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Abstract: The stability of ore pillar in mine is essential for the safe and efficient mining. 

Based on the energy evolvement rule in ore pillar and roadway roof system, the roadway 

roof and ore pillar are treated as energy release body and energy dissipation body, 

respectively. Therefore, the double-block mechanical model is established with energy 

dissipation body and energy release body, and the energy mechanism of ore pillar instability is 

obtained, based on the fold catastrophe mathematical theory. The research result indicates 

that the dynamic instability of ore pillar is a physical instability problem caused by the 

strain softening property of ore mass, and the instability type of ore pillar is determined 

by the stiffness parameter of double-block mechanical system. When the systematical 

stiffness parameter is greater than or equal to 1, the equilibrium position of double-block 

mechanical system passes through shaft K-1 or the origin, from branch 1 of unstable 

equilibrium state to branch 2 of stable equilibrium state by smooth transition, and the ore 

pillar shows quasi-static fracture. When the systematical stiffness parameter is less than 1, 

the equilibrium position of double-block system mutates from branch 1 of unstable 

equilibrium state to branch 2 of stable equilibrium state by jumping transition, and the ore 

pillar shows dynamic instability. The research result could provide theoretical guidance 

for the prevention measures of ore pillar instability. 

Keywords: Ore pillar, instability mechanism, double-block mechanical model, systematical 

stiffness, fold catastrophe theory. 

1 Introduction 

In metal mining industry and coal mining industry, the long-time and extensive underground 

mining generate large numbers of cavities, which poses serious threat to the safe mining [Wang 

(2006); Wang and Li (2010); Ghasemi, Ataei, and Shahriar, K. (2014); Luo, Peng, Su, and 

Wang (2015); Xin and Ji (2016)]. Ore pillars are key structural columns commonly 

employed in underground mining to provide temporary or permanent support for the 

weight of overburden roof and maintain the stability and safety of mining area [Pan and 

Wang (2004); Luo, Yang, Tao, and Zeng (2010); Xue, Gao, and Liu (2015); Guo and Xu 
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(2016); Jia, Qiao, and Jiang (2016)]. As mining work goes deeper and deeper, dynamic 

disaster caused by pillar instability becomes more and more frequent and critical due to 

the remarkable increase in ambient stresses [Guo, Deng, and Zou (2005); He, Li, Zhai, 

and Tang (2007); Wattimena, Kramadibrata, Sidi, and Azizi (2013); Cao and Zhou (2015); 

Yi and Cui (2015)]. Therefore, the systematic in-depth research about ore pillar stability is of 

vital significance to the efficient and safe mining. 

Advances in ore pillar stability over the last twenty years have seen various research methods 

and results [Li, Nan, Zhao, Yang, Tang, Zhang, and Tang (2005); Shabanimashcool and Li 

(2013); Cao, Zhou, Xu, and Li (2014); Zhang, Stead, and Elmo (2015); Xue, Ranjith, Gao, 

Zhang, Cheng, Chong, and Hou (2017)]. Based on the mining with pillar supporting in 

the mined-out area, Wang, Li, and Ma (2010) established a rheological mechanical model 

of pillars and roof plate system, and analyzed the fracture stages in roof stratum regarding 

to the time-dependent behavior. Chen, Gu, Zhou, and Su (2012) established the 

synergistic effect mechanical model of roof-artificial pillar and derived the relationship 

expression of compression amount of artificial pillar; besides, based on the catastrophe 

theory, the cusp catastrophe model of artificial pillar destruction was constructed and 

mechanical judgment expression under the necessary and sufficient condition of instability was 

derived. In order to design the geometric parameters of artificial pillar for deep mining, Wang, 

Feng, Yang, Zhao, and Zhao (2012) developed a new calculation formula of artificial pillar 

reasonable width, which clarifies the bearing mechanism of artificial pillar. Yin, Wu, and 

Li (2012) adopted the orthogonal polar difference method to evaluate the sensitivity of 

the factors influencing the ore pillar stability, and put forward the main factors influencing ore 

pillar stability, by analyzing the ore pillar load，strength，instability potential function，
deformation model. Cao, Cao, and Jiang (2014) believed that the stability of section coal pillar 

is the key to safety of irregular blocks coal mining, and adopted the catastrophe theory to 

analyze the catastrophe instability mechanism of section coal pillars. Based on the local pillars 

in Dayingezhuang gold mine, Song, Cao, Fu, Jiang, and Wu (2014) derived the pillar safety 

factor formulas of different forms, and employed six factors-five levels technology to design 

the experiment to analyze sensitivity of impact factors. Yang, Xing, Zhang, and Ma 

(2015) investigated the long-term stability of gypsum pillars in Luneng Taishan Gypsum 

Mine with laboratory experiments, numerical analysis and in-situ monitoring, and the 

creep properties of the gypsum is described by the previous modified Burgers model. 

