysis of ceramic targets was performed by Florence. He 

presented an analytical model for a two-layer composite shield (composed of a hard 

ceramic layer and a formable support material) against a rigid cylindrical projectile. This 

model predicts ballistic limit velocity which indicates resistance of the shield against 

penetration. Florence’s model exhibited satisfactory agreement with experimental results. 

Therefore, in the Florence’s model, the kinetic energy of the projectile colliding the 

target was balanced against the absorbed energy by the support sheet to obtain ballistic 

limit velocity. Because of its simplicity, this model gained a large deal of attention from 

many researchers [Florence (1969)].  

On this basis, Hetringtone [Hetherington (1992)] proposed an optimal design method for 

calculating the thickness ratio and thicknesses of ceramic and composite which give the 

best protection for a given areal density. 

Of analytical models presented for penetration into ceramic targets, one may refer to the 

analytic model presented by Wilkins et al. This numerical analysis was performed to 
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simulate collision in vertical impacts using a finite difference code called HEMP. The 

studies performed by Wilkins et al. showed that, for optimal design of a two-component 

ceramic system, projectile-system interactions shall be considered appropriately [Wilkins 

(1978)]. 

Later on, Woodward presented a one-dimensional analytic model for complete penetration 

into a ceramic shield using so-called constitutive equations. Taking into account ceramic and 

projectile erosion and using thick and thin support sheets, Woodward obtained ballistic limit 

velocity and penetration depth [Woodward (1990)]. Cortes et al. presented a numerical model 

which two-dimensionally analyzed the collision of a cylindrical projectile with a ceramic-

metal shield. In this numerical model, macroscopic material behavior within the region where 

the ceramic was being eroded was presented using a compositional model wherein internal 

friction and volumetric expansion were taken into account [Cortes R et al. (1992)]. Lee et al. 

used numerical methods to consider the impact of a steel projectile onto a light-weight 

ceramic shield while studying such phenomena as projectile erosion, crack propagation, 

conical structure of ceramic, and support sheet failure [Lee et al. (2001)]. Also, Simha et al. 

used a computational model and finite element model to consider the response of semi-

infinite ceramics of high purity (e.g. 99.5% alumina) in collision with a long rod projectile 

and obtained good results with reference to experimental data [Simha et al. (2002)].  

In the analytic model proposed by Den Reijer, projectile eroding and mushrooming 

phases were investigated, with a discussion given on different models describing the 

deformation of support sheet. Furthermore, equations were presented for the behavior of 

crushed ceramic [Reijer (1991)]. Zaera presented a one-dimensional model for simulating 

ballistic collision with constrained ceramic/metal targets. In this model, the projectile 

penetration into ceramic is based in Tate and Alekseevskii’s equations while the support 

sheet response is based on Woodward’s and Den Reijer’s models [Zaera et al. (1998)]. In 

the model proposed by Fellows et al., considering the three phases of projectile eroding, 

mushrooming, and rigidity, constitutional equation was applied to the projectile, ceramic, 

and support sheet to predict penetration depth into ceramic shields supported by semi-

infinite sheets [Fellows et al. (1999)]. 

Wang [Wang et al. (1996)] proposed a design criterion to calculate optimal thickness 

ratio at which optimal efficiency of a two-component composite shield was produced for 

a given total thickness. Ben-Dor [Ben-Dor et al. (2000)] presented an optimal design for 

two-component shields for dimensionless case, wherein all properties of the projectile 

and shield were described as functions of independent parameters. Shi and Grow [Shi et 

al. (2007)] investigated two-component shield optimization problems considering two 

constraints at the same time, namely total thickness and areal density. 

In empirical models, experimental data are used to derive algebraic equations governing 

the data and then employ the equations to predict parameters of interest. As of current, 

numerous empirical models have been proposed on the subject matter of penetration into 

ceramic targets, among which one can refer to the experiments presented by Bless et al. 

[Bless et al. (1987)] and Myseless et al. [Myseless et al. (1987)]. 

Considering the above-mentioned references along with numerous other research works, 

it seems that, the understanding of the behavior exhibited by ceramic/metal composites 

under ballistic impact demands for more precise and in-depth studies, so that all of the 
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three approaches (i.e. experimental, analytical, and numerical) shall be followed when 

investigating and analyzing the phenomenon of penetration into a ceramic/metal target. 

Because of their high reliability, experimental methods are the most appropriate ones for 

such a purpose; however, these methods give no information about loading history and 

the changes occurred during the course of penetration process, while being well 

expensive. The second approach where the penetration phenomenon is theoretically and 

analytically considered represents a simple and fast method for achieving the desired 

results. 

Numerical methods, such as smoother-particle hydrodynamics (SPH), are among the 

most suitable methods for analyzing penetration problems, particularly those into ceramic 

targets, as those solve all of the equations governing continuous media, lower the 

required time and cost of undertaking such analyses, and can be used in a wide spectrum 

of applications [Tate (1967)]. 

Intending to characterize behavior of ceramic/aluminum composites, the present research 

goes for investigating the deterioration of ceramic supported with aluminum sheet both 

numerically and analytically. Further, in order to study impact strength of and penetration 

depth into ceramic/aluminum composites, a modified analytic model is presented, with 

its results compared to the results of Florence’s analytic model and impact modeling 

using SPH method. 

