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Local and biglobal linear stability analysis of parallel
shear flows
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Abstract: Linear Stability Analysis (LSA) of parallel shear flows, v ia local 
and global approaches, is presented. The local analysis is carried out by solving 
the Orr-Sommerfeld (OS) equation using a spectral-collocation method based on 
Chebyshev polynomials. A stabilized finite element formulation is employed to 
carry out the global analysis using the linearized disturbance equations in prim-
itive variables. The local and global analysis are compared. As per the Squires 
theorem, the two-dimensional disturbance has the largest growth rate. Therefore, 
only two-dimensional disturbances are considered. By its very nature, the local 
analysis assumes the disturbance field to be spatially periodic in the streamwise 
direction. The global analysis permits a more general disturbance. However, to en-
able a comparison with the local analysis, periodic boundary conditions, at the inlet 
and exit of the domain, are imposed on the disturbance. Computations are carried 
out for the LSA of the Plane Poiseuille Flow (PPF). The relationship between the 
wavenumber, α , of the disturbance and the streamwise extent of the domain, L, in 
the global analysis is explored for Re = 7000. It is found that α and L are related by 
L = 2πn/α, where n is the number of cells of the instability along the streamwise 
direction within the domain length, L. The procedure to interpret the results from 
the global analysis, for comparison with local analysis, is described.

Keywords: Linear stability analysis; local analysis; plane Poiseuille flow; Orr-
Sommerfeld equation; global analysis

1 Introduction

The hydrodynamic stability of laminar flows has received significant attention and
has been investigated by several researchers in the past [Schmid and Henning-
son (2001); Chandrasekhar (1981);Huerre and Monkewitz (1990);Huerre (2000);
Chomaz (2005)]. The linear stability of parallel shear flows can be analyzed via
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finding s olution t o t he O rr-Sommerfeld ( OS) e quation [ Orr ( 1907); Sommerfeld 
(1908)], with suitable boundary conditions. The disturbance field i s a ssumed to 
be a plane wave whose amplitude varies transverse to the flow and is periodic in 
the homogeneous directions. The analysis can be carried out in either a spatial 
or temporal framework [Boiko, Dovgal, Grek, and Kozlov (2012)]. The spatial 
analysis assumes that the disturbance field develops in s pace. The spatial growth 
rate is determined for different values of frequency and Reynolds number. In con-
trast, the temporal analysis assumes that the disturbance develops in time. As per 
the Squire’s theorem [Schmid and Henningson (2001)], the 2D disturbance is the 
most critical in terms of its growth rate. Therefore, it is sufficient to consider two-
dimensional disturbances that have streamwise periodicity [Boiko, Dovgal, Grek, 
and Kozlov (2012)]. The analysis is carried out to determine temporal growth rate 
at various Re and for disturbances with different values of streamwise wavenum-
ber. The spatial and temporal approaches for local analysis are related to each other 
[Huerre (2000)]. For example, Gaster (1962) proposed a transformation for that, 
approximately, relates the temporal and spatial growth. Several methods have been 
used to solve the OS equations. Davey and Drazin (1969) utilized Bessel func-
tions to represent the disturbance field and analyze the stability of pipe Poiseuille 
flow. O rszag ( 1971) u sed C hebyshev p olynomials t o s olve t he O S e quation for 
the plane Poiseuille flow. Saraph, Vasudeva, and Panikar (1979) used Galerkin’s 
weighted residual method to carry out the stability analysis of plane Poiseuille flow 
and magneto-hydrodynamic flows. Garg and Rouleau (1972) used asymptotic anal-
ysis to carry out the linear stability analysis in pipe flow. The method has also been 
applied, in a local sense, to spatially developing flows [Pierrehumbert (1985); Yang 
and Zebib (1989); Monkewitz (1988); Chomaz, Huerre, and Redekopp (1988)]. In 
this approach, the flow profiles at different streamwise stations are analyzed by as-
suming that each profile c orresponds t o a n i ndependent p arallel fl ow. Th e local 
analysis, at each streamwise station of the flow, involves solving the OS equation, 
with suitable boundary conditions.

