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Computer-Based Modelling of Network Functions for Linear 

Dynamic Circuits Using Modified Nodal Approach 

Ali Bekir YILDIZ1 

Abstract: In this paper, a computer-based systematic and efficient formulation method is 

presented for obtaining the network functions of linear or linearized time-invariant 

dynamic circuits. The method employs the modified nodal approach to obtain the system 

equations. The technique is based on developing a matrix formulation for modelling 

network functions. By using both symbolic manipulation of algebraic expressions and 

numeric processes, the network functions are expressed with a matrix-based method. 

Application examples are given to illustrate the features of the method. 

Keywords: Network functions, modified nodal approach, modelling. 

1   Introduction  

Network functions are used as an effective tool in the analysis and design of dynamic 

circuits. Many circuit characteristics such as voltage/current gains, input/output 

impedances, poles/zeros of circuits can be computed from network functions. Therefore, 

network functions can be a powerful tool for computer-based modelling and designing of 

analog integrated circuits. Several approaches to obtaining network functions are given in 

symbolic or numerical format. Some symbolic methods [Aguirre and Carlosena (2000), 

Djordjevic, and Petkovic (2004), Pierzchala and Rodanski (2001), Ruzhang et al. (1995), 

Shi and Tan (2001), Topa and Simon (1996), Yu and Sechen (1996), Wambacq (1996)] 

about network function generation are proposed. Nedelea et al. (2003) gives computer-

aided network function approximation for analog low and high pass filters. Yuan 

investigates the periodicity of network functions of linear periodically time-varying 

systems. Applications about the realization of transfer functions, one of the main 

components of network functions, are given by Sagbas et al. (2010), Psychalinos (2007), 

Raut (2006). 

In this paper, the algebraic method for computer-based systematic obtaining the network 

functions of linear or linearized time-invariant dynamic circuits is proposed. For setting 

up the circuit equations, the modified nodal approach (MNA), the one of the most 

popular methods of circuit analysis, is used. The state variables method, the other popular 

method and based on the graph theoretical approach, was developed before the modified 
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nodal analysis. It involves intensive mathematical process and has major limitations in 

the formulation of circuit equations. Some of these limitations arise because the state 

variables are capacitor voltages and inductor currents. Every circuit element cannot be 

easily included into the state equations. Because of the drawbacks of state variables 

analysis, the modified nodal analysis was first introduced by Ho et al. (1975) and has 

been developed more by including many circuit elements (transformer, semiconductor 

devices, short circuit, etc.) into system equations so far [Vlach and Singhal (1983), 

Thomas and Rosa (2006)]. In this method, the system equations can be also obtained by 

inspection. It allows circuit equations to be easily and systematically obtained without 

any limitation. This method is used for circuit synthesis of passive descriptor systems by 

Reis (2010) and for computing the smallest, the largest and a given subset of the largest 

eigenvalues associated with linear time-invariant circuits by A.G. Exposito et al. (2009) 

Modified nodal analysis-based determination of transfer functions for multi-inputs multi-

outputs linear circuits is given by Yildiz (2010). Recently, Network Function Virtualization 

(NFV) has been getting the attention for reason of operational efficiency, cost savings 

and service scalability. The NFV can be described as integrating an independent software 

on the general purposed hardware such as server and switch in order to replace the legacy 

hardware-based network device. Therefore, NFV can help ensure that carriers can 

quickly respond to the change of communication environment by shortening lots of cost 

and time to introduce new network service. Some design and implementation processes 

regarding NFV are considered by Yoon et al. (2016), Li et al. (2016), and Karina et al. 

(2016). 

In this paper, it is shown how to use the advantages of modified nodal approach in 

obtaining the network functions of linear dynamic circuits. The main contribution of the 

paper is that it gives a computer-based systematic formulation method in terms of 

variables of MNA. The network functions can be obtained as both symbolic and numeric 

process with the proposed method.  

The rest of the paper is organized as follows: In Section 2, the structure of the modified 

nodal approach and the mathematical background regarding system equations are 

explained. Section 3 gives the expressions related to the network functions such as 

transfer functions, input impedance and frequency domain analysis. In Section 4, two 

illustrative examples of the approach are given. Section 5 is the conclusion. 

