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A Dimension-Reduction Interval Analysis Method for Uncertain 

Problems 

J.C. Tang1, and C.M. Fu1,2 

Abstract: In this paper, an efficient interval analysis method called dimension-reduction 

interval analysis (DRIA) method is proposed to calculate the bounds of response functions with 

interval variables, which provides a kind of solution method for uncertainty analysis problems 

of complex structures and systems. First, multi- dimensional function is transformed into 

multiple one-dimensional functions by extending dimension reduction method to the interval 

analysis problem. Second, all the one-dimensional functions are transformed to standard 

quadratic form by second order Taylor expansion method. As a result, the multi-dimensional 

function is approximately represented by the functions that each interval variable occurs once, 

and interval power arithmetic can be used to efficiently calculate the bounds of response 

functions in restricted overestimation. Finally, three numerical examples and an engineering 

application are investigated to demonstrate the validity of the proposed method. 

Keywords: Interval uncertainty, interval analysis, dimension-reduction method, over

estimation. 

1  Introduction 

As the uncertainties widely exists in practical engineering problems, such as manufacturing 

errors, assembly errors and material parameters uncertainties, they may influence the analysis 

results and design strategies of structures and systems. Therefore, how to appropriately 

describe those uncertainties has become a significant part of the uncertainty problems. 

Probability model [Prékopa (1995); Haldar and Mahadevan (2000); Schuëller (2001); 

Spanos and Brebbia (2012)] is a useful tool to describe uncertainties in structures or 

systems and gradually becomes the main way to describe uncertainty in practical 

engineering problems. To establish a probability model, precise probability distribution 

should be obtained, which acquires abundant samples. However, in practical engineering 

problems, abundant samples are always difficult to be obtained due to the limitations of 

experiment conditions and high expenses. Moreover, inadequate samples may cause 

errors in the probability distribution function and even small errors existed in the 
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probabilistic distribution function may lead to invalid probability analysis result [Ben-

Haim and Elishakoff (2013)]. Therefore, it is significant to develop a feasible model 

which reduces the dependence on the samples to describe the uncertainty. As a result, interval 

model [Gurav, Goosen and Vankeulen (2005)] emerged as a beneficial supplement to the 

conventional probability model and gradually been accepted by many researchers and 

engineers. 

Interval model is constructed by upper and lower bounds rather than probabilistic distribution 

function, thus fewer samples are required to construct interval model comparing to 

probability model. Afterwards, many interval analysis methods are proposed to calculate the 

bounds of function response with the uncertain variables described by interval model. The 

concepts of interval analysis method and interval arithmetic were first proposed by Moore 

[Moore (1963); Moore, Bierbaum and Schwiertz (1979)], and they were extended to solve the 

interval finite element problem [Kearfott (1996)]. Interval arithmetic can efficiently calculate 

the upper and lower bounds of interval function responses. However, the overestimation 

phenomenon [Neumaier (1993)] hinders the widely use of interval arithmetic in practical 

engineering problems. In last few decades, many interval analysis methods have been 

proposed and developed intending to efficiently and precisely calculate the interval function 

response. Muhanna and Mullen [Muhanna and Mullen (2001)] developed an element by 

element method to control the overestimation problem in the finite element problem. Dong 

and shah [Dong and Shah (1987)] proposed a vertex method to calculate interval function 

responses. Afterwards, the vertex method is employed to many practical engineering 

problems [Li, Huang and Guo et al. (2010); Qiu, Xia and Yang (2007)]. However, 

unfortunately, the vertex method is not applicable to the non-monotonic or nonlinear 

problems, and this method always suffers the “combination explosion” problem, especially in 

high-dimensional function problems [Khodaparast, Mottershead and Badcock (2011)]. Qiu 

and Wang [Qiu and Wang (2005)] applied perturbation method [Van Dyke (1964)] and 

interval arithmetic to evaluate the range of dynamic responses of structures. Chen et al [Chen, 

Lian, and Yang (2002)] proposed a first order Taylor interval analysis method to calculate 

uncertain static displacement problem with interval parameters, and it was extended to 

calculate dynamic response of structures [Chen and Wu (2004)]. Wang et al [Wang, Xiong 

and Wang et al. (2017); Wang and Wang (2015); Wang, Wang and Li (2016)] proposed a 

Newton iteration-based interval uncertainty analysis method to analyze the propagating effect 

of interval uncertainty in multidisciplinary systems, and extended interval analysis method to 

inverse problems. 