An alternate approach to investigate the linear stability of fluid flows is the BiGlobal
and TriGlobal stability analysis [Theofilis (2011); Swaminathan, Sahu, Sameen,
and Govindrajan (2011)]. Unlike in the local analysis, in this approach the dis-
turbance field is represented globally, including in the streamwise direction. The
analysis results in global modes which, depending on the sign of the growth rate,
may either grow or decay in the entire computational domain with time. The
global analysis is usually much more computationally expensive than the local one.
Such an approach has been used to analyze the global linear stability properties of
several non-parallel flows [Mittal (2004); Chomaz (2005); Schmid and Henning-
son (2001)]. Swaminathan, Sahu, Sameen, and Govindrajan (2011) carried out a
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global linear stability analysis of a diverging channel flow using spectral colloca-
tion method. Mittal and Kumar (2003) used a stabilized finite element method for
the global LSA of stationary and rotating cylinder. Later, Verma and Mittal (2011)
used a similar approach for carrying out global LSA to investigate the existence and
stability of secondary wake mode of a two-dimensional flow past a circular cylin-
der. More recently, Navrose, Meena, and Mittal (2015) carried out LSA of spinning
cylinder in a uniform flow and identified several unstable three-dimensional modes
for various rotation rates of the spinning cylinder.

In the present work, Linear Stability Analysis (LSA) of the plane Poiseuille flow
is carried out. Local and global analyses are considered. The solutions to the OS
equation for local analysis have been obtained in a temporal framework. A spec-
tral collocation method based on Chebyshev polynomials [Schmid and Henningson
(2001)] is used to solve the governing Orr-Sommerfeld (OS) equation. The global
LSA of the plane Poiseuille flow is carried out using a stabilized finite element for-
mulation. The governing equations are cast in the primitive variables: velocity and
pressure. Equal-order finite-element interpolation functions are used for pressure
and velocity disturbance fields. Four-noded quadrilateral elements with bilinear in-
terpolation is employed. The streamline-upwind/Petrov-Galerkin (SUPG) [Brooks
and Hughes (1982)] and pressure-stabilizing/Petrov-Galerkin (PSPG) stabilization
techniques [Tezduyar, Mittal, Ray, and Shih (1992)] are employed to stabilize the
computations against spurious numerical oscillations. The finite element formula-
tion results in a generalized eigenvalue-vector problem which is solved using the
subspace iteration method [Stewart (1975)]. For carrying out the global analysis,
we assume periodic boundary conditions at the inflow and the outflow for the dis-
turbance field. This allows a direct comparison of the global LSA with the OS equa-
tion. A comparison between the local and global analysis of the plane Poiseuille
flow at Re = 7000 is presented and is utilized to show the connection between the
two analyses.

2 Governing Equations

2.1 Linearized Disturbance Equations

Let, Ω ⊂ Rnsd and (0,T ) be the spatial and temporal domains respectively, where
nsd is the number of space dimensions, and let Γ denote the boundary of Ω. The
Navier-Stokes equations governing incompressible fluid flow are given as:

ρ(
∂u
∂ t

+u ·∇∇∇u)−∇∇∇ ·σσσ = 0, ∇∇∇ ·u = 0 on Ω for (0,T ). (1)

Here ρ , u and σσσ are the density, velocity and the stress tensor, respectively. The
stress tensor is represented as σσσ =−pI+µ((∇∇∇u)+(∇∇∇u)T ), where p and µ are the
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pressure and coefficient of dynamic viscosity, respectively. The boundary condi-
tions are specified as:

u = g on Γg, n ·σ = h on Γh (2)

Here, Γg and Γh are the complementary subsets of the boundary Γ where Dirichlet
and Neumann boundary conditions are specified, respectively.