2 Smoothed particle hydrodynamics method 

Smoothed particle hydrodynamics method is one of the numerical methods classified as 

meshless analysis methods. In meshless analysis methods, unlike finite elements methods, 

the need to define a standard element for interpreting physical behavior is obviated, and 

instead in these methods the cluster of nodes is substituted for grid elements [Bonet et al. 

(1999)]. 

These methods are basically appreciated by virtue of reducing a lot of time which would 

be spent on mesh generation, especially in adaptive dynamic analyses, if finite element 

method was applied. One of the reasons attracting attention to this method is the fact that 

equations are written in a fixed coordinate and free moving of nodes with intense 

localized materials can be handled. The importance of this ability of SPH is obvious 

especially in problems involving extra-large deformations [Bonet et al. (1999)]. 

SPH method is based on expressing the numerical value of nodes as weighted average 

over the numerical values of the neighbor nodes. The advantage of this method over the 

finite element method is its ability to simulate mediums with complex geometries and  

inhomogeneous nodes distribution [Bonet et al. (1999)]. 

SPH method in the realm of stress analysis problems or so on includes spreading finite 

nodes over the considered problem environment and converting continuous problem to a 

discretized one into the mentioned nodes. These nodes are accelerating and moving due 

to their applied hydrostatic pressure or effective stress. By means of a special function, 

known as smoothing function, which is required to have the following properties, effect 

of each node on its neighbor nodes is revealed. The previously mentioned properties of 

smoothing function include [Liu & Liu (2003)]: 
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1) Weight function is always positive in the smoothing domain Ŵ(x, h) > 0 > 0. 

2) Weight function is always zero outside the smoothing domain Ŵ(x, h) > 0  = 0. 

3) Weight function is one-to-one ∫ Ŵ(x, h)dx = 1
Ω

. 

4) Wight function is bell-shaped.  

5) As smoothing domain (h) approaches zero, weight function approximates to Dirac 

delta function �̂�(𝑥, ℎ) > 0 

In above equations, Ŵ  is smoothing function or weight function, h is a parameter 

determining the effective (or smoothing) domain of function and  is problem domain. 

All properties of interest in the problem, including stress, pressure, density, etc. are 

linked to each other by this function [Liu & Liu, 2003]. SPH method takes advantage of 

the integral representation of functions. To describe this approach, function u(x)  is 

defined for each point X = ( , , ). Integral representation of this function is as shown in 

Equation (1) [Liu & Liu & Lam, 2003]: 

𝑢(𝑥) = ∫ 𝑢(𝑥′)𝛿(𝑥 − 𝑥𝑖)𝑑𝑥′
+∞

−∞
                                                                                         (1) 

In this relation,  is Dirac delta function. Solving this equation for entire space is too 

difficult and so Gingold and Monaghan rewrote this equation in the approximate form of 

Equation. (2) By confining the equation to problem domain (Ω)and converting Dirac 

delta function to another function [Liu & Liu & Lam (2003)]: 

〈𝑢(𝑥)〉 = ∫ 𝑢(𝑥)𝑊(𝑥 − 𝑥𝑖 , ℎ)𝑑𝑥
Ω

                                                                                     (2) 

In this equation, 〈u(x)〉 is approximate function, W(x − 𝑥𝑖 , h) is smoothing function, and 

h is smoothing length in SPH method. It can be proved that the adopted approximation in 

SPH method is of second order accuracy. Because problem analysis in SPH method, as it 

is seen in Figure 1, is associated with distributing finite nodes in the domain of interest 

and calculating based on them.  

 

Figure 1: Distribution form of nodes and determination of neighbors in SPH method [Liu 

& Liu & Lam (2003)]: 
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3 Modified analytic model for ceramic/metal target 

Radius of ceramic cone plays an important role in predicting ballistic limit velocity. 

Therefore, radius of ceramic cone can impose large contributions into final solution of 

the analytical models used for penetration into ceramic/metal targets. The relationships 

and equations proposed by Florence for the radius of ceramic cone are based only on 

ceramic thickness. However, given that the support (metal) layer plays a significant role 

in the final strength (both during penetration and at failure) of a ceramic/metal composite, 

radius of ceramic cone may not be dependent on the ceramic thickness only, but rather 

further dependent on the support layer thickness. This suggests a revision and 

modification to the Florence’s equations for the radius of ceramic cone. 

3.1  Modification of the equations for radius of ceramic cone in florence’s model 

As demonstrated in Figure 2, the modified equations presented in this analytic model are 

considered in two phases. In a first phase, the equations are considered for the case when 

only ceramic layer is penetrated. The second phase, however, considers and suggests 

modifications for the case when a projectile penetrates into both the ceramic layer and the 

support layer completely. 

 

Figure 2: A schematic of the collision between projectile and target and formation of 

ceramic cone. 

Considering Figure 2, the equation of radius of ceramic cone in Florence’s model is 

expressed as Equation (3) [Florence (1969)]: 

a = ap + 2h1                                                                      (3) 

Where a  is the radius of ceramic cone, ap  is the projectile radius, and h1 is ceramic 

thickness. 
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Expressing Equation (3) as a function of angle of ceramic cone while considering Figure 

3 in the first phase, one can end up establishing Equation (4) [Florence, 1969]: 

a = ap + 2h1tonθ                                                                                                            (4) 

Where θ is half-angle of the ceramic cone. Equation (4) describes the effect of half-angle 

of the cone on the relationships describing radius of the ceramic cone. 

