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Plane Vibrations in a Transversely Isotropic Infinite Hollow
Cylinder Under Effect of the Rotation and Magnetic Field

F. S. Bayones! and A. M. Abd-Alla?

Abstract: The aim of this paper is to study the effects of rotation and magnetic field on
the plane vibrations in a transversely isotropic material of an infinite hollow cylinder. The
natural frequency of the plane vibrations in the case of harmonic vibrations has been
obtained. The natural frequencies are calculated numerically and the effects of rotation
and magnetic field are discussed. The numerical results obtained have been illustrated
graphically to understand the behavior of frequency equation with different values of
frequency @ under effects the rotation and magnetic field. Comparison was made with
the results obtained in the presence and absence of the rotation and magnetic field. The
results indicate that the effect of rotation and magnetic field are very pronounced.

Keywords: Plane transversely isotropic, rotating, magnetic field, homogeneous,
transversely isotropic, Natural frequencies.

1 Introduction

The analysis of the dynamic problems of elastic bodies is an important and interesting
research field for engineers and scientists. It is concerned with determining the strength
and load carrying ability of engineering structures, including buildings, bridges, cars,
planes, and thousands of machine parts that most of us never see. It is especially
important in the fields of mechanical, civil, aeronautical and materials engineering.
However, little attention has been given to the problem of the wave propagation in the
isotropic circular cylinder. Boukhari et al [Boukhari et al. (2016)] studied an efficient
shear deformation theory for wave propagation of functionally graded material plates.
Tounsi et al [Tounsi et al. (2016)] investigated a new simple three-unknown sinusoidal
shear deformation theory for functionally graded plates. Yahia et al [Yahia et al. (2015)]
discussed the wave propagation in functionally graded plates with porosities using
various higher-order shear deformation plate theories. Bellifa et al [Bellifa et al. (2016)]
investigated the bending and free vibration analysis of functionally graded plates using a
simple shear deformation theory and the concept the neutral surface position. Draiche et
al [Draiche et al. (2016)] studied a refined theory with stretching effect for the flexure
analysis of laminated composite plate. Mahmoud et al [Mahmoud et al. (2011)]
investigated the effect of the rotation on the radial vibrations in a non-homogeneous
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orthotropic hollow cylinder. Abd-Alla et al. [Abd-Alla et al. (2008)] studied the effect of
the non-homogenity on the composite infinite cylinder of isotropic material. Bourada et
al. [Bourada et al. (2015)] studied a new simple shear and normal deformations theory for
functionally graded beams. Gaoab et al [Gaoab et al. (2013)] investigated the wave
propagation in poroelastic hollow cylinder immersed in fluid with seismoelectric effect
Hebali et al. [Hebali et al. (2014)] investigated the a new quasi-3D hyperbolic shear
deformation theory for the static and free vibration analysis of functionally graded plates.
Hou et al. [Hou et al. (2006)] discussed the transient responses of a special non-homogeneous
magneto-electro-elastic hollow cylinder for axisymmetric plane strain problem. Bennoun et al
[Bennoun et al. (2016)] studied a novel five variable refined plate theory for vibration analysis
of functionally graded sandwich plates. [Bounouara et al. [Bounouara et al. (2016)]
studied a nonlocal zeroth-order shear deformation theory for free vibration of functionally
graded nanoscale plates resting on elastic foundation. Meziane [Meziane (2014)] investigated
an efficient and simple refined theory for buckling and free vibration of exponentially graded
sandwich plates under various boundary conditions. Marin and Lupu [Marin and Lupu (1998)]
investigated the harmonic Vibrations in Thermoelasticity of Micropolar Bodies. Marin
[Marin (2010)] studied the domain of influence theorem for microstretch elastic materials.
Marin [Marin (2010)] discussed the harmonic vibrations in thermoelasticity of microstretch
materials. Marin [Marin (1997)] investigated the weak solutions in elasticity of dipolar
bodies with voids. Hutchinson and EI-Azhary [Hutchinson and El-Azhary (1986)]
investigated the vibrations of free hollow circular cylinder. Abd-Alla and Farhan [Abd-
Alla and Farhan (2008)] studied the effect of the non-homogeneous on the campsite
infinite cylinder of isotropic material. Chen [Chen et al. (2005)] studied the free vibration
of non-homogeneous transversely isotropic magneto-electro-elastic plates. Buchanan
[Buchanan (2003)] discussed the free vibration of an infinite magneto-electro-elastic
cylinder. Abd-Alla et al. [Abd-Alla et al. (2015)] investigated the wave propagation in
fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. The extensive
literature on the topic is now available and we can only mention a few recent interesting
investigations in Refs. [Abd-Alla and Mahmoud (2012), Abd-Alla, et al.( (2013), (2017)),
Bayones and Abd-Alla (2017)].