2   System equations 

The modified nodal equations and the output equations of any dynamic circuit are given 

in t-domain, Eq. (1) and Eq. (2) and in s-domain, Eq. (3) and Eq. (4). In this method, the 

equations are first obtained in s-domain. Later, for analysis, they are transformed into t-

domain or frequency domain. Since the network functions are expressed in s-domain, the 

system equations will be examined in s-domain. The nodal and output equations together 

are called the system model (Fig.1). 
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Figure 1: System model 

Where G, C, B, T are coefficient matrices. All conductances and frequency-independent 

values arising in the MNA formulation are stored in matrix G, capacitor and inductor 

values which are frequency-dependent in matrix C. U(s) represents the input (voltage or 

current source), Y(s) represents the output variable (voltage/current). The unknown 

vector X(s) contains both voltage and current variables. MNA can handle all types of 

active and passive elements regarding a dynamic system. It is a very important property 

of MNA. 

Taking into account the types of variables, the unknown vector is partitioned as follows. 
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Here, X1(s) represents nodal voltage variables, X2(s) represents current variables related 

to independent and controlled voltage sources, inductors, short circuit elements, etc. If 

there are n nodes and m current variables in a dynamic circuit, X1(s) vector contains n1 

nodal voltage variables except a reference node (ground) and X2(s) vector contains m 

current variables. Thus, the unknown vector X(s) contains k=n1+m variables. 
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From Eq. (3), X(s) is obtained as follows. 
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The W(s) vector is of order 1

k

)m1n(   . It is created from coefficient matrices of 

system equations. Let’s consider Eq. (7) and Eq. (8) together. 
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Eq. (9) are also expressed separately as follows. 
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The elements of X(s) vector in Eq. (9) or Eq. (10) are expressed in terms of the elements 

of W(s) vector and the input. 

In the two ports circuit representation of Fig.2, the nodes of input port are 1, n and the 

nodes of output port are n1, n2. Node n is always taken as a reference node (ground, 

Un = 0)). Sometimes, the input and the output ports are connected to a common reference 

node, as in the illustrative examples. The voltage source (Ui(s)) in Fig.2 is a symbolic 

source to be used in obtaining the network functions.  

In Fig.2, Ui(s)=U1(s) and Uo(s)=Un-2(s)Un-1(s). That is, the input voltage of circuit (Ui) is 

always equal to the first nodal voltage (the first variable of system) in X1(s) vector, the 

output voltage of circuit (Uo) is always equal to the difference between the last two nodal 

voltages (the (n2)th and (n1)th variables of system) in X1(s) vector. In Eq. (9) or Eq. 

(10), W1(s)=1 because of U(s)=Ui(s) = U1(s). The input current (Ii(s)) is the source current. 

It is located in the last row of X2(s) or X(s) vector. That is, Ii(s)= Im(s). For the output 

current (Io(s)), the output port in Fig.2 must be terminated with any circuit element. For 

instance, the circuit in Fig.2 is terminated with a resistor.  
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Figure 2: Two port circuit 

In order to obtain the system equations, as a input, a symbolic current source (Ji(s)) can 

be also used. In this case, the structure of equations is similar to Eq. (9) or Eq. (10). Of 

course, the elements of W(s) vector will be different for every input (Ui(s) or Ji(s)). 

The above expressions are given for the circuit having one input and one output in Fig.2. 

For the case of p inputs and q outputs, as in the circuit of Fig.3, the expressions can be 

generalized. In this case, the W(s) vector is of order p

k
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In this paper, for one-input and one-output circuits, as in Fig.2, the network functions are 

expressed. For multi-input and multi-output circuits, similar expressions are valid. 
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Figure 3: Circuit with p inputs and q outputs 

3   Network functions 

Using Eq. (9) or Eq. (10), network functions and various domain responses related to any 

dynamic circuit can be expressed systematically in terms of the elements of W(s) vector. 

3.1 Transfer functions 

The transfer function (H(s)) is defined as the ratio of the output response to the input. It 

can be obtained by using Eq. (3) and Eq. (4). 

From Eq. (3),    )s(U)s(W)s(BUsCG)s(X
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The output equation,  
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From Eq. (13), the transfer function is expressed in terms of the matrices of MNA system. 
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Eq. (14) is the general statement of transfer functions. There are four kinds of transfer 

functions regarding to input and output variables. 

Voltage transfer function:  
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Transfer impedance function:  
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Transfer admittance function:  
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For obtaining the transfer functions, the voltage and current variables related to input and 

output ports are expressed in terms of the elements of created vector, W(s), and the 

source, according to Fig. 2 and Eq. (10). For the current transfer function (Eq.15.b) and 

transfer admittance function (Eq.15.d), the output port in Fig.2 must be terminated with 

any circuit element. Here, the expressions are given for the case terminated with a resistor, 

as in Fig. 2. But, the method is general and can be applied for any circuit element. 
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Current transfer function: 
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Transfer impedance function: 
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Transfer admittance function: 
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3.2 Input Impedance 

The input impedance or driving-point impedance, Z(s), is expressed according to Fig.2. 
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The impedance relates the voltage and the current at input terminals. Ui(s) is the driving 

source and Ii(s) is the source current in Fig.2. The source current: Ii(s)=Im(s). 
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3.3 Frequency-domain response 

For frequency response of system, We replace s by i in Eq. (12), Eq. (13), Eqs.(16)-(19), 

Eq.(21), respectively. 
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4   Illustrative examples 

We give two examples to show the proposed method related to obtaining the network 

functions. 

