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Applying a Step Approach Method in Solving the
Multi-Frequency Radiation From a Complex Obstacle

Jui-Hsiang Kao1

Abstract: In this paper, a step approach method in the time domain is developed
to calculate the radiated waves from an arbitrary obstacle pulsating with multiple
frequencies. The computing scheme is based on the Boundary Integral Equation
and derived in the time domain; thus, the time-harmonic Neumann boundary con-
dition can be imposed. By the present method, the values of the initial conditions
are set to zero, and the approach process is carried forward in a loop from the first
time step to the last. At each time step, the radiated pressure on each element is
updated. After several loops, the correct radiated pressures can be obtained.
A sphere pulsating with a monopole frequency in an infinite acoustic domain is cal-
culated first. This result is compared with the analytical solution, and both of them
are in good agreement. Then, a complex-shaped radiator is taken as the studied
case. The pulsating frequency of this case is multiple, and the waves propagate in
half space. It is shown that the present method can treat multiple-frequency pulsa-
tion well, even when the radiator is a complex shape, and a robust convergence can
be attained quickly.

Keywords: Step approach method; Time domain; Radiated waves; Multiple fre-
quencies; Boundary integral equation; Neumann boundary condition.

1 Introduction

The radiated waves from any pulsating obstacle in air or underwater are detected
for many reasons, such as remote sensing and military defense. In general, the
obstacle is often arbitrarily shaped, and the pulsation of a multi-frequency.

Early works have solved the radiation from a pulsating obstacle in the frequency
domain. Since the1960s, researchers such as Schenck (1968); Burton and Miller
(1971) have attempted to resolve radiating problems based on an integral equation
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in the exterior domain. Schenck (1968) introduced the CHIEF method to over-
come the problem of non-unique solutions at fictitious eigenfrequencies. Seybert,
Soenarko, Rizzo, and Shippy (1985) developed a second-order boundary element
method in the frequency domain, and [Seybert and Soenarko (1988)] derived the
formulations in the infinite half-space. Seybert and Wu (1988); Li, Wu, and Seybert
(1994) discussed arbitrary impedance on an infinite free surface. Chaosong (1993)
derived a direct boundary integral equation method in the frequency domain. Kress
and Mohsen (1986); Ochmann (1995) developed the source simulation technique
(SST) in the frequency domain for faster computation of complex structures. Wu
(1994) solved the radiation in a perfect waveguide. Wu (1995) applied the direc-
t boundary element method in computing the radiation from a regular and thin
body. In Qian, Han, Ufimtsev, and Atluri (2004), the non-hyper-singular bound-
ary integral equation was derived to solve the non-uniqueness problem involved in
the composite Helmholtz integral equation. Normal vector of elemental node was
defined and applied to avoid the indefinite normal vector and the discontinuous
normal velocity at sharp edges and corners by Zai (2006). Qian, Han, and Atluri
(2013) proposed the fast multipole method, FMM-BEM, to overcome the drawback
of fully populated system matrices in BEM.

The time-domain method is a better choice for an obstacle pulsating with a multi-
frequency. Mansur and Brebbia (1982); Groenbroom (1983); Dohner, Shoureshi,
and Bernhard (1987); Araújo, Mansur, and Carrer (2000) derived time-domain
boundary element formulations for transient problems. According to Araújo,
Mansur, and Carrer (2000), numerical errors propagate forward in time and result in
incorrect solutions. In Kropp and Svensson (1995), the time-domain formulation-
s of equivalent sources were used to approximate the Green’s functions of small
volume sources in front of arbitrarily shaped structures to simplify the radiation
problem. Jang and Ih (2012) filtered the troublesome wave vectors at each time
step in the time-domain boundary method to stabilize the time step marching. Bi,
Lin, and Zhang (2013) solved the transient acoustic radiation from an arbitrarily
shaped source in the time domain using a cubic spline interpolation. In Mikael
and Masami (2013), a simple axi-symmetric model was solved by the time-domain
boundary element method. In Zheng, Bi, Zhang, and Xu (2015), the time-domain
equivalent source method (TESM) was used to calculate the radiated waves. The
TESM results showed an instability due to the errors amplified exponentially with
time; thus, time averaging was applied in the iterative process to reduce the insta-
bility.

In this paper, a step approach method in the time domain is derived to solve the ra-
diation from an obstacle pulsating with multiple frequencies. The Green’s function
in the boundary integral equation is combined in forms relative to the retarded time;
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thus, the marching process becomes easier. The radiated pressure on each element
can be expressed by a source term and a dipole term. The time-harmonic Neumann
boundary condition is applied in the source term and known. The initial values of
the radiated pressures in the dipole term are set as zero. The time interpolation is
replaced by a Fourier series to minimize numerical error due to time interpolation.
The stability and reliability of the present method will be evidenced.
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Figure 1: A body of arbitrary shape on a semi-infinite plane.