The main objective of the present research is to determine the eigenvalues of the natural
frequency of the transversely isotropic infinite hollow cylinder for different boundary
conditions in the cases of harmonic vibrations under effect the in rotation and magnetic
field after determining the displacement components and stress components. The numerical
results of the frequency equation are discussed in detail for homogeneous material and
the effect of rotation and magnetic field for different cases by figures.

2 Formulation of the problem

Let us consider the electromagnetic field governs by Maxwell equations, under consideration
that the medium is a perfect electric conductor taking into account absence of the
displacement current (SI) in the from is in Abd-Alla and Mahmoud (2012).

j =curlh, (1)
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divE=0 (4)
_ on —
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ﬂ(at ) (5)
where
h=curl uxH , H=H,+h (6)

where ﬁ the perturbed magnetic field is over the primary magnetic field E is the electric

intensity, j is the electric current density, x, is the magnetic permeability, H is the

constant primary magnetic field and u is there a displacement vector. Consider a
homogeneous and isotropic elastic solid with a circular hollow cylinder of inner radius
and outer radius b through a transversely isotropic material of Infinite extent. Taking the
cylindrical polar coordinates such that the z-axis Pointing vertically upward along the
axis of the cylinder. The stresses displacement relations for homogeneous cylindrical
transversely isotropic materials in two dimensions are in the form

ou u au,

O\ =Clla_rr+clz_r+C13 P (7)
Ooo = o, Lo,y u, (8)
o0 = Ciz ar Ciy " Cis P
ou u ou
= L 4G~ 4 Cyy—2 9
0, =Cy or Cis r 3 o, 9)
ou ou
=C, —+—— 10
Fr 44( or az] (10)
T, :,UEHOZ(%+Eur + auzj,
or r 0z (11)
ou ou
T o= H —
7z /’le 0( ar az j
where

Cip = Cp0:Cy3 = Cy3
The elasto-dynamic equations in rotating medium as:
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where f, and f, are Lorenz’s force-are defined by

PR, 62u,+gaur ur+62uz
= o or’ ror r* oroz

- [ o’u, +52Uz }
= . H oroz  oz°

Substituting from Egs.(1)-( 10) into Egs.( 12) and (13), we

o’u, Llou, 1 +a182uz i a o’u, g (8 U e, ),
or* ror r* " oroz et U ot?
o’u, 1 0 au 62u 10u
C+b,——L =D, u,),
oroz rar or 8raz r oz
where
(cl3+c44+yeH ) Cyy P
(Cll+/ueH ) e (C11+/U2H ) (C11+ﬂeH§)’
b = Cuy _ (Ci3+Cyy) _ (Cys + 1,H3)
(C44+C13+/UeH§), i (044+C13+/UeH§)’ ? (C44+C13+,UeH§,
b, = P

(Cqs +Cyg + 1, Hyg) .
3 Solution of the problem

By [Morse and Feshbach (1953)], is the displacement vector U can be written
U=VO+V Ay,