The half-angle of a cone can be determined using Equation (5), which is derived from 

Fellows’ analytic model [Fellows et al. (1999)]: 

θ = (
VP−220

780
)

34π

180
+

34π

180
                                                                                                    (5) 

Where VP is initial projectile velocity and π is in degrees with its value been equal to 180. 

In Figure 2, formation of ceramic cone in the first phase and complete penetration in the 

second phase can be observed. Accordingly, one can modify Equation (7) for the effect 

of support layer thickness (h2) to come with Equation (7): 

ap = h2tanφ                                                                                                                               (6) 

a = h2tanφ + 2h1tonθ                                                                                                    (7) 

Figure 3 indicates the formation of cone angle in the first phase. Therefore, one can 

present Equations (8) and (9) as follows: 

ℎ1𝑡𝑜𝑛θ = 𝑑 ⟶ 𝑡𝑜𝑛θ = 
𝑑

ℎ1
                                                                                                (8) 

tonβ =
ap

h1
                                                                                                                                 (9) 

 

Figure 3: Schematic of the formation of ceramic cone in the first phase. 
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Being independent of the ceramic thickness, Equation (10) can be obtained by dividing 

Equation (8) by Equation (9): 

tanθ

tanβ
=

d

h1
ap

h1

 ⟶  
tanθ

tanβ
=   

d

ap
                                                                                                         (10) 

In order to obtain the angle β, one can rewrite Equation (10) as Equation (11). 

Accordingly, the value of angle β is obtained as follows: 

tanθ+ tan
π

4
−tan

π

4

tanβ
=   

d

ap
 ⟶   β = arctan (√(tan2θ−2tanθ )ap

2

d2tan2θ
)                                          (11) 

According to Equations (7), (12) and (13) and considering Figure 4, provided h1 < h2, 

angle φ (which is formed in the second phase, i.e. complete penetration) can be obtained 

using Equation (14): 

φ +  ψ +  γ = 180                                                                                                           (12) 

 β +  ψ = 180                                                                                                                 (13) 

φ =  β −  γ    IF   h1 < h2                                                                                                (14) 

According to the law of cosines [Gentile, 2015], the value of angle γ is expressed as in 

Equation (15): 

(h1- h2 ) 2= ap 
2 + h1 

2
+ ap 

2 + h2
2

-2 √ (ap 
2 + h1 

2
 )× ( ap 

2 + h2 
2

 )×cosγ  ⟶  

 γ=arccos (
 (ap 

2 + h1 h2 )

√ (ap 
2 + h1 

2
 )× ( ap 

2 + h2 
2

 ) 

)                                                                              (15) 

 

Figure 4: Schematic of the composition of the cone radius of the first phase in the second 

phase assuming h1 < h2. 
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According to Equations (7), (16) and (17) and considering Figure 5, provided h1 > h2, 

angle φ (which is formed in the second phase, i.e. complete penetration) can be obtained 

using Equation (18): 

β +  ψ +  γ = 180                                                                                                           (16) 

φ +  ψ = 180                                                                                                                  (17) 

φ =  β +  γ    IF   h1 > h2                                                                                                (18) 

 

 

Figure 5: Schematic of the composition of the cone radius of the first phase in the 

second phase assuming h1 > h2. 

Equation (7) will largely affect Equation (19), i.e. the mass function developed for the 

projectile and target. Moreover, Equation (19) [Florence (1969)] is of paramount 

importance in predicting ballistic limit velocity using Equation (20) [Florence (1969)], 

indicating the effect of radius of ceramic cone on ballistic limit prediction. 

f(a) =
Mp

[Mp+(ρ1h1+ρ2h2)πa2]πa2                                                                                         (19) 

Vbl = √
ε2σ2h2

0.91Mpf(a)
                                                                                                              (20) 

Where f(a) is the mass function developed for projectile and target, Vbl is ballistic limit 

velocity, ε2 is the strain at failure of support layer, σ2 is ultimate tensile strength (UTS) 

of the support layer, ρ2  is the density of the support layer, h2  is the support layer 

thickness, ρ1 is ceramic density, h1 is ceramic thickness, and Mp is projectile mass., etc. 

4 Problem modeling on ceramic/aluminum target using smoothed particle 

hydrodynamics (SPH) 

Projectile was selected from steel 4340 type and the targets were two square-shape planes 

of aluminum 6060-T651 and ceramics of SiC with dimensions of 100 × 100 × t mm  . 
Only the thickness of ceramic and aluminum planes are varying but the final total 

thickness of the target remained constant (10 mm). The supports of the planes in four 



 

 

304    Copyright © 2017Tech Science Press         CMES, vol.113, no.3, pp.295-323, 2017 

directions are completely rigid (all degrees of freedom are zero). Figure 6 and 7 show the 

boundary condition and Projectile, respectively. Mechanical properties and the state 

equations of the ceramic target are listed in table 1 [Johnson et al. (1997); Johnson et al., 

1994; Abaqus (2014)]; mechanical properties and state equation of Projectile plane and 

aluminum target are shown in table 2 [Ulven et al. (2003); Piekutowski et al. (1996); 

Steinberg (1996); Corbett (2006); Johnson & Cook (1985); Schwer (2009)]. The 

Projectile is thrown in vertical direction (respective to the target plane) with initial 

velocity of 8. As such, this problem is modeled in 8 different cases, and the results 

obtained by varying the velocity parameter are investigated by comparing the smoothed 

particle hydrodynamics (SPH) method to analytical models. 