Wang, Yang, Yan, and Daemen (2015) employed FLAC 3D simulator to investigate 

factors affecting the allowable width for pillars between two adjacent caverns, and 

optimized the allowable width of the pillars by discussing the vertical stress, deformation, 

plastic zone, safety factors, and seepage pressure of pillars between two adjacent salt 

caverns. Zhao, Yan, Feng, Wang, Zhang, and Zhao (2016) established the simplified 

mechanical model through analyzing the mechanical properties and failure mode of the 

artificial pillar, and derived the equation describing total energy of artificial pillar from 

the energy conservation law. 

In consideration of the significance of ore pillar stability in safe and efficient extraction 

of underground ores, the instability mechanism and types of ore pillar in mines should be 

investigated and researched deeply and systematically [Verma, Porathur, Thote, Roy, and 

Karekal (2014); Xie, Ju, and Li (2005); Gao (2014); Yang, Liu, and Yu (2014)]. In this 
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paper, the mechanical model of double-block system is established with energy release 

body (roadway roof) and energy dissipation body (ore pillar), and the energy equilibrium 

relationship in double-block system is analyzed. Based on the fold catastrophe theory, the 

instability mechanism of ore pillar is clarified and the instability type of ore pillar is 

obtained, by deriving the equilibrium equation of double-block mechanical system.  

2 Energy mechanism of dynamic instability of ore pillar 

2.1 The double-block mechanical model 

In the interaction process of ore pillar and roadway roof, the roadway roof is in elastic state in 

the whole process, which is regarded as the elastic body, therefore, the mechanical model of 

roadway roof is a spring with the stiffness 
nk , whose load-displacement curve is a straight line 

with the slope tannk  . See Fig. 1. 

 

Figure 1: The load-displacement curve of ore pillar and roadway roof 

The ore mass exhibits the strain softening property in uniaxial compression test, and the 

microelement of ore mass satisfies the Weibull distribution rule [Pan and Wang (2004)], 

so the load-displacement curve of ore mass is shown as a smooth curve with strain 

softening stage and an inflexion point e , see Fig. 2. According to the statistical damage 

theory, the load-displacement relationship of ore mass is shown in equation (1), 
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Where   refers to the initial stiffness of ore mass, 
cu refers to the peak displacement, 

and m refers to the homogeneous index. 

The analytic expressions of each order derivative is 
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The displacement of inflexion point e in function ( )F u  is denote as 
eu , which could 

be deduced by ( ) 0eF u  , then 

 
2 1 1

( ) 1 exp =0

m m m

e e e
e

c c c c

u u um
F u m m

u u u u


         

            
           

               (3) 

Thus, the relationship of 
eu  and 

cu  is obtained in equation (4), 
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Figure 2: The mechanical model of ore pillar and roadway roof system 

Based on this basis, the mechanical model of ore pillar and roadway roof system is 

established in Fig. 2. The force P represents the overburden load applied to the 

mechanical system of ore pillar and roadway roof, and the displacement of location 
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applied by force P is donated as ; the displacement and internal force of roadway roof 

is donated as  and N, respectively; the displacement and internal force of ore pillar is 

donated as  and , respectively. 

According to the load-displacement curve of mechanical model, as shown in Fig. 1, the 

area of curved triangle 
cou c  in the right side of vertical axis represents the total energy 

hU  stored in ore pillar when the displacement is 
cu , while the area of triangle 

nou c  in 

the left side of vertical axis represents the total energy 
sU  stored in roadway roof. 

When the mechanical system enters the strain softening stage and the ore pillar has the 

quasi-static displacement increment  0du  , the plastic deformation of ore pillar 

dissipates the energy    0hdU F u du  ; meanwhile, the corresponding unloading 

displacement increment of roadway roof is  0ndu  , and the elastic energy released by 

roadway roof is  0s ndU Ndu  . If the inequality 
ndu du  is true,  nNdu F u du   

or 
s hdU dU   could be obtained, which indicates that the elastic energy released by 

roadway roof is less than the plastic energy dissipated by ore pillar in strain softening stage. 