Example 1: Consider the circuit in Fig. 4. The system equations, the transfer functions 

(Uo/Ui, Uo/Ii), and the input impedance of the circuit will be obtained. Element values are 

R1 = R2 =2, C1 = C2 = 3F, L = 5H. 

The input and output of the circuit has a common reference node (4). The circuit has 

n1=3 nonreference nodes. Thus, in the MNA system, X1(s) vector contains 3 nodal 

voltage variables. The current variables in X2(s) vector are IL, Ii. Thus, in the circuit, 

k=n1+m=5. The representation of voltage source (Ui), as an input, is used to obtain the 

network functions.  
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Figure 4: Circuit for Example 1 

Nodal (main) equations in s-domain: 

0I)UU(G1 i211   

0IUsCUG)UU(G2 L2122211   

0IUsC3 L32   

Additional equations: 

i1 UU  ,  L32 sLIUU   

The overall equations constitute the MNA system (Eq.23). The output equation of system 

is given in Eq. (24). The system model containing both MNA equations and output 

equation can be given in matrix form, as in Fig.1.  
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The output equation: )s(TX)s(Y   

  TiL3213o IIUUU00100)s(U)s(U)s(Y             (24) 

The system model, Eq. (23) and Eq. (24), can be systematically obtained by inspection 

because of the advantages of MNA. By transforming the system model into t-domain, the 

transient-state and steady-state analysis for any input can be also obtained. By using this 

system model, the vector W(s) is created. Thus, the desired network functions in terms of 

the components of W(s) are calculated systematically. 
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As seen from Eq. (26), because Ui(s) is equal to U1(s), W1(s)=1. 

Transfer functions: 

The desired transfer functions are obtained as follows. W3 
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Input impedance: 
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Example 2: Consider the circuit in Fig. 5. The system equations, the voltage transfer 

function (Uo/Ui), and the input impedance of the circuit will be obtained. Element values 

are R1=4, R2=5, R3=2, C1=1F, C2=2F. 

Node p is chosen as a reference, Up=0. The voltage and current constraints of ideal 

OpAmp are Ip=0, In=0, UpUn=0. In the MNA system, X1(s) vector contains 3 nodal 

voltage variables (Ua, Ub, Uc). The current variable in X2(s) vector is Ii. Thus, in the 

circuit, k=n1+m=4. The representation of voltage source (Ui), as an input, is used to 

obtain the network function and the input impedance.  
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Figure 5: Circuit for Example 2 

Nodal (main) equations in s-domain: 
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The overall equations constitute the MNA system (Eq.30). The output equation of system 

is given in Eq. (31). The system model containing both MNA equations and output 

equation can be given in matrix form, as in Fig.1.  
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The output equation: )s(TX)s(Y   
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By using this system model, the vector W(s) is created. Thus, the desired network 

function and the input impedance are systematically calculated. 
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Where, 
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Voltage transfer function: 

)s(W
)s(U)s(W

)s(U)s(W

)s(U

)s(U

)s(U

)s(U
)s(H 3

i

1

1

i3

a

c

i

0

1 


 

21321

2

23113131

232

i

0
1

CCRRRsCRsRCRsRRR

CRsR

)s(U

)s(U
)s(H




          (34.a) 

 

3s12s40

s10

)s(U

)s(U
)s(H

2

i

0
1




             (34.b) 



 

 

Computer-Based Modelling of Network Functions                                                     273 

 

Input impedance: 
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5   Conclusions  

The paper introduces a computer-based systematic matrix-based representation for the 

network functions of linear or linearized time-invariant dynamic circuits. The proposed 

method is based on the modified nodal approach, suitable for computer-aided analysis of 

active and passive circuits and creating a matrix formulation. The main contribution of 

the paper is that it gives a computer-based systematic formulation method in terms of the 

components of the created vector, W(s). Transfer functions and input impedances related 

to the examples show the efficiency of the approach.  

The system equations and network functions can be obtained systematically by inspection. 

Therefore, for future work, a computer program about the network functions and 

frequency domain analysis of active and passive circuits can be written by using the 

presented method. Moreover, the noise analysis, one of the interesting applications of 

network analysis, can be also realized by this method. 
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