2 Theoretical formulations

An arbitrarily shaped body immersed in a semi-infinite domain is considered, as
shown in Figure 1. The body surface is denoted by S, its outward normal by n, the
radiated acoustic pressure by Pr and the interface of the body and the infinite plane
by Sc. The infinite plane of the interface can be simulated by a mirror-image body.

By applying Green’s second identity and the Sommerfeld radiation condition, a
boundary integral equation is defined on S:

C (F)Pr (F) =
∫
S

(
Pr (Q)

∂G(F,Q)

∂n
−G(F,Q)

∂Pr (Q)

∂n

)
dS. (1)

G(F,Q) is the half-space Green’s function that depends on both locations of a field
point, F , and a source point, Q:

G(F,Q) =
1

4π

(
e−ikr

r
+RH

e−ikri

ri

)
, (2)

where r is the distance between F and Q, and ri is the distance between P and Q′,
the imaged point of Q, as shown in Figure 1. The reflection coefficient, RH , is equal
to 1 for a rigid infinite plane, and −1 for a soft infinite plane. C(F) in Equation (1)
is the solid angle for the field point, F , and can be evaluated as follows (see e.g.,
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Seybert and Wu (1988)):

C (F) = 1+
1

4π

∫
S+Sc

∂

∂n

[
1

r (F,Q)

]
dS (3)

if F is on S, but not in contact with Sc, and

C (F) = (1+RH)

{
1
2
+

1
4π

∫
S+Sc

∂

∂n

[
1

r (F,Q)

]
dS
}

(4)

if F is on the intersection of S and Sc.

Equation (1) can be expressed in the time domain by the inverse Fourier transform.

C (F)Pr (F, t)

=
∫

∞

−∞

∫
S

Pr (Q) · ∂G(F,Q)

∂n
· eiωtdSdω−

∫
∞

−∞

∫
S

G(F,Q) · ∂Pr (Q)

∂n
· eiωtdSdω

= Dipole Term + Source Term

. (5)

Because the first term on the right-hand side of Equation (5) is relative to the unit

dipole strength,
∂ (1/r)

∂n
, it is named the Dipole Term. Similarly, the second term

on the right-hand side of Equation (5) is associated with the unit source strength,
1/r; therefore, it is named the Source Term.

3 Step approach method

The half-space Green’s function in Equation (2) can be combined with the exponent
term, eiwt , in Equation (5). Thus, the delay time of wave propagation, t-r/c, can be
presented in the dipole term and the source term. Take the dipole term in Equation
(5) for example, which can be rewritten as follows:

Dipole Term =
1

4π

∫
∞

−∞

∫
S

Pr (Q) ·
∂
(
e−ikr/r

)
∂n

· eiωtdSdω

+RH
1

4π

∫
∞

−∞

∫
S

Pr (Q) ·
∂
(
e−ikri/ri

)
∂ni

· eiωtdSdω

(6)

The first term on the right-hand side of Equation (6) is rearranged as follows:

1
4π

∫
∞

−∞

∫
S

Pr (Q) ·
∂
(
e−ikr/r

)
∂n

· eiωtdSdω = (7)
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1
4π

∫
S

[
Pr (Q, t− r/c) · ∂ (1/r)

∂n

]
dS+

1
4π

∫
S

[
∂Pr (Q, t− r/c)

∂ t
· r

c
· ∂ (1/r)

∂n

]
dS.

Thus, the dipole term can be expressed in the time domain as below:

Dipole Term =
M

∑
m=1



[
Pr (Q, t− r/c) ·

(
−1
r2

)
− ∂Pr (Q, t− r/c)

∂ t
· 1

cr

]
·(∇~r.~n)+RH ·

[
Pr (Q, t− ri/c) ·

(
−1
r2

i

)
−∂Pr (Q, t− ri/c)

∂ t
· 1

cri

]
· (∇~ri.~ni)


m

· ∆Sm

4π
.

(8)

It is noted that during the computing process, all the retarded-time terms in Equa-
tion (8) can be obtained directly from the Fourier series:

Pr (Q, t− r/c) = A0 (Q)+
∞

∑
n=1

An (Q) · cos [nω (t− r/c)]+Bn (Q) · sin [nω (t− r/c)]

(9)

∂Pr(Q, t−r/c)
∂ t

= nω

{
∞

∑
n=1
−An(Q) · sin [nω(t− r/c)]+Bn(Q) · cos [nω(t− r/c)]

}
(10)

Because the time interpolations of Pr (Q, t− r/c) and ∂Pr (Q, t− r/c)/∂ t in the
time domain are expressed in close forms, the numerical errors generated by the
time interpolations are minimized.