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

where the two functions @ and ¥ are known in the theory of elasticity, by Lame’s

potentials rotational and rotational parts of the displacement vector u respectively. The
cylinder being bounded by the curved surface, therefore the stress distribution includes
the effect of both @ and ¥ . It is possible to take only one component of the vector ;/7 to

be nonzero as
w=(0,y,0)

(20)



Plane Vibrations in a Transversely Isotropic Infinite Hollow Cylinder Under Effect 155

From Egs.(16) and (17), we obtain

b =2 1)
or oz

TN @
oz or r

Substituting from Egs. (21) and (22) into Eq. (16), we get two independent equations for
® and Y as follows:

0P +16£)+(a +a )_52(1) =a (82(1)
o roar P Tt

2 2 2
alf 1 0¥ 121// a, 81/2/=_ a, (8\2}]—92‘1’) (24)
or ror r (a, -1 oz (a, -1 ot

To study the propagation of harmonic waves in the z-direction, we assume a solution in
the form

[, P](r,z,t) =[®", P*](r)e'"* (25)
where y is the wave number, @ is the angular frequency.
Substituting from Eq. (25) into Egs. (23) and (24) we have

, d?d" do’

- QD) (23)

r +r—+ (1r*)@o" =0, 26
dr? dr ) (26)

and
2 * *

re d ‘{2’ +rdi+(r2k2—l) v =0, (27)
dr dr

where

A =0"a, +a,0% —(a, +a,) y°,

K2 = a,7’ —a,0° —a,0’ (28)
(al _1)

The solution of Egs. (26) and (27) can be written in the following form:

@°(r) = AJy(Ar) + BY,(4r) (29)

y(r) = AJ, (k) +B,Y, (kr) (30)

where Az, Az, B1 and Bz are arbitrary constants, J,and Yo are Bessel functions of the first
and second kind of order zero, respectively, J, and Y, denote cylindrical Bessel’s functions

of the first and second kind of order one respectively. From Egs. (29), (30) and (25) we
get

O(r,z,t) =’ { AJ (Ar)+BY,(4r) }, (31)
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w(r,z,t)=e{ AJ (kr)+B,Y,(kr) }. (32)
Substituting from Eqgs.(31) and (32) into Eqgs.(21) and (22) we obtain

u, = e‘“’“"‘){ — A[A 3, (Ar) + B,Y, (An)] - iy[A,kJ, (kr) + B,kY, (kr)] } (33)
u, =e“”‘*‘>{iy[A1Jo(zr) + ByYo (AN]+[Akd, (Kr) + B,KY, (k)] } (34)

Substituting from Eqgs.(33) and (34) into Egs.(7) , (10) and (11), we get

L et TGN+ 3, AN BTG N U KAL)
. — K13, (kr) + kB, [y —K]Y, (kr)

23,0~ 3,r) - 73, GOIA + Y, () = ¥, (ir) -
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r,, = HZe' " (36)

A A
[011/12‘]1(/“‘) - C12 ? J 0 (’1") - 01372‘]0 (/Ir)]Al + [Cllj“zYl (M) - C12 ?Yo (ﬂ,l‘) -

ity ) Gy Yo (AN)]B, + [(U’K\]l(kf) —ik?3,(kn)e,, — i, . J, (kr) +
o, =6 r r 37)
+i7kedo (kNIA, +[(i7%Y1(kr) —ik®Y, (kn)e,, —isc,, %Yl(kr) +
+ijke,Y, (kn)]B,

In the following sections of the hollow circular cylinders with three different boundary
conditions are performed.

4 Boundary conditions and frequency Equations

In this case, we are going to obtain the frequency equation for the boundary conditions.
We consider the following transformations the boundary

_ TG o _Qbd-h)
* b@l-h)’ Tc,

) T e,
b@-h) zc b(L-h)

0=00, O (38)
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k=\/ 1 [( r J(achas)as(mll' (40)
a, —1|{b(1-h) 7c,

To make all the quantities in (33)-(39), where A,k do there frequency dimensions.