Above mention methods allow to obtain interval bounds of response functions, and some of 

those methods have been important research directions in interval analysis field. However, 

those interval analysis methods are only limited to problems that the uncertainty level of the 

interval variables is relatively small. Thus, theoretically, they cannot be used to effectively 

solve the function responses with a relatively large uncertainty level. Moreover, in practical 

engineering problems, the variables with a large uncertainty level always existed in structures 

or systems, such as geometrical sizes of complex structures and systems, external loads. In 

order to address those mentioned problems, corresponding interval analysis methods with a 

large uncertainty level are proposed. Chen et al [Chen, Ma and Meng et al. (2009)] proposed 

an interval decomposition method based on second order Taylor expansion method to 

calculate the bounds of eigenvalues in structures analysis problems. Fujita and Takewaki 
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[Fujita and Takewaki (2011)] developed two approaches called the fixed reference-point 

method and the updated reference-point method based on interval decomposition method to 

calculate interval function responses. The most widely used method is the subinterval method 

which is proposed by Qiu and Elishakoff [Qiu and Elishakoff (1998)], and this method 

divides large intervals into subintervals and analyzes all the combinations of subintervals to 

predict the function response interval. Zhou et al [Zhou, Jiang and Han (2011)] suggested an 

error estimation method for interval and subinterval analysis methods based on the second-

order truncation error of Taylor expansion, and provided advises for selecting subinterval 

strategy in large uncertainty level structure problems. Xia and Yu [Xia and Yu (2014)] 

developed a modified subinterval analysis method to solve the coupled acoustic and structure 

finite element problems with interval parameters. The results of above papers indicate that the 

subinterval method is a useful method to solve function interval responses. Wu et al [Wu, 

Zhang and Chen et al. (2013); Wu, Luo and Zhang et al.(2013)] developed a Chebyshev 

interval analysis method to reduce or eliminate the overestimation problems of interval 

arithmetic, and successfully extended this method to ordinary differential equation problems. 

Manson [Manson (2005)] developed an interval affine method and the key of this method 

was to decompose interval parameters into several normal intervals according to the 

coefficients of every two interval parameters. Sofi and Romeo [Sofi and Romeo (2016)] 

proposed a novel interval finite element method based on the extra unitary interval and 

applied it to solve linear–elastic structures problem. Xu et al [Xu, Du and Wang et al. (2017)] 

proposed a dimension-wise analysis method to overcome the potential limitations of 

overestimation and extended this method to interval structural-acoustic problems. 

Overall, the research on interval analysis method of large uncertainty level is still on its 

primary stage, although there have been some progresses achieved in this field. Solving large 

interval uncertainty problems is much more complex than solving small uncertainty interval 

problems. There are two technical problems required to be settle in this area. First, some of 

interval analysis methods are only suitable to calculate interval response of specific functions. 

For examples, decomposition method [Chen, Ma and Meng et al. (2009)] was only applicable 

to monotonic function, because it applied vertex method to calculate interval response. 

Complex affine analysis method [Manson (2005)]was only suitable for the problems that 

correlation coefficients between two parameters were already known. More importantly, 

current large uncertainty interval analysis methods always encounter the low efficiency. Many 

of existing interval analysis methods suffers low efficiency problems. For examples. The 

“combination explosion” problem always exists in subinterval analysis method [Qiu and 

Elishakoff (1998)]. Many function calls are acquired to calculate coefficients of basic 

functions in Chebyshev interval method, especially in high-dimensional response functions. 

Therefore, it is crucial to develop an effective and feasible method according to the 

characteristics of nonlinear functions with relatively large uncertainty level variables. 

In order to efficiently calculate lower and upper bounds of a response function with a large 

uncertainty level, this paper proposes a dimension-reduction interval analysis (DRIA) method. 

Firstly, the multi-dimensional function is transformed to multi one-dimensional functions by 

extending dimension-reduction method to interval analysis. Afterwards, second order Taylor 

expansion method is used to construct standard quadratic form function, based on which 

interval arithmetic method can be used to calculate interval function responses. The rest of 

this paper is organized as follows: Section 2 gives the problem statement of interval 



 

 

 

242  Copyright © 2017Tech Science Press     CMES, vol.113, no.3, pp.239-259, 2017 

arithmetic. Section 3 gives the formulation of dimension-reduction interval analysis. Three 

numerical examples and an engineering application are used to verify the validity of the 

proposed method in Section 4. Finally, Section 5 gives briefly conclusion of this paper. 