Thus, the compensated work  0PdW Pdu   should be applied by force P, in order to 

keep the quasi-static movement of ore pillar.  

According to the energy evolution process in mechanical system of ore pillar and 

roadway roof, the roadway roof and ore pillar are regarded as energy release body and 

energy dissipation body, respectively. The energy release body is the body that releases 

elastic strain energy; while the energy dissipation body is the body that absorbs elastic 

strain energy. Thus, the dynamic destabilization of ore pillar is regarded as double-block 

mechanical problem. 

2.2 The dynamic destabilization mechanism of double-block mechanical model 

 

Figure 3: The energy change relationship of double-block mechanical system 

Pu

nu

u ( )F u

 

uju





 d 0u  d 0nu 

N  F u

j

1
nk

 d 0sU   d 0hU  e

o



nu
nju

n



j



ss



 

 

 

280  Copyright © 2017Tech Science Press    CMES, vol.113, no.2, pp.275-293, 2017 

The energy change relationship of double-block mechanical system is shown in Fig. 3, 

the initial point and terminal point of dynamic destabilization of energy dissipation body 

is point j  and point s , respectively. The energy increment 
sdU  released by energy 

release body is larger than the energy increment 
hdU  dissipated by energy dissipation 

body from point j  to point s , and the excess energy will be transformed into kinetic 

energy of the mechanical system, leading to the dynamic destabilization of energy 

dissipation body. 

 

Figure 4: The elastic energy releasing amount of double-block mechanical system 

The elastic energy releasing amount of mechanical system is shown in Fig. 4, the 

trapezoidal area nj nsju u sj  refers to the elastic energy released by energy release body 

from point j  to point s  in the left side of vertical axis, while the curved trapezoidal 

area j sju u sj  refers to the plastic energy dissipated by energy dissipation body from 

point j  to point s  in the right side of vertical axis. If the trapezoidal ares nj nsju u sj  

is shifted to point 
j

 to the right side of vertical axis and the curved trapezoidal area j sju u sj  

is substracted by the trapezoidal ares nj nsju u sj , the shade area in Fig. 4 refers to the 

excess energy, i.e., the kinetic energy E  of the mechanical system. 

The energy mechnism of dynamic destabilization of energy dissipation body is 

summarized as follows: the energy dissipation body is under the clamp action of energy 

release body, and the deformation of energy release body is consistent with that of energy 

dissipation body to keep the deformation coordination of mechnical system, with elastic 

deformation energy stored in mechanical system; when the load on energy dissipation 

body reaches peak stress, then energy dissipation body enters the strain softening stage, 

meanwhile, the energy release body bounces and unloads caused by the sharp fall of 

bearing capacity of ore pillar; if the elastic energy released by energy release body is 

larger than the plastic energy dissipated by energy dissipation body in quasi-static 

movement, the excess energy will be transformed as kinetic energy of mechanical system, 

leading to the dynamic destabilization of energy dissipation body. Therefore, the dynamic 
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destabilization of ore pillar is a physical instability problem caused by the strain softening 

property of ore mass. 

3 Dynamic destabilization of ore pillar based on fold catastrophe model 

3.1 Energy equilibrium relationship in double-block mechanical system 

The total potential energy of double-block mechanical system consists of elastic 

deformation energy of ore pillar (energy dissipation body), elastic deformation energy of 

roadway roof (energy) and potential energy of external force, and the expression is shown 

in equation (5), 

2

0 0
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( ) ( )

2

Pu u

n n P Pk u F u du P u du                                      (5) 

Where 
nu  and 

Pu  are both the function of ore pillar deformation u ; according to the 

deformation compatibility of mechanical system, the equation 
P nu u u   is true. 