4.1 Plane vibrations cylindrical body-free surface traction:
In this case, we have

7,(@)=7,(b) =0, (41)
o.,@+7,(@)=0o,0b)+7,(b)=0,

Which corresponds to the free inner and outer surfaces respectively. From Eqgs.(35)- (41),
we obtain four homogeneous linear equations in A, B,, A,and B,

b(l h)}tAl[J L(Abh) + 3, (Abh)] — i (1 h)

i ’ wrr ’
kAZ[ (b(l—h)j ~K }Jl(kbh)+k8{ b(l—h)] —k }Yl(kbh)zo,
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ar ’ wr ’
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(43)

AB,[Y, (Ab) +Y, (Ab)] +
(44)

(s

( ( @+c)+ %(1+ c,) ]YO (Ab) — A% (1+c,,)Y, (Ab) }Bl +

b(L—h)

(45)

K00 | A+

wri
b(1l-h)

w7
b(L-h)

[ k[k(1+ cy)—(L+ C13)]‘]0 (kb) -

k
B (Cll - ClZ)Yl (kb) } Bz =0,

[ klk(@+c,y) = @+ )Y, (Kb) -
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These are a set of four homogeneous algebraic equations involving four unknown integration
constants A, B,, A,and B, .For a nontrivial solution of these equations, the determinant
of the coefficient matrix must vanish. The zero determinant of the coefficient matrix will

give the frequency equation for the surface waves. Thus, elimination of these unknowns
would give us the frequency equations

Dll D12 D13 Dl4
A = D21 D22 D23 D24 :0, (46)
D31 D32 D33 D34
Dy D Dus Dy
where
D, =-i b( h) — = A[J,(Abh)+J,(Abh)], Dy, =-i b(l h) ALY, (Abh) +Y, (Abh)],
szk{ [ o j —K }Jl(kbh), Duzk[ ( el J ~K }Yl(kbh),
b(1—h) b(—h)
D,, =i b(l h) ——— [ (Ab) + 3, (Ab)],  D,,= b(l h) —— =AY, (Ab) +Y,(4b)],

Dz3=k[ [iJ —K }Jl(kb), D24=k[ ( or j —k }Yl(kb),
b(1-h) b(1-h)

Dglz{ ( (ﬁj (1+013)+%(1+c12) JJO(ﬂbh)—/12(1+cll)Jl(/1bh) }
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w7
D.. =
* b@-h)

{ k[k(1+cll)_(1+C13)]‘]0(kbh)_b_kh(Cll_clz)‘]l(kbh) } )

wri
D =
* b@-h)

DM{ ( ( =2 J(1+c13)+§(1+c12) Jaoub)—f(1+cn)al<ﬂb) }

b(L—h)

{ k[k(1+cll)_(1+C13)]Y0(kbh)_b_kh(cll_clz)Yl(kbh) } )
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or Y A 2
D42:|: { (b(l—h)j (1+C13)+B(1+012) JYO(/Ib)_l (1+¢,)Y(4b) :|’

Dys = b(1—h){ K[K(@+cCypp) = (L+C,5) [, (Kb) _B(C“ —Cy,)J, (kb) } ,
Dy, = b(1-h) { k[k(1+ Cyy) =1+ Cla)]Yo (kb) - B (¢, —C;,)Y, (kb) } .

The roots of Eq. (46) gives the values of natural frequency for the freepsurfaces of the
cylinder.

A A
i 25431
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+
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i
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+
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Figure 1: Variation of A with respect to frequency wwith effect and neglect respectively
of rotation © and magnetic field H .