To understand the evolution of small disturbances, the unsteady solution is ex-
pressed as a combination of steady solution and disturbance:

u = U+u′, p = P+ p′ (3)

Here, U and P represent the steady state solution whose stability is to be determined
while u′ and p′ are the perturbation fields. Substituting the decomposition given by
Eq. (3) in Eqs. (1) and subtracting from them, the equations for steady flow one
obtains the evolution equations for the disturbance fields. Further, the perturba-
tions, u′ and p′, are assumed to be small and the non-linear terms are dropped. The
linearized perturbation equations are given as:

ρ(
∂u′

∂ t
+u′ ·∇∇∇U+U ·∇∇∇u′)−∇∇∇ ·σσσ ′ = 0, ∇∇∇ ·u′ = 0 on Ω for (0,T ). (4)

Here, σσσ ′ is the stress tensor for the perturbed solution. Eq. (4) subjected to the
initial condition, u′(x,0) = u′0 describes the evolution of small disturbances in the
domain, Ω. The boundary conditions on u′ are homogeneous versions of those used
for calculating the base flow (Eq. (2)).

2.2 Global Linear Stability Analysis

To conduct a global Linear stability analysis we assume the following form of the
disturbance field, u′ and p′

u′(x, t) = û(x)eλ t , p′(x, t) = p̂(x)eλ t (5)

Substituting Eqs. (5) in the linearized disturbance equations (Eqs. (4)) we obtain:

ρ(λ û+ û ·∇∇∇U+U ·∇∇∇û)−∇∇∇ · σ̂σσ = 0, ∇∇∇ · û = 0 on Ω. (6)

Eqs. (6) represents a generalized eigenvalue problem with λ as the eigenvalue and
(û, p̂) as the corresponding eigenmode. The boundary conditions for (û, p̂) are
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homogeneous version of those used for calculating the base flow (U,P). In gen-
eral, the eigenvalue λ = λr + iλi is complex. The growth rate is given by the real
part, λr of the eigenvalue whereas the imaginary part, λi is related to the temporal
frequency of the of the disturbance field. A positive value of λr indicates an un-
stable mode. This method has been utilized by several researchers in the past to
investigate the global linear stability of various steady flow configurations [Jackson
(1987); Morzynski and Thiele (1991); Morzynski, Afanasiev, and Thiele (1999);
Swaminathan, Sahu, Sameen, and Govindrajan (2011)]. Mittal and Kumar (2003)
proposed a stabilized finite element formulation for solving these equations and
employed it to study the global stability properties of the flow past a stationary and
rotating cylinder.

2.3 Local Stability Analysis: Orr-Sommerfeld Equation

Let (u′,v′,w′) represent the general perturbation field with respect to the parallel
base flow (U(y),0,0). The linearized disturbance equation described by Eq. (4)
can be simplified as:

[(
∂

∂ t
+U

∂

∂x
)∇2− ∂ 2U

∂y2
∂

∂x
− 1

Re
∇

4]v′ = 0. (7)

The disturbance field is assumed to be periodic along the two homogeneous di-
rections: x and z. The wavenumbers along the x and z directions are α and β ,
respectively. Thus, the perturbation field in this scenario is given by:

v′ = v̂(y)ei(αx+β z)eλ t . (8)

Similar expressions can be written for u′ and w′, which represent the x and z com-
ponent of the disturbance field. Let, k = α î+β k̂ represent the wavenumber vector
in the x− z plane with its magnitude given by k =

√
α2 +β 2. Substituting, Eq. (8)

in the linearized disturbance equation described by Eq. (7), we obtain:

[
1

αRe
(D2− k2)2− iU(D2− k2)+ i

∂ 2U
∂y2 ]v̂ =

λ

α
[D2− k2]v̂. (9)

Here, D denotes ∂

∂y . Further, it can be shown that for a parallel flow the two di-
mensional perturbations posses the largest growth rate [Schmid and Henningson
(2001)]. Therefore, we confine the discussions in the rest of the article to two-
dimensional disturbances. For a 2−D disturbance, Eq. (8) can be simplified to:

v′ = v̂(y)eiαxeλ t . (10)
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We consider the case when the streamwise wavenumber, α , is real and the eigen-
value λ = λr+ iλi is complex. The real part, λr, is the growth rate of the disturbance
while λi, the imaginary part, is the temporal frequency of the disturbance. The dis-
turbance associated with the eigenvalue that has the largest real mode is of major
interest as it represents the fastest growing mode. For 2−D disturbances we can
rewrite Eq. (9) to obtain the Orr-Sommerfeld (OS) equation:

[
1

Re
(D2−α

2)2− iαU(D2−α
2) + iα

∂ 2U
∂y2 ]v̂ = λ [D2−α

2]v̂. (11)

The disturbance velocity, u′,v′ must vanish on the far-field and solid boundaries,
Γ. For the periodic disturbance field considered this requires û, v̂ to vanish on Γ.
Using the continuity equation, one can simplify this to:

v̂ = 0,
dv̂
dy

= 0 on Γ. (12)

3 Formulation

3.1 The Stabilized Finite Element Formulation for Global Linear Stability Anal-
ysis

Let Ω ⊂ R2 be the spatial domain for global linear stability analysis (Eq. (6)).
Consider a finite element discretization of Ω into subdomains Ωe,e = 1,2,3, ...,nel ,
where nel is the number of elements. Based on this discretization we define finite
element trial function spaces for velocity and pressure perturbation fields as S h

uuu
and S h

p , respectively. The weighting function space are V h
uuu and V h

p , respectively.
These function spaces are selected by taking the homogeneous Dirichlet boundary
conditions into account, as subsets of [H1h(Ω)]2 and H1h(Ω), where H1h(Ω) is the
finite dimensional function space over Ω. The stabilized finite element formulation
of Eq. (6), is as follows: Find ûh ∈ S h

uuu and p̂h ∈ S h
p such that ∀ŵh ∈ V h

uuu and
q̂h ∈ V h

p∫
Ω

ŵh ·ρ
(

λ ûh +Uh ·∇∇∇ûh + ûh ·∇∇∇Uh
)

dΩ+
∫

Ω

εεε(ŵh) : σσσ(p̂h, ûh)dΩ

+
∫

Ω

q̂h
∇∇∇ · ûhdΩ+

nel

∑
e=1

∫
Ωe

1
ρ

(
τSUPGρUh ·∇∇∇ŵh + τPSPG∇∇∇q̂h

)
.[

ρ

(
λ ûh +Uh ·∇∇∇ûh + ûh ·∇∇∇Uh

)
−∇∇∇ ·σσσ(p̂h, ûh)

]
dΩ

e

+
nel

∑
e=1

∫
Ωe

τLSIC∇∇∇ · ŵh
ρ∇∇∇ · ûhdΩ

e = 0. (13)
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Here, Uh represents the base flow at the element nodes. In the variational formu-
lation given by Eq. (13), the first three terms constitute the Galerkin formulation
of the problem. The terms involving the element level integrals are the stabiliza-
tion terms added to the basic Galerkin formulation to enhance its numerical sta-
bility. These terms stabilize the computations against node-to-node oscillations
in advection dominated flows and allow the use of equal-in-order basis functions
for velocity and pressure. The terms with coefficients τSUPG and τPSPG are based
on the SUPG (Streamline-Upwind/Petrov-Galerkin) [Brooks and Hughes (1982)]
and PSPG (Pressure-stabilized/Petrov-Galerkin) [Tezduyar, Mittal, Ray, and Shih
(1992)] stabilizations. The SUPG formulation for convection dominated flows was
introduced by Hughes and Brooks (1979) and Brooks and Hughes (1982). PSPG
stabilization for enabling the use of equal-order interpolations for the velocity and
pressure to fluid flows at finite Reynolds number was introduced by Tezduyar, Mit-
tal, Ray, and Shih (1992). The term with coefficient τLSIC is a stabilization term
based on the least squares of the divergence free condition on the velocity field. It
provides numerical stability at high Reynolds number. Here, the stabilization coef-
ficients used in the finite element formulation of LSA (Eq. (13)) are computed on
the basis of the base flow at the element nodes, Uh. The stabilization parameters
are defined as [Tezduyar, Mittal, Ray, and Shih (1992)]:

τLSIC =

[(
2

he||UUUh||

)2

+

(
12ν

(he)2||UUUh||2

)2
]−1/2

, (14)

τSUPG = τPSPG =

[(
2||UUUh||

he

)2

+

(
12ν

(he)2

)2
]−1/2

, (15)

Here, he is the element length based on the minimum edge length of an element
[Mittal (2000)] and Uh is the base flow velocity at element nodes.