Taking the derivative of equation (5) with respect to u , the equilibrium equation of ore 

pillar deformation is obtained in equation (6), 

( ) ( )n P
n n P

d du du
k u F u P u

du du du


                                          (6) 

According to the relationship between action and reaction in mechanical system of ore 

pillar and roadway roof, namely the Newton’s third law, the equation (7) can be deduced, 

( )n nP N k u F u                                                     (7) 

Combining the equation (6) with equation (7), the equilibrium equation of ore pillar in 

quasi-static movement can be obtained, 
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Equation (8) is the work and energy equilibrium relationship of mechanical system when 

the ore pillar is in strain softening stage, which indicates the basic rule of energy 

accumulation and evolution. The physical meaning of each term in equation (8) is 

analyzed as follows: 

(1) The first term on the left of equal sign 
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s ndU Ndu  in equation (9) represents the elastic energy released by the roadway roof in 

unloading process, when the displacement increment of roadway roof is 
ndu . 

(2) The second term on the left of equal sign 
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( )hdU F u du  in equation (10) represents the plastic energy dissipated by the ore pillar, 

when the displacement increment of ore pillar is du . 

(3) The third term on the left of equal sign 

( ) P
P

du dW
P u

du du
                                                     (11) 

PdW Pdu  in equation (11) represents the work applied to mechanical system by 

external force P, when the elastic energy released by roadway roof is less than the plastic 

energy dissipated by ore pillar in mechanical system to keep the quasi-static movement of 

ore pillar. If we donate J as 
dW

du
, which is the energy input by external force P, entitled 

“the ratio of energy input”, the equation (8) could be rewritten as follows: 
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If 0J   in equation (12), ore pillar deformation u  increases automatically only by the 

elastic energy released by roadway roof without the work applied by the external force P, 

which indicates that the mechanical system is in critical state. Thus, the critical 

destabilization condition of double-block mechanical system is 
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3. 2Fold catastrophe model of dynamic destabilization of ore pillar 

In order to analyze the dynamic destabilization of ore pillar, the Taylor series expansion is 

performed at the inflexion point e  of strain softening curve in equation (12), 
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In equation (14), 
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n

e

k
K

F u
 


 is the stiffness of mechanical system, which refers to 

the ratio of roadway roof stiffness 
nk  to the absolute value of the gradient at the 

inflexion point on the load-displacement curve of ore pillar. 

According to the determined principle in catastrophe theory, the quadratic term of 

 eu u  is the highest term in equation (14), of which coefficient is not null, thus the 

equation (14) corresponds to the equilibrium equation of fold catastrophe model. 

Therefore, it can be employed to discuss the stability of ore pillar without considering the 

terms  eu u  of higher than cubic term. Equation (14) can be expressed in equation 

(15): 
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Substituting equation (1) into equation (15), the equilibrium equation of mechanical 

system, in which the ore mass stratifies Weibull distribution rule, is obtained in equation 

(16), 
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K is the stiffness of mechanical system, which refers to the ratio of roadway roof stiffness 

to the absolute value of the gradient at the inflexion point on the load-displacement curve 

of ore pillar. In equation (16), 
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Substituting the variable as follows: 
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Equation (16) can be expressed as 

2 0x a                                                             (18) 

Thus, the state variable x  is obtained in equation (19), 
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The symbol *u  is donated as the value of variable u  when the equation 0x   is true 

in equation (17), i.e.,
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                                                (20) 

The equation (18) is the regularization form of equilibrium equation of fold catastrophe 

model, in which x  is the state variable, a  is the control variable. It is clear that the 

fold catastrophe satisfies the features of ore pillar instability. The system is in dummy 
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status if 0a  , while the figure of equation (18) is a parabola if 0a  ; the straight line 

0a   (or the axis 1K  ) divides the parabola into upper and lower branches, just as 

Fig. 5 shown. 
1x  and 

2x  represent the expression of state variable x  on branch 1 

and branch 2, which corresponds to the upper and lower section of the point *u  in the 

strain softening stage of the curve  F u , respectively. In branch 1, 1 0x  , which 

corresponds to *u u  in double-block mechanical system; while in branch 2, 2 0x  , 

which corresponds to *u u  in double-block mechanical system. 

 

Figure 5: The equilibrium surface of fold catastrophe model 

The energy input ratio J represents the energy required by the double-block mechanical 

system, in order to keep the quasi-static movement. Therefore, the equilibrium stability of 

double-block mechanical system is analyzed by energy input ratio J as follows. 