4.2 Plane vibrations of cylindrical body of fixed boundary conditions:

In this case, we have
u,(a=u,(b)=0, (47)
u,(a)=u,(b) =0, (48)

which correspond to the fixed inner and outer surfaces respectively. From Egs.(33), (34),
(38), (39),(40), (47) and (48), we get
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—A[AJ,(Abh) + B)Y,(Abh)] —i

— A[AJ, (D) + BY, (Ab)] -

b(l —h)
[AkJ,(Kb) + B,kY,(kb)] =0,

b( —h)

b(l h)

b(l h)
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[AkJ, (Kbh) + B,kY,(kbh)] =0,

[AJ, (Abh) + B,Y, (bh)] + [A,kJ, (kbh) + B,kY, (kbh)] = 0,

[AJ, (Ab) + B,Y, (Ab)] + [A.kJ, (kb) + B,kY, (kb)] = 0,

(49)

(50)

(51)

(52)

These are a set of four homogeneous algebraic equations involving four unknown integration
constants A, B,, A,and B,.The condition for a nontrivial solution of these equations is

that the determinant of the coefficients of these integration constants must vanish, which
leads to the following frequency equation:

dll d12 d13 dl4
22 23

d d d d
A=

d31 d32 d33 d34
d,, d,, d, d

a1 42 43

where

dy, = —AJ,(4bh),

d,, =i o _h) _ O 3, (kbh), d, =
d,, = -1, (Ab),

d,, =i o h)kJ (kb), d,, =
dy, =i e h)J (Abh),  d, =

d,, = kJ, (kbh),

d,,=1————J3,(4b d
2 b(l h) o(4b), a2 =

d,, = —AY, (Abh),

_ @7k, (kbh),

b( —h)

d,, =AY, (4b),

_ %k, (Kb),

(—h)

b(l h)

_ 9%y (Abh),

d,, = kY, (kbh),

[y4

b(l h)

Yo (4b),

(53)
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d,, = kJ, (kb), d,, =KY, (kb).

The roots of Eq. (53) gives the values of natural frequency for the free surfaces of the
cAyIinder.
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Figure 2:Variation of A with respect to frequenc e with effect and neglect respectively
of rotation © and magnetic field H.

4.3 Plane vibrations of cylindrical body with mixed boundary Conditions

In this application , we apply the mixed boundary conditions which consist of two kinds
of boundary conditions, the first requires that the displacements vanish at the inner surface and
the outer surface is traction-free i.e.,

u,(a) =u,(a)=0,
&, (0) + 7, (b) = 7,,(b) =0,
while the second requires that the inner surface is traction-free and the displacements

(54)
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vanish at the outer surface, i.e.
O-rr (a) + Z-rr = Trz (a) = O!

(59)
u,(b) =u,(b)=0,
4.4 Free outer surface and fixed inner surface
In this case, from Egs. (33)—(40) and (54) we get
—A[AJ,(Abh) + BY,(Abh)] —i (1 (56)
b(l h)[AlJ o (4Abh) + B,Y, (Abh)] +[A,kJ, (kbh) + B,kY, (kbh)] =0, (57)
I [0y ? A )
_ { (b(l_h)] L+e)+ L Lrey) ]Jo(ﬂb)—z (1+¢,1)3,(2b) }Ai +
I [0Y4 ? A 2
[ [b(l_h)) (1+c13)+3(1+012) ]YO()Lb)—/l (1+c,,)Y, (Ab) }Bl+
- (58)
o k
b(l—h) { k[k(1+ ) —(L+ Cla)]‘lo(kb) _B(Cll —Cy,)J, (kb) } A, +
w7 k
b(l_h){ Kl €35) = (1 013) Vo (Kb) — (05 = €.2)Ys (kD) } B, =0,
b(l h) ——— AA[J, (Ab) + I, (Ab)] - b( —h) ——— AB,[Y, (4b) +Y, (Ab)] +
2 2 (59)
or 104

These are a set of four homogeneous algebraic equations involving four unknown integration
constants A ,B,, A, and B,.The condition for a nontrivial solution of these equations is

that the determinant of the coefficients of these integration constants must vanish, which
leads to the following frequency equation:

My
Ha
Ha1
My
where

A:

Hyo

His
Has
Haz
Has

Hag
=0, (60)
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thy = —Ado (Abh), thy =—AYo (Abh),

g = kJ, (kbh 4= kY, (kbh
H b( ~ h) , (kbh), H ( )  (kbh),
Mo = b( ~ h) ———J,(4bh), Hap = b( _ h)Y o (4bh),