2  Problem statement 

In most cases, interval response function of nonlinear structure or system can be 

established as follows [Qiu and Wang (2016)]: 

( )I IY f X                                                             (1) 

where IY  represents an interval response; f is a nonlinear response function; 

1 2( , ,..., )I I I I

nX X XX  is an n -dimensional vector consisting of interval variables, which 

can be expressed as follows [Moore (1963); Moore, Bierbaum and Schwiertz (1979)]: 

I L R= ,   X X X X ， , 1,2,...,I L R

i i i iX X = X ,X i n                                (2) 

where the superscripts I , L  and R  represent the interval, low bound and upper bound 

of interval, respectively. In practical engineering problems, interval vector I
X is always 

expressed in the following form:  

   1,1 1,1 , 1,2,...,I C W C W

i iX X i n      X X X                                 (3) 

where C  and W  represent midpoint and radius of interval parameter vector I
X , 

respectively. L
X  and R

X  are defined as: 

, , 1,2,...,
2 2

, , 1,2,...,
2 2

L RL R
C C i i

i

R LR L
W W i i

i

X X
X i n

X X
X i n


  


  

X X
X

X X
X

                                    (4) 

For an interval variable I

iX , the uncertainty level is defined as: 

 =
W

I i

i C

i

X
X

X
                                                           (5)

As for the response interval IY , the upper and lower bounds can be given as: 
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  

  

min ,

max ,

L I

R I

Y Y Y f

Y Y Y f

  

  

X X X

X X X
                                            (6) 

In practical engineering problem, the response functions can be divided into two kinds: 

one is the explicit function, and the other is the implicit function. As for an explicit 

function, the response interval can be directly calculated by interval arithmetic. For two 

intervals numbers ,I L RA A A     and ,I L RB B B    , four arithmetic operations are 

defined as [7, 8]: 

 

 

, , ,

, , ,

min , , , ,
, ,

max , , ,

1
, , ,

I I L R L R L L R R

I I L R L R L R R L

L L L R R L R R

I I L R L R

L L L R R L R R

I I L R L R L R

R

A B A A B B A B A B

A B A A B B A B A B

A B A B A B A B
A B A A B B

A B A B A B A B

A B A A B B A A
B

               

               

 
            
 

              
1

, , 0 ,L R

L
B B

B









  

       

         (7) 

And as for an interval number IA , power function operation is defined as [7, 8]: 

 

   

     

 

0, max ( ) , ( ) , 2 , 0

min ( ) , ( ) ,max ( ) , ( ) , 2 , 0

( ) , ( ) , 2 1

L n R n I

n
I L n R n L n R n I

L n R n

A A n k A

A A A A A n k A

A A n k

   
 
    

    

   (8) 

Interval function responses can be efficiently calculated by interval arithmetic, but 

simultaneously the existence of overestimation problem [Andrew (2002)] restricts the widely 

use of interval arithmetic. Three forms of a response function under an interval variable are 

used to illustrate the overestimation phenomenon: 

2

1

2

2

3

( )

( ) ( 1)

1 1
( ) ( )

2 4

f X X X

f X X X

f X X


 




 



  


                                                    (9) 

For an interval variable =[0,1]IX , the interval responses obtained by three forms of a 
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function are the same: 

1 2 3

1
([0,1]) ([0,1])= ([0,1])=[ ,0]

4
f f f                                          (10) 

Interval arithmetic is also used to calculate interval responses of three forms of a function 

as follows: 

         

         

       

11

2 2

3 3

0,1 1,1 0,1

0,1 1,0 0,1

1
0,1 ,0 = 0,1

4

f f

f f

f f


  




  

  

   
 

                                            (11) 

where  f  is interval inclusion function which denotes calculating interval response by 

interval arithmetic. In Eq. (11),  the situations of 1 1([0,1]) [ ]([0,1])f f  and 

2 2([0,1]) [ ]([0,1])f f  are called interval overestimation. However, while each variable 

occurs only once in the function, such as 3[ ]([0,1])f , precious interval response can be 

obtained by interval arithmetic. Actually, the premise of predicting precise interval 

response by interval arithmetical should satisfy two requirements [Moore (1963); Moore, 