Eq. (13) lead to a generalized non-symmetric eigenvalue problem of the form
AX−λBX = 0. For our case, the eigenvalue problem is slightly more complicated
as the continuity equation responsible for determining pressure causes the matrix B
to become singular. Hence, to avoid singularity, we solve the inverse problem, i.e.,
eigenvalues for BX − µAX = 0 are computed. Here, λ = 1/µ . To check the sta-
bility of the steady-state solution we look for the rightmost eigenvalue (eigenvalue
with largest real part), using the subspace iteration method [Stewart (1975)].

3.2 The Spectral Method for Local Linear Stability Analysis

The spectral collocation method based on Chebyshev polynomials of the first kind [Schmid
and Henningson (2001)] is used to solve the Eq. (11) for carrying out the local sta-
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bility analysis. The Chebyshev polynomial of the first kind is defined as:

Tn(y) = cos(n cos−1(y)) (16)

for all non-negative integers n∈ [0,N] and y∈ [−1,1]. By using a suitable transfor-
mation, it is possible to map any other range of y to the Chebyshev domain [−1,1].
The Chebyshev polynomials are utilized as the basis functions to approximate the
eigenfunction, v̂(y) in Eq.(8):

v̂(y) =
N

∑
n=0

anTn(y). (17)

This approximation of the eigenfunction is substituted in the OS equation (Eq.(11).
It results in the following equation:

1
Re

(
N

∑
n=0

anT
′′′′

n (y)−2α
2

N

∑
n=0

anT
′′

n (y)+α
4

N

∑
n=0

anTn(y)
)
+

−iα[U(
N

∑
n=0

anT
′′

n (y)−α
2

N

∑
n=0

anTn(y))−Uyy

N

∑
n=0

anTn(y)]

= λ [
N

∑
n=0

anT
′′

n (y)−α
2

N

∑
n=0

anTn(y)]. (18)

The collocation method is employed to evaluate the constants an in the approxima-
tion given by Eq. (17). The following Gauss-Lobatto collocation points are used:

y j = cos(
jπ
N

) j = 0,1,2,3, ....,N. (19)

Eq. (18) leads to the generalized eigenvalue problem of the form AX −λBX = 0.
In the present work, the numerical solution to the same is obtained using LA-
PACK [Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Green-
baum, Hammarling, McKenney, and Sorensen (1999)] libraries.

4 Problem Setup

4.1 The Base Flow

The local and the global linear stability analysis are carried out for the plane Poiseuille
flow. Figure (1) shows the schematic of the flow. The fluid occupies the channel
formed by two stationary plates parallel to each other and separated by a distance
2H. The plates are aligned with the x− axis. The velocity profile for the base flow
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x

y

2H
Uc

Figure 1: Schematic of the plane Poiseuille flow.

is shown in the figure. It is parabolic and symmetric about the channel centerline.
The equation for the streamwise component of velocity is given as:

U =Uc
(
1−
( y

H

)2)
. (20)

Here, H denotes half the channel width and Uc is the centerline velocity. All the
lengths are non-dimensionalized with H, and velocity with Uc. The Reynolds num-
ber, Re, is defined as:

Re =
UcH

ν
, (21)

where, ν denotes the kinematic viscosity of the fluid.

4.2 Local Linear Stability Analysis

The local analysis of the plane Poiseuille flow is carried out via the solution to OS
(Eq. (11)). The domain across the channel width, [−H,H], is mapped to [−1,1].
No-slip boundary conditions are applied to the disturbance field at the channel
walls. In this situation, Eq. (12) can be rewritten as:

v̂(y =±H) = 0,
dv̂
dy

(y =±H) = 0. (22)