23 = kJo (kbh), Ha4 = KY, (Kbh),

,L131=|: [ [ r J(1+Cl3)+%(1+c12) JJO(Eb)—}LZ(1+Cll)J1(/1b) :I,

b(L—h)

u%={[:[ - ja+q9+§@+q9:}Aun—fa+qonow)}

b(L—h)

%@M—QJ%WW}7

wr
b(1-h)

Hzz = { k[k(1+C11) _(1+C13)]‘]0(kb)_

_ on
Hszy b(l—h)

{ k[k(1+ Cy) — @+ Cls)]Yo (kb) _%(Cn —Cy,)Y; (kb) :| )

Uy = b( — h) ———— LI, (D) + I, (AD)], my=———— b(l h) ALY, (Ab) +Y, (Ab)],

or ) B o1 2_
ﬂ43:k|: (b(l—h)] -K :|‘J1(kb)! ,u44—k|: (b(l—h)] k :|Y1(kb),

163

The roots of Eq. (60) gives the values of natural frequency for the free outer surface and

fixed inner surface of the cylinder.
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Figure 3: Variation of A with respect to frequen wwith effect and neglect respectively
of rotation © and magnetic field H .

5 Free inner surface and fixed outer surface

In this case, from Egs. (33)-(40) and (55), we get

I or Y y) )
_ ( (b(l_h)j Lre)+-rey,) JJO(/lbh)—i (L+¢,3)J, (Abh) }Aﬁ

0y A 2
{ (m] (@+c,)+ b—h(1+ c,) JYO (Abh) — 2%(1+ c,,)Y, (Abh) }Bl +
L (61)
w7
b(1-h)
0y
b(1-h)

[ k[k(1+c11)_(1+013)]‘]0(kbh)_%(011_012)31(kbh) } A, +

[ k[k(1+ c,y)—(L+ ClS)]YO (kbh) — tf_h(cll —Cy,)Y, (kbh) } B, =0,
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i T or
—j b h) AA[J,(Abh) +J, (Abh)]—lb(l_h) JB,[Y, (Abh) +Y, (Abh)] +

; ; (62)
kA{ (bé"fh)J ~K }Jl(kbh)JrkB{ (bé"fh)) —k }Yl(kbh)zo,

~ ALAJ,(0) + ByY, (A0)] -1 ) [AkJ, (kb) + B,kY, (kb)] =0, (63)
-ba m[AJ(Mﬁ+BY(AM}ﬂAJJ(H»+BkY(HM 0. (64)

These are a set of four homogeneous algebraic equations involving four unknown integration
constants A, B,, A, and B,.The condition for a nontrivial solution of these equations is

that the determinant of the coefficients of these integration constants must vanish ,which
leads to the following frequency equation:

mll le mlS Irnl4
le

A: m22 m23 m24 :O, (65)
m3l m32 m33 m34
m41 m42 m43 m44
where
2
or A
m, = [ [ (ba & hJ (1 + cy) + E(l + cp) J]O(/ib]z) — 2 + ¢,)J,(Abh) }

mu{ ( [ on j(1+c13)+%(1+c12) Jvo(zbh)—,12(1+c11)Y1(,1bh) ,

b(-h)

— o
B b@-h)

{ k[k(l+cll)_(1+Cl3)]‘]0(kbh)_b_kh(cll_clz)‘ll(kbh) | ,

— w7
l4_b(1—h)

[ k[k(l"‘cn)_(1+C13)]Yo(kbh)_bhh(Cn_Clz)Yl(kbh) } ,

m,, = b( g h) _ 9T JIY, (Abh) +Y, (Abh)],

m23=k[ ( on j -K }Jl(kbh), m24=k{ [ o j —k }Yl(kbh),
b(L—h) b(1-h)
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my; = —AJ,(4b), ==Y, (4b),
m,, = —-i ———kJ, (kb), m,, =
b(1 h) b(l h)
My, = iﬂ‘lo(/ﬁtb)u My, =
b(1—h) b(l h)

m,, = kJ, (kb),
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m,, =KY, (kb),

— 9% __ky, (kb),

Yo (4b),

The roots of Eq. (65) gives the values of natural frequency for the free surfaces of the

cylinder.
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Figure 4: Variation of A with respect to frequency ewwith effect and neglect respectively

of rotation © and magnetic fieldH .