Taking the derivative of equation (16) with respect to u ,  

2 2

2

(1 ) ( ) (1 ) (1 ) ( )

(1 )

e e e

e e e

dJ m F u u u m K m F u
x

du Ku u m Ku

    
   

 
                 (21) 

Combining the inequality 
1 0x   and 

2 0x   with the equation (21), in branch 1, 

1

0
x x

dJ

du 

 , which indicates that the energy input ration J diminishes gradually to keep 

the quasi-static movement, and the equilibrium state of double-block mechanical system 

is instable; in branch 2, 

2

0
x x

dJ

du 

 , which indicates that the energy input ration J 

increases gradually to keep the quasi-static movement, and the equilibrium state of 

double-block mechanical system is stable. 

 

a

x

1K 

1K 

1K 

1K 

j

s

branch 1

branch 2
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4 The influence of systematical stiffness on ore pillar stability 

The stiffness = 0
( ) ( )

n n

e e

k k
K

F u F u
  

 
 of double-block mechanical system refers to 

the ratio of energy release body stiffness 
nk  to the absolute value ( )eF u  of the 

gradient at the inflexion point on the load-displacement curve of energy dissipation body. 

To the fixed value of system stiffness K, when *u u  and u  on the branch 1 

augments,  F u  and J decrease accordingly. Therefore, a  and 1x  change from 

negative to zero, i.e., the equilibrium position  1,a x  turns rightwards along branch 1. 

Similarly, when *u u  and u  on the branch 2 augments,  F u  and J also augment 

accordingly. Therefore, a  augments in negative direction and 2x  augments in 

positive direction, i.e., the equilibrium position  2,a x  turns leftwards along branch 2. 

In the problem of ore pillar destabilization, the equilibrium position of ore pillar will 

reach branch 2. To the value of a  which is not zero, the system has two equilibrium 

positions corresponding to a . If the value of K is given and J changes, the equilibrium 

position transits to branch 2 from branch 1 via origin point or the axis 1K  , and the ore 

pillar is destroyed by the progressive failure form; otherwise, the equilibrium position 

leaps to branch 2 from branch 1, and the ore pillar is destroyed by the dynamic 

destabilization form. 

Since point j  and point s  are both the critical stabilization state of ore pillar in the 

equilibrium surface of fold catastrophe model, the ratio of energy input J  of the system 

is zero, i.e., ( ) ( ) 0j sJ u J u  , and ore pillar deformation ju  and 
su  correspond to 

jx  in branch 1 and 
sx  in branch 2, respectively.  

In the following part of the paper, we will discuss the instance that u  approaches and 

deviates from *u , i.e., the equilibrium position approaches and deviates from the axis 

1K  . 

4.1 The systematical stiffness is less than 1 

When the systematical stiffness is less than 1, i.e., ( )n ek F u  , and the equilibrium 

position turns rightwards along branch 1, it can be proved that there exists a certain point 

0jx   , or a certain point ju  smaller than *u  in strain softening stage, meets 

     *j eF u F u F u        and   0j nF u k   .  

When the systematical stiffness is less than 1, the inequality * eu u  can be induced in 
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equation (20), i.e., 
 

 
* 2

1
1

1
e

m K
u u

m

 
  

  

. In double-block mechanical system, the 

first-order derivative of peak strength point of energy dissipation body is zero, i.e., 

( ) 0cF u  , therefore, the inequality   0c n nF u k k     is true for the peak strength 

point of energy dissipation body. According to the continuity of function, if the inequality 

 

 
2

1
1 0

1
e n

m K
F u k

m

   
     

    

 can be proved to be true, the equality 

  0j nF u k    is met. The inequality 
 

 
2

1
1 0

1
e n

m K
F u k

m

   
     

    

 is proved 

when 1m   as follows: 

When 1m  , the inequality 
3

0
4

e n

K
F u k

  
    
  

 need to be proved, and the 

equations are obtained in equation (22), 

 

1

0

0 0 0 0

1
2

( ) 1 exp 1 exp

1
( ) exp exp 2

m
e

m m

e

u m

u m

u u u u
F u m

u u u u

m
F u m

m

 

 


    

  


               
                    

                 


           


         (22) 

Thus, 

0 0

2 2
( ) 1 exp 1 exp

e e

u u u u
F u

u u u u
 
          

                
          

                 (23) 

The stiffness of double-block system is  

   exp 2

n n

e

k k
K

F u 
 

 
                                             (24) 

According to equation (23), the equation (25) is induced,  

3 3 3 1 3
1 2 exp 2 exp

4 4 4 2 2
e

K K K K K
F u  

                    
                  
              

   (25) 
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Since the systematical stiffness satisfies the inequality 0 1K  , 
3

0
2

K 
  can be 

obtained. According to the basic property of exponential function, the value of 

exponential function of minus is between 0 and 1, and the inequality 3
0 exp 1

2

K  
  

 

 

is deduced. 