The OS equation (Eq. (11)), along with the boundary conditions ( Eq. (22), is solved
in the temporal point of view. The wavenumber, α , is assumed to be real. The OS
equation is solved for different values of values of α and Re. The effect of the
number of grid points, along y, on the accuracy of the solution is investigated. It
is found that 200 collocation points provide adequate spatial resolution. All the
results presented in this paper for the OS analysis are with 200 points.
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4.3 Global Linear Stability Analysis

The flow in a finite streamwise length of the channel (=L) is considered for carry-
ing out the global analysis. The base flow is the fully developed steady flow in the
channel. The streamwise velocity for the same is given by Eq.(20). The boundary
conditions for the disturbance field are as follows. The disturbance velocity is pre-
scribed a zero value at the upper and lower walls. To enable comparison with the
local analysis, the disturbance is assumed to be periodic in the streamwise direc-
tion. Therefore, periodic boundary conditions are applied on all the variables at the
inflow and the outflow boundaries. The finite element mesh consists of 24 elements
along the streamwise and 150 elements in the cross-flow directions. The grid points
are uniformly spaced along x but are clustered close to the wall in the y direction.
A mesh convergence study is carried out for the Re = 7000 plane Poiseuille flow
and L/2H = 1. A more refined grid with roughly twice the resolution in each di-
rection leads to less than one percent difference in the results, thereby reflecting the
adequacy of the original finite element mesh.

5 Results: Linear Stability Analysis of the Plane Poiseuille Flow

5.1 OS Analysis

Local analysis via solution to the OS equation (Eq. (11)) is carried out for vari-
ous values of Re and α . At each (Re, α) the eigenvalue with the largest real part
is identified. Figure (2) shows the variation of the growth rate of the disturbance
associated with the rightmost eigenvalue with Re and α . The figure shows the
iso-contours for various values of growth rate in the Re−α plane. The contour
corresponding to zero growth rate is the neutral curve. The critical Re for the onset
of instability is the lowest value of the Re on the neutral curve, for any value of
α . The critical Re for this flow is found to be 5773, approximately and is marked
in Figure (2). The value is in excellent agreement with results from earlier stud-
ies [Schmid and Henningson (2001)].

The results for the flow at Re= 7000 are presented in more detail in Figure (3). This
figure shows the variation of the real (λr) and imaginary (λi) parts of the rightmost
eigenvalue with wavenumber (α) at Re = 7000. While λr denotes the growth rate,
λi is related to the temporal frequency of the disturbance. We observe that the
Re = 7000 flow is linearly unstable only to disturbances whose wavenumber lies
in a specific interval. The maximum growth rate is 0.0017, approximately for α =
1.00.
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Figure 2: Orr-Sommerfeld analysis of the Plane Poiseuille flow: iso-contours of
constant growth rate. The critical Re for the onset of the instability of the flow is
Recr = 5773 and is marked with a vertical broken line.
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Figure 3: Orr-Sommerfeld Analysis of the Plane Poiseuille Flow at Re = 7000:
variation of real and imaginary part of the right-most eigenvalue with wavenumber,
α .
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Figure 4: Global linear stability analysis of the Plane Poiseuille flow for Re =
7000 and L/2H = 5.10: the v′ field for the eigenmodes corresponding to the two
rightmost eigenvalues. The upper row corresponds to one cell in the domain (n =
1) and has a growth rate, λr = −0.017. The lower row is for n = 2 with two cells
in the domain; the growth rate for this mode is λr =−0.0097.

5.2 Global Analysis

In the local analysis, the OS equation (Eq. (11)) can be solved by using α as one of
the independent variables. However, the global analysis (Eq. (6)) does not directly
offer α as an independent variable. The analysis, of course, can be carried out
for different streamwise extent (L) of the computational domain. We attempt to
understand the relation between L (for the global analysis) and α (for the local
analysis). We propose that for a spatially periodic disturbance, its wavenumber is
related to the length of the computational domain as:

α =
2πn

L
, (23)

where, n is the number of waves along the stream wise direction in the domain.
To demonstrate this, we consider the global linear stability analysis for Re = 7000.
Fig. (4) shows the eigen modes associated with the two right most eigenvalues for
L/2H = 5.1. While the first one is associated with one wave (n = 1), the other
houses two waves (n = 2) in the computational domain. Thus, they both represent
different wave numbers and are associated with their own growth rates, as listed in
the caption of the figure. The real and imaginary part of the eigenvalue obtained
from the global analysis, and their comparison with the values obtained from the
local analysis, are also shown in Figures (5) and (6). The data points corresponding
to the two eigenmodes lie on the vertical line segment marked in the two figures
for L/2H = 5.10. The values from the local and global analysis are in excellent
agreement.