Plane Vibrations in a Transversely Isotropic Infinite Hollow Cylinder Under Effect 167

6 Numerical results and discussion

Here, we shall investigate the frequency equations given by Egs. (46), (53), (60) and (65)
numerically for a particular model. Since these equations are an implicit function relation
of natural frequency @ , therefore one can proceed to find the variation of natural
frequency (the eigenvalues) with rotation Q and magnetic field H , the cylinder has the
following geometric and material constants given by Chen et al [Chen et al. (2005)].

0 =3.986x10°kg/m°, c,, =4.968 x10™, C,, =4.981x 10", c,,=1474x 10"
c,,=1.109 x 10", c,, =0.93x 10", a=3, b=4.
The variations are shown in Figures. (1)-(4), respectively.

Figure 1: show that the variation of the magnitude of the frequency equation A with respect to
frequency @ for different values of rotation €2 and magnetic field H at free surface
traction. The magnitude of the frequency equation increases with increasing of rotation
and frequency, while it dispersion at 2=0.3 in the presence and absence of magnetic
field, while it increases with increasing of magnetic field in the presence and absence of
the rotation.

Figure 2: show that the variation of the magnitude of the frequency equation A with
respect to frequency @ for different values of rotation 2 and magnetic field H at a fixed
surface. The magnitude of the frequency equation increases with increasing of rotation
and frequency in the presence and absence of magnetic field, while it increases with
increasing of magnetic field and frequency in the presence of the rotation, while it
decreases with increasing of magnetic field and frequency in the absence of rotation.

Figure 3: show that the variation of the magnitude of the frequency equation A with
respect to frequency @ for different values of rotation €2 and magnetic field H at Free
outer surface and fixed inner surface. The magnitude of the frequency equation increases
with increasing of rotation in the presence and absence of magnetic field, while it
increases and decreases with increasing of frequency in the presence and absence of the
magnetic field, as well as it increases with increasing of magnetic field in the interval
[0,0.3], while it decreases with increasing of magnetic field in the interval [0.3,0.5] and it

increases and decreases with increasing of frequency in the presence of rotation, while it
decrease with increasing of magnetic field and frequency in the absence of rotation.

Figure 4: show that the variation of the magnitude of the frequency equation A with
respect to frequency @ for different values of rotation Q2 and magnetic field H at Free
inner surface and fixed outer surface. The magnitude of the frequency equation increases
with increasing of rotation and frequency in the presence and absence of magnetic field,
while it dispersion atQ2=0.1, as well as it increases with increasing of magnetic field
and frequency in the presence of the rotation, while it increases and decreases with
increasing of magnetic field and frequency in the absence of rotation.
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7 Conclusions

1. Harmonic vibrations of an elastic cylinder have been studied using a half-interval
method. The governing equations in cylindrical coordinates are recorded for future
reference. The magnitude of the frequency equations has been obtained under the
effect of rotating 2 and magnetic field H. The numerical results of the natural
frequency are obtained and represented graphically in detail for different cases.

All the physical quantities satisfy the boundary conditions.

3. The magnetic field and rotation play a significant role in the distribution of all the
physical quantities.

4. The results presented in this paper will be very helpful for researchers in structures
and material science, designers of new materials and the study of the phenomenon of
rotation and magnetic field is also used to improve the conditions of oil extractions.
Finally, if the rotation and magnetic field are neglected, the relevant results obtained
are deduced to the results obtained by Abd-Alla et al [Abd-Alla et al. (2013)].

N
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