 

 

Figure 6: boundary condition of the numerical model and 3D solid element meshes used 

in the numerical simulations. 

 

Figure 7: discretization of projectile in 2 and 3 dimensions [Ulven et al., 2003] 
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Table 1: coefficients and properties of SiC in Holmquist model 

silicon carbide Johnson–Holmquist 2 constitutive model (JH2) 

3215 Density, (kg/m3), 𝜌 

193 Shear modulus, (Gpa), G 

0.75 Maximum tensile pressure,T,(Gpa) 

0.96 Intact strength coefficient, 𝐴 

0.35 Fractured strength coefficie, B 

0.009 Strain rate coefficient, [s−1], C 

0.65 Intact strength exponent, N 

1.0 Fractured strength exponent, M 

1.3 Normalized maximum fractured strength, (Gpa), 𝜎𝑓
𝑚𝑎𝑥 

12.2 Normalized maximum Intact strength, (Gpa), 𝜎𝑖
𝑚𝑎𝑥 

11.7 Hugoniot elastic limit, HEL, (Gpa) 

5.13 Pressure at Hugoniot elastic limit, PHEL, (Gpa) 

1.0 Bulking factor, 𝐵 

220 Elastic bulk modulus, [GPa], K1 

361 Second Pressure constan, [GPa], K2  

0.0 Third Pressure constan, [GPa], K3  

0.0 Minimum Equivalent plastic strain, 휀𝑚𝑖𝑛
−𝑝𝑙

 

1.2 Maximum Equivalent plastic strain, 휀𝑚𝑖𝑛
−𝑝𝑙

 

1.0 Reference strain rate,  휀̇0 

0.48 Damage constant, D1 

0.48 Damage constant, D2 

0.2 Failure criteria, FS 

3215 Density, (kg/m3), 𝜌 

Table2: Mechanical properties and Johnson-Cook model parameters for the Materials 

steel 4340 Al6061-T651  Mechanical properties,   

 Johnson-Cook model 

parameters 

 

7850 2703 Density, (kg/cm3), 𝜌  

200 68.9 Young’s modules, 

(GPa), E 
 

0.29 0.33 Poisson ratio, 𝜗  

710 276 Yield Stress (MPa), 𝜎y  



 

 

306    Copyright © 2017Tech Science Press         CMES, vol.113, no.3, pp.295-323, 2017 

1110 310 Ultimate Stress, (MPa), 

𝜎uts 

 

477 885 Specific heat, (J/Kg/° C)  

13.2 17 Elongation at Break, 

%, 휀f 

 

0.15 0 Reference strain rate, 휀̇0  

1430 262 A [MPa]  

2545 161.2 B [MPa]  

0.7 0.2783 n  

0.014 0 c  

1.03 1.34 m  

1793 925 Tm (°C)  

293.2 293.2 T0 (°C)  

0.05 -0.77 Initial failure strain, D1  

3.44 1.45 Exponential factor, D2  

2.12 0.47 Triaxiality factor, D3  

0.002 0 Strain rate factor, D4  

0.61 1.6 Temperature factor, D5  

Plasticity structural model and Johnson-Cook (J-C) failure model were used for modeling 

and simulating the projectile and the aluminum plate. J-C model expresses yield stress as 

in Equation (21) [Johnson et al., 1997]: 

σ = [A + BεN][1 + CInε̇∗][1 − T∗M
]                                       (21) 

Where ε is equivalent plastic strain;ε̇∗ = ε̇/ε̇0
 is dimensionless strain rate; ε̇0 = 1s−1; T* 

is homologous temperature and can be calculated as T∗ = T − Tr/Tm − Tr ; Tm  is the 

melting temperature and Tr shows the room temperature; P is hydrostatic pressure; 0 ≤
T∗ ≤ 1; A and B are dynamic yield stress and stiffness constant, respectively; and N, M, 

and C are material constants. Even though this model is an empirical one, it is well 

flexible and powerful and accounts for the effects of important parameters. As the 

temperature approaches toward melting point (T* = 1), strength tends to zero. J-C model 

is based on damage accumulation, i.e., as the element fails as the damage reaches D = 1. 

Following the failure, the material behaves as a liquid as it has no strength (no shear and 

deviatory stress) and is unable to generate any hydrostatic tensile stress, being only 

capable of bearing hydrostatic pressure. Moreover, an increase in damage may end up 

with a gradual decrease in strength, making the material so-called “soft”. Damage to an 

element can be written as Equation (22): 

D = ∑
∆εp

εp
f                                                     (22) 

Where the nominator represents equivalent plastic strain rate and denominator is 
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equivalent strain-to-failure. 

The general expression for strain-to-failure is given by Equations (23) and (24) [Johnson 

et al., 1997]:  

εp
f = [D1 + D2 exp(D3σ∗)][1 + D4Inε̇∗][1 + D5T∗]σ∗ ≤ 1.5                       (23) 

εp
f = [D1 + D2 exp(1.5D3)][1 + D4Inε̇∗][1 + D5T∗]σ∗ > 1.5                             (24) 

where σ∗ = σm/σ is the dimensionless stress-pressure ratio, σm  is the average of the 

three principal normal stresses, σ  is von Mises equivalent stress, ε̇∗  is dimensionless 

strain rate, and T* is homologous temperature. 