Figures (5) and (6) show the variation of the growth rate and the imaginary part
of the rightmost eigenvalue from the global analysis for plane Poiseuille flow at
Re = 7000. The data points from the global analysis are marked by solid circles.
Also shown in the same figure are the results from the local analysis. The variation
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is associated with a number of peaks and valleys. We attempt to understand this
behavior. It is demonstrated in Fig. (4) that the computational domain may accom-
modate multiple cells of the disturbance. We first identify in Figs. (5) and (6) the
cases that are associated with one cell only (n = 1) in the streamwise extent of the
domain. A best fit to these points is in excellent agreement with the results from
the local analysis. These curves are marked as L = 2π/α in the figures. These
curves can also be utilized to understand the variation of λr and λi with α . We note
that the growth rate and temporal frequency of an eigenmode should depend on α ,
but must be independent of the number of cells of the same α in the computational
domain. Using this idea, and the data for λr and λi v/s α from the local analysis, the
variation of λr and λi with L/2H is generated for multiple cells by observing that
L = 2πn/α , where n is the number of cells. These curves are shown in Figs. (5)
and (6) for various values of n. The outer envelope of these curves is shown in
thicker solid line. These curves provide an estimate of the variation of the right-
most eigenvalue with the length of the computational domain. Excellent agreement
is observed between the estimated rightmost eigenvalue and the actual value from
global LSA computations for n≥ 2. We note that as the length of the computational
domain is increased, the dependence of the growth rate of the most unstable eigen-
mode on L becomes weaker. In the asymptotic limit of the domain being infinitely
long, the fastest growing mode comprises of infinite cells of the n = 1 eigenmode
whose wavenumber is associated with largest λr. We also note from Fig. (5) that
in certain situations it might be difficult to track the eigenmodes corresponding to
low values of α from the global analysis. Low values of α correspond to large
L/2H. As seen from Fig. (5), at large L/2H, n = 1 mode is not necessarily the one
with rightmost eigenvalue. For example, at L/2H = 15 the rightmost eigenvalue
corresponds to the mode with five cells (n = 5). The modes with four, three, two
and one cell have lower growth rate, and in the same order. Therefore, tracking the
mode for n = 1 for this value of L/2H is relatively more challenging than the ones
for higher values of n.

To further demonstrate that the growth rate and temporal frequency of an eigen-
mode must be independent of the number of streamwise cells in the global analy-
sis, we consider the case where we seek the rightmost eigenvalue for α = 1.05. For
n = 1, this corresponds to L/2H = 3.0, approximately. Figure (7) shows the eigen-
modes from the global analysis for various values of L/2H for the same α (= 1.05).
The various values of L are chosen by varying n in the relation L = 2 n π/α . A bro-
ken horizontal line is marked in Figures (5) and (6) to show the real and imaginary
part of the rightmost eigenvalue for various values of L that correspond to α = 1.05.
We observe that all these modes are associated with the same eigenvalue. In fact,
the eigenmodes are also of the same family. They are shown in Figure (7) and have
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Figure 5: Variation of the growth rate of the leading eigenvalue with L/2H for the
plane Poiseuille flow for Re = 7000: the solid dots represent the growth rate of the
most unstable mode obtained at various values of L/2H from global LSA. The solid
(red) curve is obtained from the local (Orr-Sommerfeld) analysis. It is in excellent
agreement with the best fit to the points corresponding to one streamwise wave
(n = 1) from global analysis as per the relation L = 2π/α . The curve is replicated
for various n to show the predicted variation of λr with L, for the global analy-
sis using the relation L = n(2π/α), when the domain houses different number of
cells. The outer envelope of these curves, shown in thicker solid line, represents the
eigenmode associated with the rightmost eigenvalue for the corresponding length
of the computational domain.

the same flow structure, albeit with different number of cells.