Therefore, the equation (26) is obtained, by combining 3
0 exp 1

2

K  
  

 

 and the 

equation (25), 

3 1

4 2
e

K K
F u 

      
     
    

                                         (26) 

Then, 

 
3 1 1

exp 2
4 2 2

e n n

K K K
F u k k K  

          
            
      

         (27) 

Based on the property of exponential function, the equation  0 exp 2 1    is 

workable, thus the inequality is obtained as follows: 

3 1 1
0

4 2 2
e n

K K K
F u k K  

         
            
      

                 (28) 

Therefore, the inequality 
3

0
4

e n

K
F u k

  
    
  

 is proved. When 2m  , the 

inequality 
 

 
2

1
1 0

1
e n

m K
F u k

m

   
     

    

 can be proved based on the mathematical 

induction method. In conclusion, when the equilibrium position turns rightwards along 

branch 1, there is a point ju  on strain softening curve, which is less than *u , meets 

     *j eF u F u F u        and   0j nF u k   . 

Based on the expression of energy input ratio J  in the equation (13), i.e., PPdu
J

du
 , 

the point j  and point s  is the initial point and terminal point of dynamic 

destabilization of ore pillar, respectively, and it can be deduced that the equation 

( ) ( ) 0j sJ u J u   is workable. The double-block mechanical system is in critical state 

in point j , where 0Pdu

du
  or 

P

du

du
 . Since du  and Pdu  are the same order 
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variable, and 
P

du

du
  is true in point j , it can be concluded that u  has an abrupt 

alteration in Fig. 5, and the equilibrium position will jump from point 
jx  on branch 1 to 

point sx  on branch 2, which indicates that dynamic destabilization of double-block 

mechanical system. 

In summary, the strain softening property of ore pillar and the stiffness parameter of 

double-block system less than 1, are the necessary conditions of dynamic instability of 

double-block system, and are the internal cause of dynamic instability of ore pillar. The 

external load sufficient to make ore pillar into the post-peak deformation zone, is the 

sufficient condition for the occurrence of dynamic instability, and is the external cause of 

dynamic instability of ore pillar. 

4.2 The systematical stiffness is equal to 1 

When the systematical stiffness 1
( )

n

e

k
K

F u
 


, 

 

 
* 2

1
1

1
e e

m K
u u u

m

 
   

  

 is 

true. Substituting 1K   into equation (19), the expressions of 1x  and 2x  are 

1 2

2 2

2

( )(1 )

2

( )(1 )

e

e e

e

e e

u u KJ
x a

u F u m

u u KJ
x a

u F u m

 
     





   

 

                                (29) 

The equilibrium position  1,a x  turns rightwards along branch 1, and the energy input 

ratio J diminishes gradually from positive value. When the deformation of energy 

dissipation body satisfies * eu u u  , the energy input ratio J at the inflection point is 

zero, ( ) 0eJ u  , which indicates that the double-block mechanical system is in critical 

state. Therefore, the initial destabilization point j  and terminal destabilization point s  

of double-block mechanical system is in coincidence at the inflection point e . Thus, the 

equilibrium position of double-block mechanical system passes through the origin, from 

branch 1 of unstable equilibrium state to branch 2 of stable equilibrium state by smooth 

transition, and the ore pillar is destroyed by quasi-static damage. 

4.3 The systematical stiffness is larger than 1 

In order to research the change rules of equilibrium position on branch 1 and branch 2 

nearby the 1K   axis, the state variable x  of fold catastrophe model on branch 1 and 

branch 2 need to be analyze. In consideration of the simplicity of discussion process, the 

condition of 1m   is proved as follows: 

Substituting 1m   into the expression of state variable  in equation (19) and the x



 

 

 

Research on Instability Mechanism and Type                                 289 

systematical stiffness 
1( )

exp

n n

e

k k
K

mF u
m

m


  
  

 
 

, 

   

2

1

2

2

1 1 1

4 4 2 2 ( )