For modeling and simulation of ceramic plane, plasticity structural model and Johnson - 

Holmquist model were used.  

Johnson-Holmquist plastic failure model is suitable for ceramics, glass and other brittle 

materials. Normalized equivalent stress based on D failure parameter is in the form of 

equation (25) [Johnson et al. (1994)]: 

σ∗ = σi
∗ − D(σi

∗ − σf
∗)                                                                (25) 

σf
∗ and σi

∗ are normalized fracture stress and equivalent initial normal stress, respectively. 

The general form of normalized equivalent stress can be written as equation (26) 

[Johnson et al. (1994)]: 

σ∗ = σ/σHEL                                                                                                                   (26) 

σ  is the real equivalent stress and σHEL shows the stress at Hugoniot Elastic Limit (HEL). 

Initial resistance and normalized fracture are as equations (27) and (28) [Johnson et al., 

1994]: 

σi
∗ = A(P∗ + T∗)N(1 + CInε̇∗)                                                                                       (27) 

σf
∗ = B(P∗)M(1 + CInε̇∗)                                                                                               (28) 

It must be noted that, the normalized fracture resistance can be limited as  

σf
∗ ≤ σf

∗(max). σf
∗(max), N , M , C , B and  A are material constants. 

The normalized pressure is the result of dividing real pressure to HEL pressure. 

Normalized Maximum Tensile Hydrostatic Pressure can be obtained by a fraction whose 

numerator is the Maximum Tensile Hydrostatic Pressure. The dimensionless strain rate 

can be also obtained by dividing the real strain rate to the reference one (equation 29-30): 

T∗ =
T

PHEL
                             (29) 

ε̇∗ = ε̇/ε̇0
                             (30) 

Where T* is the normalized maximum tensile fracture: ε̇0 = 1.0s−1 and the failure 

accumulation is in form of equation (31).  

D =
∑ ∆εp

εp
f                                               (31) 

εp 
f  is the plastic strain under pressure of P. if there is no plastic strain:  

P∗ = −T∗(equation 32) : 

εp
f = D1(T∗ + P∗)D2                                         (32) 
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Hydrostatic pressure before the fracture (D=0) is in form of equation 33. 

(μ = ρ/ρ0  − 1) Converts to equation (34) for tensile pressures which neglects the 

energy effects. Bulking occurs after failure accumulation (D>0) and the pressure 

intervals which can be determined by energy considerations will be added in the form of 

equation 35 [Johnson et al., 1994]: 

P = K1μ + K2μ2 + K3μ3                                                                                (33) 

P = K1μ     μ < 0                                                                                                            (34) 

P = K1μ + K2μ2 + K3μ3 + ∆P                                                                                      (35) 

Abrasive models are also include in these data/ the task of this model elements’ abrasion 

at the time of strain or other cases are defined relative to definite strain and so on. This 

model has wide application in impact and penetration fields. The element abrasion is the 

base of failure and fracture in penetration model and on the other hand, in such problems, 

elements may have too much distortion and result in “bad-structured elements” and the 

Gaussian points may be negative. This makes the simulation instable and causes error 

[Johnson et al. (1994)]. This model is necessary to avoid too much distortion of the 

elements. 

5   Numerical model verification 

In the course of the process through which the projectile penetrates into the target, 

considering the target material and geometrical parameters of the projectile, part of initial 

kinetic energy of the projectile is absorbed by the target. As such, a structure can serve as 

an energy absorber when it is capable of tolerating maximum stress at which it can 

exhibit maximum strain or deformation. So, calculation of residual velocity of a 

projectile is of paramount importance when it comes to impact modeling. In order to 

calculate post-damage residual velocity of rigid projectiles in any plate (i.e. metallic, 

composite-made, ceramic, etc.), one can use Recht and Ipson model; this analytical 

model is expressed as Equation (36):  

𝑀𝑝Vo
2

2
=

𝑀𝑝Vr
2

2
+ 𝑊                                       (36) 

Where 𝑀𝑝 is the projectile mass, 𝑉0 and 𝑉𝑟 are impact velocity and residual velocity of 

the projectile, respectively, and 𝑊 denotes the work performed at target (at full 

penetration). 

This performed work is, indeed, equal to the absorbed energy. Therefore, ballistic limit 

velocity of the projectile,𝑉𝑏𝑙, in the Recht and Ipson analytical model is expressed by 

Equation (37) [Rosenberg et al. (2016)]: 

V𝑏𝑙 = ( Vo
2 − Vr

2)0.5                                                 (37) 

5.1 Trend of solution convergence of numerical model based on mesh size 

Considering Figure 2, critical and non-critical zones of the target body and projectile 

were meshed used the 3-dimensional elements of PC3D, C3D8, and C3D8, respectively. 

The elements should be considered not only in terms of shape, but also in terms of size. 
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For this purpose, one should investigate convergence of solutions, which is an essential 

issue that ensures accuracy of the results. When investigating convergence of solutions, 

which contributes to higher accuracy as the elements become finer, it should be noted 

that only elements within critical zones of the model should become finer. Therefore, in 

the aforementioned model, only critical zone of the target is subjected to element size 

change, with the size of elements within non-critical zones of the target and projectile 

been assumed to be fixed and unchangeable. 