Bierbaum and Schwiertz (1979)]. First, each interval variable only occurs once in a 

response function. Second, each interval variable should be independent with others 

variables in a response function. In practical engineering problems, those two 

requirements are difficult to be satisfied, thus few engineering examples directly apply 

interval arithmetic to calculate interval responses. Moreover, interval arithmetic method 

is only suitable for explicit function. As for the implicit function problems, many interval 

analysis methods are used to construct polynomial approximate model by gradients, 

derivatives or samples, and then interval arithmetic is used to calculate the response of 

explicit approximate polynomial function. For examples. First order Taylor expansion 

interval analysis method [Chen, Lian, and Yang (2002)] uses gradients information to 

construct the approximate linear function. This method is widely applied in uncertain 

engineering problems, because of its high computational efficiency, applicability and 

simplicity when dealing with the small uncertainty interval. Chebyshev interval method 

[Wu, Zhang and Chen et al. (2013); Wu, Luo and Zhang et al. (2013)] uses samples to 

construct approximate Chebyshev series expansion function aiming at reducing the 
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overestimation and it is successfully applied to engineering dynamic problem with  

interval parameters. 

3  Dimension-reduction interval analysis method 

It can be observed from the above analyses that interval arithmetic can efficiently calculate the 

function interval response and the overestimation problem restricts its widely use in practical 

engineering problems. In this section, a dimension-reduction interval analysis method is 

proposed to calculate the interval responses of structures or systems. The main strategy of DRIA 

is to transform the multi-dimensional nonlinear function to standard quadratic function where 

each variable only occurs once, thus interval power arithmetic can be carried out to calculate the 

interval response with restricted overestimation. First, dimension-reduction method is extended 

to the interval analysis problem to transform the multi-dimensional function into several one-

dimensional functions. Second, standard quadratic function is directly constructed by second 

order Taylor expansion method. Finally, interval power arithmetic is employed to calculate the 

interval function response. In general, DRIA method costs few function calls to obtain relatively 

accurate interval function responses. 

3.1  Dimension-reduction interval model 

In the stochastic uncertainty analysis problem, the multi-dimensional integrals are used to 

calculate statistical moments of function response to determine the probabilistic characteristics 

of random output when input uncertainties are characterized by probability density functions. 

As for the high dimension function problems, the efficiency to calculate a multi-dimensional 

integral is relatively low. Therefore, it is significant to develop an efficient integral method. 

Dimension-reduction integration method [Rahman and Xu (2004); Xu and Rahman (2006); 

Won, Choi and Choi (2009)] is an efficient probability analysis method to calculate multi-

dimensional integral problems. Based on the level of reduction dimensions, dimension-

reduction method can be categorized as univariate dimension-reduction method, bivariate 

dimension-reduction method and multivariate dimension-reduction method. In this section, only 

univariate dimension-reduction method is used to construct dimension-reduction function. The 

key of univariate dimension-reduction method is to transform multi-dimension function into 

multiple one-dimensional functions as follow: 

           1 2 1 2 1 2= , ,..., , ,..., ... , ,..., 1n n nf f x f x f x n f         x μ             (12) 

where  1 2, ,..., nx x xx  represents a n-dimensional random vector,  1 2, ,..., n  μ  

represents the mean value vector. The residual error of the univariate dimension-
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reduction integral function can be expressed as [Rahman and Xu (2004)]: 

   
 

   
4

2 2

2 2

1
= ...

2!2!
i i j j

i j i j

f
I f I f I x x

x x
 



              


μ
x x                    (13) 

Eq. (13) indicates that main residual error of dimension-reduction function lie in 4th or 

higher order, which means that the error of dimension-reduction method is relatively 

small. In this sense, the integral results obtained by dimension-reduction method is 

relatively accurate. Thus, this method is widely used in probability analysis problems and 

related fields [AIAA (2006); Huang, Du and Huang et al. (2006); Wei and Rahman 

(2007); Lee, Choi, Du and Gorsich (2008); Youn and Xi (2009); Samarbakhsh and 

Tuszynski (2010); Ristic Gunatilaka and Wang (2017)]. 

In order to improve the efficiency of interval analysis, dimension-reduction method is extended 

to interval analysis problem. Dimension-reduction interval function is constructed as: 

           1 2 1 2 1 2= , ,..., , ,..., ... , ,..., 1C C C C C C C

n n nf f X X X f X X X f X X X n f    X X     (14) 

where 1 2, ,...,C C C C

nX X X   X is the interval midpoint vector. According to the different 

variables in each one-dimensional function, interval dimension-reduction function can be 

expressed by using one-dimensional functions as follows: 

           1 1 2 2= ... 1 C

n nf f X f X f X n f    X X                             (15) 

where    1 2, ,..., ...,C C C

i i i nf X f X X X X , 1,2,...,i n . Dimension-reduction interval 

method transforms the multi-dimensional function to multiple one-dimensional functions. 