6 Concluding Remarks

Hydrodynamic stability of shear flows has been widely investigated in the past us-
ing local and global Linear Stability Analysis (LSA). In this work we have reviewed
the two approaches and attempted to highlight the difference between the two in the
context of their application to parallel shear flows. Results for the linear stability of
plane Poiseuille flow have been presented, using both approaches. The local anal-
ysis is carried out by solving the Orr-Sommerfeld (OS) equation using the spectral
collocation method based on Chebyshev polynomials. The analysis has been car-
ried out for various wavenumbers, α of the streamwise periodic disturbance field.
The critical Re for the onset of linear instability for plane Poiseuille flow is found
to be 5773, which is in good agreement with earlier results [Schmid and Henning-
son (2001)]. The stability of the flow at Re = 7000 has been presented in more
detail. For example, the variation of the real and imaginary part of the least stable
eigenvalue with α has been presented. Unlike the local analysis which involves
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Figure 6: Variation of the imaginary part of the leading eigenvalue with L/2H for
the plane Poiseuille flow for Re = 7000: the solid dots represent the imaginary part
of the most unstable mode obtained at various values of L/2H from global LSA.
The solid (red) curve is obtained from the local (Orr-Sommerfeld) analysis. It is in
excellent agreement with the best fit to the points corresponding to one streamwise
wave (n = 1) from global analysis as per the relation L = 2π/α . The curve is
replicated for various n to show the predicted variation of λi with L, for the global
analysis using the relation L = n(2π/α), when the domain houses different number
of cells. The curves shown in thicker solid line represents λi associated with the
rightmost eigenvalue for the corresponding length of the computational domain.
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Figure 7: Eigenmodes of v′ corresponding to the leading eigenvalue for various
lengths of the domain obtained with the global LSA for the plane Poiseuille flow
for Re = 7000 for disturbances that are periodic in the streamwise direction.
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solution to an ordinary differential equation, the global analysis involves finding
solution to a set of partial differential equations. The analysis has been carried
out for a two-dimensional disturbance field that is assumed to be spatially periodic
along the stream wise direction. A stabilized finite element method has been pre-
sented for carrying out the global LSA in primitive variables. Equal-in-order finite
element functions are used for representing velocity and pressure. To suppress the
numerical oscillations that might appear in the computations, the SUPG and PSPG,
stabilizations are added to the Galerkin finite element formulation. The formulation
has been used to carry out the linear stability analysis for the plane Poiseuille flow
at Re = 7000. Computations are carried out for various values of the streamwise
length, L, of the computational domain.
Unlike the local analysis, the global analysis can handle non-periodic disturbances 
and is applicable to non-parallel flows as well. However, the global analysis is sig-
nificantly more expensive than the local a nalysis. For the parallel flow and with 
spatially periodic disturbances the present work brings out a very interesting rela-
tionship between the wave number of the disturbance and the streamwise extent of 
the domain in the global analysis. When the eigenmode contains only once cell, the 
results from the local and global analysis are virtually identical; the wavenumber 
and streamwise extent of the domain are related as α = 2 π/L. However, when the 
eigenmode consists of n cells along the streamwise length of the domain the rela-
tionship is: α = (2 πn)/L. For a very large value of L, the global analysis results in 
an eigenmode with a large number of cells of the eigenmode whose α corresponds 
to the mode with largest growth rate. If one would like to use the global analysis to 
create the growth rate v/s α curve for the rightmost eigenvalue, as is done in the lo-
cal analysis for a specific value of Re, the procedure is complicated by the number 
of cells that are housed in the domain. In the scenario when L is relatively large, to 
track an eigenmode for low α, the eigenmode associated with one cell might not be 
the most unstable mode. Therefore, one needs to examine the eigenmodes for the 
first few eigenvalues that are arranged in the descending order of their real part. 
The one that corresponds to α = 2 π/L is the eigenmode which consists of only one 
cell along the streamwise direction.
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