In order to observe the trend of solution convergence of the model, element size across 

the critical zone was varied according to Table 3, while size of the elements across non-

critical zone and projectile were assumed to be 3 and 1.5 mm, respectively. According to 

Table 4, it is seen that, for element sizes of 0.6, 0.55, 0.5, and 0.45 mm, the solutions 

converged. As such, the 0.60 mm was selected as the optimum element size across the 

critical zone of the model as the time to solve the problem would be shorter than that 

with an element size of 0.45 mm while the resulting difference in the solutions was 

negligible. 

Table 3: Trend of solution convergence of numerical model based on mesh size 

element size 

across the 

non-critical 

zone 

element size 

the across 

projectile 

element 

size across 

the critical 

zone 

Maximum 

value of von 

mises stress 

convergence and 

divergence for 

simulation results 

3 mm 1.5 mm 2 mm 411.5 MPa 

divergence 3 mm 1.5 mm 1 mm 434.3 MPa 

3 mm 1.5 mm 0.90 mm 424.7 MPa 

3 mm 1.5 mm 0.60 mm 435.4 MPa 

convergence 3 mm 1.5 mm 0.55 mm 433.7 MPa 

3 mm 1.5 mm 0.50 mm 431.1 MPa 

5.2 Impact trend and target destruction 

To observe the trend of structural destruction under impact, figures 8-14 show the 

structure destruction trend for projectile velocity of 𝑉0 = 675 m/s for different time 

intervals by the help of Smoothed particle hydrodynamics (SPH) method. As it can be 

seen, by decrease of aluminum thickness and increase of ceramic thickness, the residual 

velocity of the projectile will be decreased. 
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Figure 8: target and projectile position at the initial time  

(ceramic and aluminum thicknesses are 3 and 7 mm, respectively) 

 

 

Figure 9: target and projectile position after 0.010013 

 (ceramic and aluminum thicknesses are 3 and 7 mm, respectively) 

Aluminum 6061-T651 

 

Steel projectile 

 
Ceramic (silicon carbide) 

Velocity contours 

 of projectile 

 

Velocity contours of isolated 

particles 
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Figure 10: target and projectile position after 0.050012 

 (ceramic and aluminum thicknesses are 3 and 7 mm, respectively) 

 

Figure 11: target and projectile position after 0.030009 

 (ceramic and aluminum thicknesses are 4 and 6 mm, respectively) 

 

Figure 12: target and projectile position after 0.050025 

 (ceramic and aluminum thicknesses are 4 and 6 mm, respectively) 
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Figure 13: target and projectile position after 0.020015 

 (ceramic and aluminum thicknesses are 6 and 4 mm, respectively) 

 

Figure 14: target and projectile position after 0.060002 

 (ceramic and aluminum thicknesses are 6 and 4 mm, respectively) 

5.3 Validation and investigation of the variations of ceramic cone radius, projectile 

velocity and penetration time 

The variation of ceramic cone radius, projectile velocity and penetration time will be 

investigated in this section. As in this project impacts occur at high velocities, the 

projectile will leave the structure with a non-zero residual velocity. 

In this modeling, the ceramic cone radius, projectile initial velocity, boundary conditions 

and the support states are among the effective factors on the penetration time and the 

projectile output velocity. 

Initial velocity: as expected, by increase of initial velocity of the projectile. The time 

needed for its penetration into the target and reaching to a residual stable velocity will 

decrease and the energy would decrease as well. 
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Boundary condition: in low initial velocities, type and boundary conditions are more 

important, but by increase of projectile initial velocity, the effect of supports will be 

reduced. So, as in this research, the collisions are in high velocities, the effect of support 

type on the projectile passing velocity is negligible.  

For detailed analysis of impact resistance in ceramic/aluminum target and fracture 

mechanism, investigation of formation of ceramic cone radius is necessary. To 

completely presents the ceramic conic radius for analytical Florence model and the 

modified analytical model, the initial velocity-ceramic cone radius is presented for 

ceramic/aluminum 6061-T651 target with different thicknesses in figure 15. According to 

figure 15, the maximum error in the modified model is negligible in comparison with 

Florence analytical model. According to figure 15, there is no need to detailed adaption 

of the obtained data; the main goal is to adapt the presented method with the Florence 

analytical method. Therefore, the data of the modified model exactly confirm the 

Florence analytical model. Also, the mentioned plot showed that by increase of initial 

velocity and ceramic thickness and decrease of supporting layer thickness, the ceramic 

cone radius increased which could result in projectile residual velocity decrease and 

increase of penetration time and pressure distribution level regarding the cone depth.  

Hence, the ceramic cone radius is an effective factor in increasing the conic fracture 

efficiency. To present Recht-Ipson model for the modified analytical model and also 

Florence model and Smoothed particle hydrodynamics method, according to figures 16 

to 19, the initial velocity- residual velocity-ceramic cone radius is presented for 

ceramic/aluminum target in different thicknesses. 