It should be noted that interval decomposition method [Chen, Ma and Meng et al. (2009)] 

can also obtain Eq. (15) by second order Taylor expansion methods. The residual error of 

the univariate dimension-reduction function can be expressed as: 

2 3

21 2 1 2

2
1 1, 1 1,

3

1 2

1 1, 1, ,

( , ) ( , )1
( ) ( )= ( )( ) ( ) ( )

2!

( , )
( )( )( ) ...

C C C Cn n n n
C C C C

i i j j i i j j

i j j i i j j ii j i j

C Cn n n
C C C

i i j j k k

i j j i k k i i j k
k j

f X X f X X
f f X X X X X X X X

X X X X

f X X
X X X X X X

X X X

     

    


 
     

   


    

  

   

  

X X

 

 (16) 

It can be seen that the residual error of interval dimension reduction functions mainly lies 

in cross terms. 
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3.2  Bounds calculation 

In order to efficiently calculate the upper and lower bounds of one-dimensional function, second 

order Taylor expansion method is used in this section to transform one-dimensional functions to 

standard quadratic functions by which upper and lower bounds of interval function responses 

can be obtained by interval power arithmetic with controlled overestimation. First, one-

dimensional functions if , 1,2,...,i n  are expanded by second order Taylor method as:  

   
 

 
 

 
2

2

2

1
, 1,2,...,

2

C C

i i i iC C C

i i i i i i i i

i i

df X d f X
f X f X X X X X i n

dX dX
                  

                                                                        (17) 

Then, Eq. (17) is adjusted to standard quadratic form as: 

   
 

 

 

2 2

1

2

1

2 2 2

2
2

( )

1
, 1,2,...,

2 ( )
2

C C
i i i

C

i iC C

i i i i i iC C
i i i i

i
i

df X df X

d X dXdX
f X f X X X i n

dX d f X d f X

dX dX

   
   
   

       
 
 
 

       (18) 

Substituting Eq. (18) into Eq. (15), dimension-reduction interval function can be 

formulated as: 

   
 

 

 

 

 

2
2

2

1 2 2 2 2
1 1

2 2

1
, ,...,

2
2

C
C

i i
i i

C
n n ii iC C C Ci

n i iC C
i ii i i i i

i i

df Xdf X

dXd f X dX
f f X X X X X

dX d f X d f X

dX dX

 

  
    

   
     

 
 
 

 X    (19) 

By defining 
 

' =

C

i i

i

i

df X
f

dX
 and 

 2

''

2

C

i i

i

i

d f X
f

dX
 , dimension-reduction interval function can 

be simplified as: 

   
 

22 ''

''

'' ''
1 1

1

2 2

n n
iI C I Ci

i i i

i ii i

ff
f f f X X

f f 

 
         

 
 X X                          (20) 

It is can be seen from Eq. (20) that each interval only occurs once, therefore interval 

power function [Moore (1963); Moore, Bierbaum and Schwiertz (1979)] can be 

employed to calculate the upper and lower bounds. The power function of i-th variable 
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2
'

''

I Ci

i i

i

f
X X

f

 
  

 
 can be solved by interval power operation as follows: 

2 2
' ' ' '

'' '' '' ''2
'

'' 2 2 2
' ' ' '
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  (21) 

Comparing with first order Taylor expansion, DRIA considers second-order term of one-

dimensional functions. Thus, DRIA will be more applicable to nonlinear functions. 

Moreover, Dimension-reduction interval analysis method only needs the first order 

derivative and second order derivative of one-dimensional functions. As for the explicit 

function, those derivatives can be obtained by derivation, and as for implicit function 

those derivatives can be easily obtained by forward difference, backward difference or 

central difference method. In this paper, central difference method is selected to calculate 

the derivatives, and the first order and second order derivatives of the i-th one-

dimensional function can be obtained as follows: 
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
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                                 (22)  

where iX  is the small perturbation of 
C

iX . It can be found that DRIA only need 

 C

i i if X X ,  C

i i if X X  and  C

i if X  of each one-dimensional if , which is the 

same as first order Taylor expansion. Actually, DRIA only reorganized the information 

used in first order Taylor expansion to calculate second order derivatives. Thus, as for an 

n-dimensional function, DRIA method only need 2 1n  function calls to construct Eq. 