1 1 1

4 4 2 2 ( )

exp 2

e

e e

e

e e

n n

e

u u K K K KJ
x a

u F u

u u K K K KJ
x a

u F u

k k
K

F u 

     
          

 

     

        
 


 

 


              (30) 

According to the expression of energy input ratio 
    n

n

F u F u k
J

k

   
 , when the 

ore pillar deformation *u u , the term 
2 ( )e

KJ

F u
 in analytical expression x  is 

analyzed, 

 
*

* *( ) ( )

2 ( ) 2 ( )

n

u u

e e n

F u F u kK K
J

F u F u k


 
  

 
                             (31) 

Substituting 1m   into the equation (2), equation (4) and equation (20), 

 
0 0

0 0 0 0

exp exp

( ) 1 exp 1 exp

m

m m

u u
F u u u

u u

u u u u
F u m

u u u u

 

 

     
        
       


               
                     

                 

         (32) 

And 

 

 

1

* 2

*

1
2

1 3
1

41

3

2

m
e

c

e e

c

u m

u m

m K K
u u u

m

u K

u


    

  


   
     

    



 



                                    (33) 
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Thus 

 

 

1

1

1
( ) exp exp 2

1
( ) exp exp 2

m

e e e

m

e

m
F u u u

m

m
F u m

m

 

 

  
          

  


            
  
 

                          (34) 

Substituting equation (32), equation (33) and equation (34) into equation (31), 

 *

* * * *

0 0 0

exp 1 exp
2 ( ) 2 exp 2

u u n

e e n

K K u u u u
J k

F u u k u u u







          
             

           

   

(35) 

The Taylor series expansion is performed in equation (35), and the higher order term 

  2
1o K   is omitted, 

  

  

*

2
2

2 2
2

1 1 1 1 1 1
1 1 1

2 ( ) 2 2 2 2 2 2

1 1 1 1 1 1
1 1 1

2 2 2 2 2 4

u u

e

K K K K
J o K

F u

K K K K K
K o K



      
         

     

            
               

         

  (36) 

Substituting the equation (36) into equation (30), 

2

1

2

2

1 1 1
0

4 4 2 2 ( )

1 1 1
0

4 4 2 2 ( )

e

e e

e

e e

u u K K K KJ
x a

u F u

u u K K K KJ
x a

u F u

     
           

 

     

         
 

          (37) 

In equation (37), it can be concluded that the variable x  and a  at each side of equal 

symbol is zero when *u u , which indicates that the equilibrium position of 

double-block mechanical system passes through shaft , from branch 1 of unstable 

equilibrium state to branch 2 of stable equilibrium state by smooth transition, and the ore 

pillar is destroyed by quasi-static damage. 

5  Conclusions 

(1) The dynamic destabilization of ore pillar is a physical instability problem caused by 

the strain softening property of ore mass. When the load on ore mass reaches peak stress, 

the roadway roof bounces and unloads caused by the sharp fall of bearing capacity of ore 

1K 
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pillar; if the elastic energy released by roadway roof is larger than the plastic energy 

dissipated by ore pillar in quasi-static movement, the excess energy will be transformed 

as kinetic energy of the system, leading to the dynamic destabilization of ore pillar.  

(2) The ore pillar and the roadway roof are treated as energy dissipation body and energy 

release body, respectively, and the double-block mechanical model is established with 

energy dissipation body and energy release body. By analyzing the energy balance 

relationship of double-block mechanical system, the dynamic instability mechanism of 

ore pillar can be obtained, based on the fold catastrophe model. The strain softening 

property of ore pillar and the stiffness parameter of double-block system less than 1, are 

the necessary condition of dynamic instability of double-block system, and are the 

internal cause of dynamic instability of ore pillar. The external load sufficient to make ore 

pillar into the post-peak deformation zone, is the sufficient condition for the occurrence 

of dynamic instability, and is the external cause of dynamic instability of ore pillar. 

(3) When the stiffness parameter of double-block system is greater than or equal to 1, the 

equilibrium position of double-block system passes through shaft  or the origin, 

from branch 1 of unstable equilibrium state to branch 2 of stable equilibrium state by 

smooth transition, and the ore pillar shows quasi-static fracture. When the stiffness 

parameter of double-block system is less than 1, the equilibrium position of double-block 

system mutates from branch 1 of unstable equilibrium state to branch 2 of stable 

equilibrium state by jumping transition, and the ore pillar shows dynamic destabilization. 
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