 

Figure 15: comparison of conic radius in terms of initial velocity for Florence and 

modified models. 
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To present Recht-Ipson model for the modified analytical model and also Florence model 

and Smoothed particle hydrodynamics method, according to figures 16 to 18, the initial 

velocity- residual velocity-ceramic cone radius is presented for ceramic/aluminum target 

in different thicknesses. 

 

 

Figure 16: comparison of initial velocity-residual velocity-ceramic cone radius for 

Florence, modified and SPH methods. 
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Figure 17: comparison of initial velocity-residual velocity-ceramic cone radius for 

Florence, modified and SPH methods. 
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Figure 18: comparison of initial velocity-residual velocity-ceramic cone radius for 

Florence, modified and SPH methods. 

According to figures 16-18, there is no need to detailed adaption of the obtained data; the 

main goal is to adapt the Smoothed particle hydrodynamics method with the Florence 

analytical model and the presented analytical model. Therefore, only the data extracted 

from curves 16-18 and the simulation results of tables 4-5 will be presented.  

According to figures 16-18, there is no need to detailed adaption of the obtained data; the 

main goal is to adapt the Smoothed particle hydrodynamics method with the Florence 

analytical model and the presented analytical model. Therefore, only the data extracted 

from curves 16-18 and the simulation results of tables 4-5 will be presented.  
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Table 4: the output velocity of the projectile in terms of initial velocity for Florence, 

modified and SPH methods (ceramic and aluminum thicknesses are 3 and 7 mm, 

respectively). 

V0 

(m/s) 

Vr (m/s) 

(Florence 

Model) 

Vr (m/s) 

(SPH) 
%Error 

SPH 

(Time required 

 for 

penetration (s)) 

Vr (m/s) 

(New 

Analytical 

model) 

Vr (m/s) 

(SPH) 
%Error 

866 816.926 815.600 0.162 0.030007 816.868 815.600 0.155 

800 752.258 748.900 0.446 0.040011 752.200 748.900 0.438 

730 682.418 679.900 0.442 0.048019 682.359 679.900 0.433 

675 626.723 625.400 0.211 0.050012 626.663 625.400 0.201 

560 507.775 506.900 0.172 0.060006 507.708 506.900 0.159 

500 444.015 445.300 0.289 0.070022 443.931 445.300 0.306 

420 356.155 360.100 1.107 0.080007 356.068 360.100 1.132 

350 274.603 280.300 2.070 0.100000 274.490 280.300 2.114 

According to table 4, it can be seen that when the ceramic and aluminum thicknesses are 

3 and 7 mm, respectively, the error percentage of residual velocity in Smoothed particle 

hydrodynamics relative to the modified and Florence models is 2.114 and 2.070%, 

respectively. Also, according to table 5, it can be seen that when the ceramic and 

aluminum thicknesses are 6 and 4 mm, respectively, the maximum residual velocity error 

of Smoothed particle hydrodynamics method relative to the modified model and Florence 

model is 1.710 and 1.761%, respectively. The acceptable error is 6-12% and is suitable 

for concluding on the impact behavior of the target. Hence, the data of Smoothed particle 

hydrodynamics method highly confirm the residual velocity in the modified analytical 

model and also Florence model. 

Table 5: the output velocity of the projectile in terms of initial velocity for Florence, 

modified and SPH methods (ceramic and aluminum thicknesses are 6 and 4 mm, 

respectively). 

V0 

(m/s) 

Vr (m/s) 

(Florence 

Model) 

Vr (m/s) 

(SPH) 
%Error 

SPH 

(Time required 

 for penetration 

(s)) 

Vr (m/s) 

(New 

Analytical 

model) 

Vr (m/s) 

(SPH) 
%Error 

866 791.616 790.000 0.204 0.030005 791.495 790.000 0.188 

800 733.388 729.700 0.502 0.040021 733.276 729.700 0.487 

730 668.585 664.000 0.685 0.050002 668.478 664.000 0.669 

675 616.039 617.700 0.269 0.060002 615.935 617.700 0.286 

560 502.433 502.400 0.006 0.070002 502.326 502.400 0.014 

500 441.186 440.000 0.268 0.080001 441.075 440.000 0.243 

420 356.864 351.500 1.503 0.100000 356.740 351.500 1.469 

350 279.218 274.300 1.761 0.120000 279.073 274.300 1.710 
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5.4 Impact resistance efficiency in ceramic/aluminum target 

For further investigation of the effect of ceramic cone radius, ceramic and support layer 

on residual velocity and target’s absorption, figures 19-21 are presented. 

According to figures 19-21, there is no need to detailed adaption of the obtained data; the 

main goal is to adapt the Smoothed particle hydrodynamics method with the Florence 

analytical model and the presented analytical method. Therefore, only the data extracted 

from curves 19 and 21 and the simulation results of tables 6-7 will be presented. Based 

on table 6, when ceramic and aluminum thicknesses are 3 and 7 mm, respectively, the 

maximum absorbed energy error in Smoothed particle hydrodynamics method relative to 

the modified and Florence models is 6.712 and 6.829%, respectively. 

 

Figure 19: comparison of initial velocity-residual velocity-absorbed energy for Florence, 

modified and SPH methods. 
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Figure 20: comparison of initial velocity-residual velocity-absorbed energy for Florence, 

modified and SPH methods. 

 

Figure 21: comparison of initial velocity-residual velocity-absorbed energy for Florence, 

modified and SPH methods. 
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Table 6: absorbed energy versus the initial velocity for modified and SPH method. 