(20). For example, only 7 function calls are used to calculate lower and upper responses 

for three-dimensional functions. In Table 1, the acquired function calls of other two 

interval analysis methods are compared to DRIA method, while the order of Chebyshev 

polynomial expansion model is selected to be 3. It indicates that DRIA method is as 

efficient as first order Taylor expansion method and more efficient than Chebyshev 

interval analysis method. 
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Table 1: The function calls of interval analysis methods 

Number of 

variables 

First order Taylor 

interval method 

Chebyshev interval 

method 

Dimension reduction 

interval analysis method 

3 7 27 7 

5 11 243 11 

10 21 59049 21 

18 37 387420489 37 

n 2n+1 3n 2n+1 

4  Examples 

In this section, four nonlinear examples including three numerical examples and an 

engineering application are used to demonstrate the validity of DRIA. The results 

obtained by Sequential Quadratic Program (SQP) optimization method [Gill, Murray and 

Saunders (2006)] are selected as reference solutions to verify the accuracy of DRIA. 

Moreover, first order Taylor expansion interval method [Chen, Lian, and Yang (2002)] 

and Chebyshev interval method [Wu, Zhang and Chen et al. (2013); Wu, Luo and Zhang 

et al.(2013)]  are employed to predict upper and lower bounds of function responses for 

comparing to the results obtained by DRIA method. In all examples, central difference 

method is used to calculate function derivatives. In Chebyshev interval method, the order 

of Chebyshev polynomial expansion model is selected to be 3. The larger relative error 

between upper bound and lower bound is called larger relative error. 

4.1 Example 1 

Consider the two dimensions nonlinear response function: 

   2 2

1 2exp 0.2( 3.2) 1.4 1g X X   X                                       (23) 

where 1X  and 2X  are interval variables with the midpoints of 1 2 3.7C CX X  . In this 

example, the efficiency and accuracy of the proposed interval analysis method are 

investigated at different uncertainty levels. First, in efficiency aspect, the function calls of 

three interval analysis methods only related to the number of interval variables. Therefore, 

DRIA method and first order Taylor expansion method only need 5 function calls to 

obtain the responses at four different uncertainty levels, and Chebyshev interval method 

needs 9 function calls at four different uncertainty levels. Table 2 shows the 
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computational results obtained by three interval analysis methods at four different 

uncertainty levels. The following analysis will focus on the accuracy problem of DRIA. 

At the uncertainty level of 10%, the two interval variables are  1 3.33,4.07IX   and 

 2 3.33 ,4.07IX  . The relative errors of upper bound and lower bound obtained by DRIA 

method are 1.51% and 0.43%, respectively. It can be found that the relative errors of 

upper bound and lower bound obtained by first order Taylor expansion method are 3.02% 

and 3.00% respectively. The relative error of upper bound obtained by Chebyshev 

method is 3.27%. It reflects that DRIA method has better performance comparing to other 

two interval analysis methods at relatively low uncertainty level of 10%. While the 

uncertainty levels increase to 20%, interval variables are changed to  1 2.96 , 4.44IX   

and  2 2.96 ,4.44IX  . The results show that relative errors obtained by all the analysis 

methods are increased. The larger relative errors of DRIA method, first order Taylor 

interval method and Chebyshev interval method increase to 2.28%, 10.41% and 12.18%, 

respectively. 

While the uncertainty levels increase to 30%, interval variables are expanded to 

 1 2.59 4.81IX  ，  and  2 2.59 ,4.81IX  . The relative errors of lower bound and upper 

bound obtained by DRIA method are 2.81% and 6.20%, respectively. The relative error 

of lower bound obtained by Chebyshev interval method reaches to 24.04% and the 

relative error of upper bound obtained by first order Taylor expansion method reaches to 

23.49%. While the uncertainty levels increase to 40%, interval variables are expanded to 

 1 2.22 5.18IX  ,  and  2 2.22 5.18IX  , . The relative errors obtained by DRIA is 4.16% 

and 14.35%. The relative errors obtained by first order expansion are 25.45% and 37.47%. 

The relative errors obtained Chebyshev method are 40.26% and 3.84%, respectively. It 

reflects that DRIA method has better performance comparing to other two interval 

analysis methods at relatively large uncertainty level of 40%. 

As shown in Fig. 1, the larger relative error obtained by three methods at the four 

uncertainty levels are depicted. It can be seen that larger relative errors of all the interval 

analysis methods increase with the increasing uncertainty level of interval variables. 

Among the three interval analysis methods, the larger relative errors obtained by 

Chebyshev interval method are larger than first order Taylor interval method and the 
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proposed method. The larger relative errors obtained by first order Taylor method are 

near those obtained by Chebyshev method, and the larger relative errors obtained by 

proposed method are relatively lower than others two interval analysis methods. Based on 

the results, It can be concluded that DRIA method have good performance both in 

efficiency and accuracy compared with other two interval analysis methods at the four 

uncertainty levels. 

Table 2: The function calls and relative errors obtained by three interval analysis at four 

different uncertainty levels  

Uncertainty 

Level 
Methods 

Interval 

responses 
Function calls Errors 

10% 

Optimization [3.98,4.66] 64 - 

First Order Taylor [3.86,4.52] 5 [3.02%,3.00%] 

Chebyshev  [3.85,4.66] 9 [3.27%,0.00%] 

DRIA [4.04,4.68] 5 [1.51%,0.43%] 

20% 

Optimization [3.94,5.46] 64 - 

First Order Taylor [3.53,4.85] 5 [10.41%,11.17%] 

Chebyshev  [3.46,5.45] 9 [12.18%,0.18%] 

DRIA [4.03,5.39] 5 [2.28%,1.28%] 

30% 

Optimization [3.91,6.77] 65 - 

First Order Taylor [3.20,5.18] 5 [18.16%,23.49%] 

Chebyshev  [2.97,6.67] 9 [24.04%,1.48%] 

DRIA [4.02,6.35] 5 [2.81%,6.20%] 

40% 

Optimization [3.85,8.85] 64 - 

First Order Taylor [2.87,5.51] 5 [25.45%,37.74%] 

Chebyshev  [2.30,8.51] 9 [40.26%,3.84%] 

DRIA [4.01,7.58] 5 [4.16%,14.35%] 
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Figure 1: The larger bound errors of three interval analysis methods with increasing 

uncertainty levels 

4.2  Example 2 

Consider the follow response function with ten interval variables: 

  3 54

2 2

2 6 7

1 2

8 9 102

1 X XX X X
g X e e e

X X XX
     X                                   (24) 

where the midpoints of all the interval variables are set to be 3, and the uncertainty levels 

are 50%，20%，20%，20%，20%，40%，30%，10%，10% and 10%, respectively. 

Table 3 shows the computing results of three interval analysis methods, the relative errors 

obtained by DRIA are 0.61% and 5.02% by 21 function calls. With the same function 

calls as DRIA method, the relative errors of first order Taylor expansion method reach to 

38.41% and 14.72%. As for the Chebyshev interval method, it should be noted that in 

addition to 59049 function calls, Chebyshev interval method still need a large number of 

trigonometric function calls which is too time-consuming. In accuracy aspect, the results 

obtained by Chebyshev method are compared to the reference ones, and the relative error 

of lower bound is reach to 55.94%. Those results indicate that DRIA have good 

performance both in efficiency and accuracy for high-dimensional functions with larger 

uncertainty interval variables. 
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Table 3: The interval responses calculated by interval analysis methods in example 2 

Methods 
Interval 

responses 
Function calls Errors 

Optimization [35.79,143.85] 265 - 

First order Taylor  [22.06,122.67] 21 [38.41%,14.72%] 

Chebyshev  [15.77,143.20] 59049 [55.94%,0.45%] 

DRIA [36.01,136.62] 21 [0.61%,5.02%] 

4.3  Example 3 

A rotating disk [Chowdhury and Rao (2009)] is subjected to a relative fast angular 

velocity   as shown in Fig. 2. The safety margin before an overstress condition occurs 

due to the stress on the part being too large for the material to withstand is defined as 

burst margin bM : 

2 3 3

o

o

2
( ) ( )

60

3(385.82)( )

i

b m u

i

R R

M S
R R










                                          (25) 

where bM  should be controlled to be larger than a thresholder value such that the 

rotating disk will not burst. iR  and oR  represent the inner radius and outer radius, 

respectively. uS  represents ultimate strength of the material, m  represents the material 

utilization factor and   represents the density of the disk. The uncertainty levels of 

interval variables are showed in Table 4. The computing results of interval analysis 

methods are shown in Table 7, and the relative errors obtained by DRIA method are 

7.14% and 5.56% by only 11 function calls. The lower bound error obtained first order 