(Ceramic and aluminum thicknesses are 3 and 7 mm, respectively) 

V0 

(m/s) 

Eabsorbed 

(Florence 

Model) 

Eabsorbed 

(SPH) 
%Error 

SPH 

(Time required 

 for penetration 

(s)) 

Eabsorbed 

(New 

Analytical 

model) 

Eabsorbed 

(SPH) 
%Error 

866 615.278 631.407 2.621 0.030007 615.984 631.407 2.503 

800 552.098 589.658 6.803 0.040011 552.744 589.658 6.678 

730 500.679 531.301 6.116 0.048019 501.275 531.301 5.989 

675 468.176 480.523 2.637 0.050012 468.740 480.523 2.513 

560 415.440 422.060 1.593 0.060006 415.950 422.060 1.468 

500 393.736 385.223 2.162 0.070022 394.224 385.223 2.283 

420 369.171 348.123 5.701 0.080007 369.633 348.123 5.819 

350 350.843 327.292 6.712 0.100000 351.285 327.292 6.829 

Also, according to table 7, it can be seen that when the ceramic and aluminum 

thicknesses are 6 and 4 mm, respectively, the maximum absorbed energy error of 

Smoothed particle hydrodynamics method relative to the modified model and Florence 

model is 5.470 and 5.602%, respectively. Hence, the data of Smoothed particle 

hydrodynamics method confirm the absorbed energy results of the modified analytical 

model and also Florence model with high accuracy. 

Table 7: absorbed energy versus the initial velocity for modified and SPH method. 

(Ceramic and aluminum thicknesses are 6 and 4 mm, respectively) 

V0 

(m/s) 

Eabsorbed 

(Florence 

Model) 

Eabsorbed 

(SPH) 
%Error 

SPH 

(Time required 

 for penetration 

(s)) 

Eabsorbed 

(New 

Analytical 

model) 

Eabsorbed 

(SPH) 
%Error 

866 928.371 937.627 0.996 0.030005 929.896 937.627 0.831 

800 770.229 801.157 4.015 0.040021 771.545 801.157 3.838 

730 648.731 685.429 5.656 0.050002 649.879 685.429 5.470 

675 575.602 551.834 4.129 0.060002 576.645 551.834 4.302 

560 463.604 455.897 1.662 0.070002 464.480 455.897 1.847 

500 420.102 420.180 0.018 0.080001 420.910 420.180 0.173 

420 372.828 393.715 5.602 0.100000 373.561 393.715 5.395 

350 338.990 352.083 3.862 0.120000 339.667 352.083 3.655 

Therefore, by increase of ceramic thickness, the data of SPH method confirm the 

modified analytical model with higher accuracy; but SPH method confirms both 

modified and Florence models with high accuracy. 

The obtained tables also suggest that by increase of ceramic thickness and decrease of the 

supporting layer (aluminum), the residual velocity of the projectile will decrease and the 

energy absorption of the target will be enhanced which could be due to increase of 

required bending and tensile energy of the supporting layer. So, it can be seen that for 

equal thickness and surface density, the efficiency of the target with 6-mm ceramic and 

4-mm aluminum layers is higher. 
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6 Conclusion 

In this paper, application of Smoothed particle hydrodynamics methods in impact 

mechanics was addressed; also, the geometrical and mechanical parameters of the 

ceramic/metal composites were investigated. After that, fracture theory and conventional 

damage growth in ceramic/metal composites under impact loading were described. 

Finally, modified analytical model and Florence model were used for prediction of 

penetration into the ceramic/aluminum target. According to damage growth model, 

software modeling of ballistic impact on ceramic/aluminum composite was conducted by 

application of SPH method. 

In present study, to analyze the impact resistance behavior and investigate the penetration 

in ceramic/aluminum target and fracture mechanism, the ceramic cone radius has to be 

formed. For modifying the ceramic cone radius in Florence model, a new analytical 

model was presented. Results of Florence and modified analytical models can be seen as 

the initial velocity-ceramic cone radius for ceramic/aluminum 6061-T651 with different 

thicknesses. Regarding these plots, following conclusions can be made: 

 Results and equations obtained from modified analytical model showed that the 

supporting layer has a crucial role in formation of cone radius and these factors could 

have important effect on structure strength during penetration and destruction. 

 Maximum error in modified analytical model relative to Florence analytical model is 

negligible. Therefore, the data of modified analytical model confirm the Florence 

analytical model with high accuracy. 

For detailed analysis of impact resistance of ceramic/aluminum target, Recht-Ipson plots 

were presented for modified analytical, Florence analytical and smoothed particle 

hydrodynamics models. Regarding these results, following results can be drawn: 

 Results indicated that the results of Smoothed particle hydrodynamics model confirm 

the modified analytical model with higher accuracy; but finally, Smoothed particle 

hydrodynamics method confirms both modified and Florence models with high 

quality. 

 By increasing the ceramic thickness and decreasing the supporting layer (aluminum), 

the residual velocity of the projectile will be decreased and the level of energy 

absorption will increase which will result in increase of bending and tensile energy of 

supporting layer. Therefore, it can be seen that for the equal thickness and surface 

density, the target efficiency will be enhanced by increasing the ceramic thickness 

and decrease of aluminum thickness. 
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