Taylor expansion method equals to 42.86%, and lower bound error obtained by 

Chebyshev polynomial expansion method reaches to 85.71% by 243 function calls. The 

accuracy and efficiency of DRIA method are verified again. 
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iR
0R



 

Figure 2: The rotating disk 

Table 4: The midpoints and uncertainty levels of interval variables in rotating disk model 

Interval variable m  2(lb/ in )uS  
3(lb/ in )  0 (in)R  (in)iR  

Interval Midpoint 0.9 220000 0.29 24 8 

Uncertainty Level 40% 40% 10% 20% 20% 

Table 5: The interval responses and relative errors obtained by three interval analysis 

methods in rotating disk model 

Methods Interval responses Function calls Errors 

Optimization [0.14,0.36] 300 - 

First order 

Taylor  
[0.08,0.38] 11 [42.86%,5.56%] 

Chebyshev  [0.02,0.44] 243 [85.71%,22.22%] 

DRIA [0.13,0.34] 11 [7.14%,5.56%] 

4.4 Application to electronic wearable system of a smart watch 

In this example, the proposed method is applied to an electronic wearable system of a 

smart watch as shown in Fig. 3. The thicknesses and Yong’s Modulus are interval 

uncertainty variables as shown in Table 6. In order to ensure the reliability of this watch, 

we choose one point on the screen as an experiment point to hit against with a steel ball. 

During the simulation test, maximum stress   of the screen should not be higher than 

the allowable value. As shown in the Fig. 4, the FEM model is established to computer 

the performance function of maximum stress based on recent work [Huang, Jiang and 

Zhou et al. (2016)]. In order to improve computational efficiency, a quadratic response 

surface model is constructed by 65 FEM samples: 
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   2 2

5 5 6 5 6

2 2

1 1 2 1 3 1 4 2

2 2

2 4 2 4 3 3 4 4
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 P

             (26) 

Three interval analysis methods are applied to calculate upper and lower bounds of the 

quadratic response function. As shown in Table 7, the relative errors obtained by DRIA 

method are 4.86% and 5.58%, and the relative errors obtained by first order Taylor 

interval method reach up to 72.47% and 9.47% by 13 function calls. The relative errors 

obtained by Chebyshev interval method reach to 47.57% and 21.01% by 486 function 

calls. Comparing with other two interval analysis methods, DRIA method is relatively 

efficient and accurate in this application. 
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Figure 3: The smart watch 

 

Figure 4: FEM model of the smart watch 

Table 6: The interval midpoint and uncertainty levels information in smart watch 
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Variable Symbol 
Interval 

Midpoint 

Uncertainty 

Level 

Device housing thickness P1 1mm 30% 

Bracket thickness P2 1.92mm 30% 

Display thickness P3 1.2mm 30% 

Lens thickness P4 1.36mm 30% 

Display Young’s Modulus P5 23,000 Mpa 30% 

Lens Young’s Modulus P6 2,480 Mpa 30% 

Table 7: The interval responses calculated by interval analysis methods in smart watch 

Methods Interval Responses Function calls Errors 

Optimization [63.74,235.92] 394 - 

First order Taylor  [109.89,258.27] 13 [72.40%,9.47%] 

Chebyshev  [33.42,285.49] 486 [47.57%,21.01%] 

DRIA [60.65,222.76] 13 [4.86%,5.58%] 

5  Conclusions 

In this paper, a new interval method called dimension-reduction interval method (DRIA) 

is proposed to predict the interval responses of nonlinear structures or systems with 

interval variables. The key of this method is to transform a multi-dimensional function to 

a standard quadratic function, in which each variable is adjusted to appear only once. As 

a result, interval power arithmetic can be used to calculate interval response with 

controlled overestimation. DRIA method is compared with other two interval analysis 

methods. Through analyzing the results of four examples, it is found that the results 

obtained by DRIA method are very close to the ones of the SQP; the efficiency is as high 

as first order Taylor expansion interval method; the relative errors of computing results 

are smaller than the first order Taylor expansion interval method and Chebyshev interval 

method. Especially in example 3, the larger error obtained by the proposed method can be 

controlled within 10%, while first order Taylor expansion interval method and Chebyshev 

interval analysis method are 42.86% and 85.71% respectively. However, due to the 

shortness of dimension-reduction function, the result accuracy obtained by DRIA may 

decrease when dealing with the functions that cross terms have strong influences. 

Therefore, in the future, we will focus on this shortness and update DRIA method. 
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