By applying the Neumann boundary condition and presenting the normal velocity
by the time-harmonic form, the source term in Equation (5) can be expressed as:

Source Term =−
∫

∞

−∞

∫
S

G(F,Q) · ∂Pr (Q)

∂n
· eiωtdSdω

=
−1
4π

∫
S

[(
1
r

)
· ∂Pr (Q, t− r/c)

∂n

]
dS

− RH

4π

∫
S

[(
1
ri

)
· ∂Pr (Q, t− ri/c)

∂ni

]
dS

=
M

∑
m=1

{[
∞

∑
J=1

iω jρVj (Q)eiω j(t− r
c)

]
· 1

r



64 Copyright © 2016 Tech Science Press CMES, vol.112, no.1, pp.59-73, 2016

+RH ·

[
∞

∑
J=1

iω jρVj (Q)eiω j

(
t−

r j
c

)]
· 1

ri

}
m

· ∆Sm

4π
. (11)

where ρ is the mean density of the fluid, Vj is the amplitude of the normal velocity
and ω j the angular frequency of Vj. In Equations (8) and (11), the oscillatory
integrals in the boundary integral equation are expressed in forms relative to the
retarded time, which makes the iteration process easier.

The step approach method is based on Equation (5). The source term in Equation
(11) is a boundary condition and known. An initial radiated pressure, Pr, on the
body equal to zero is first prescribed. Then, the radiated pressure field on the body
on the left-hand side of Equation (5) can be updated explicitly by calculating the
dipole term according to Equations (8) ∼ (10).

The time step is repeated over the longest period (T = 1/ fMIN) of the multi-fre-
quency pulsation of the obstacle. This approach process is repeated until the proper
convergence is achieved. The time marching is divided into n time steps (ISTEP =
n) within the longest period.

The procedure of the present scheme is indicated by an example shown in Figure 2.
In Figure 2, there is a total of three elements (1 ∼ 3) on the obstacle, and the time
marching is divided into 3 time steps within the longest period. For the first loop,
the initial radiated pressure of every element at each time step is set as zero. At
the first time step, the radiated pressure of every element is updated according to
the right-hand side of Equation (5). The updated values are P111, P211 and P311.
Similarly, the updated values of each element at the 3rd time step are P131, P231
and P331 individually. As the first loop is finished, the radiated pressures on all
elements are updated. Then, the updated values of the first loop are used as the
initial values for the second loop, and the approach process is the same as that of
the first loop. After several loops, a robust convergence can be achieved, and the
corrected radiated pressure on each element is approached within an acceptable
numerical error.

4 Numerical results

The radiated pressure by a sphere pulsating with a mono-frequency in an infinite
domain is calculated first. This result is compared with the analytical solution in
order to verify the present method. Then, an arbitrarily complex obstacle in the
half-space domain is studied. The pulsating frequency of the complex obstacle is
multi-frequency. The geometry of the complex obstacle includes sharp edges, an
apex and an enormous variation in curvature.
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Figure 2: Flow chart of the numerical implementation.



66 Copyright © 2016 Tech Science Press CMES, vol.112, no.1, pp.59-73, 2016

4.1 Sphere pulsating with mono-frequency

Figure 3 shows a pulsating sphere of radius (R) 1 m in an infinite air domain. The
mean density of the air is 1.21 kg/m3, and the sound speed is 343 m/s. The pulsating
frequency of f = 54.59 (i.e., KR = 1) is selected. The normal velocity amplitude,
Vn, is assumed to be one. A total of 1800 elements are used to model the sphere.

The present scheme is used to plot the convergence history, as shown in Figure 4,
which is easily done. The maximum difference of radiated pressure on any element
between the (n+ 1)th and nth loops (Pr,n+1−Pr,n) is less than 10−4 (Pa) after the
eighth loop, and the convergent value of the radiated pressure is 292.3 Pa.

The analytical solution for this case is:

Pr =

(
R2

r

)
iρω

1+ ikR
e−ik(r−R). (12)

According to Equation (12), the analytical solution for this case is 293.4 Pa. The
error between the numerical and analytical solutions is about 0.37%. From this
case, it is shown that the numerical solution compares well with the analytical one,
and that the present method is both stable and reliable.

Figure 3: Sphere in the infinite
air domain for the case in 4.1.
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4.2 Arbitrarily complex obstacle pulsating with multiple frequencies

In Figure 5, an arbitrary obstacle composed by a cube (Faces 1 ∼ 4) and a pyramid
(Face 5) in the half-space domain is treated as the studied case. The complex
geometry includes sharp edges, an apex and an enormous variation in curvature.
The side length of the cube is 1 m, and the center is at (0, 0, 0). The X-Y plane
is thought of as an infinite plane. The infinite plane is considered to be rigid, and
simulated by a positive image, i.e., RH = 1. The mean density of the air is 1.21
kg/m3, and the sound speed is 343 m/s.

The pulsating frequencies and amplitudes of this obstacle are listed in Table 1.

The time step over the longest period is 20 ( i.e., ∆t = 0.0025 s) and the number of
elements on the obstacle is 980. The maximum side length of the elements to the
minima wave length, lmax/λ , is 0.0208.

The convergence history, as shown in Figure 6, indicates the present procedure

Figure 5: A complex radiator
in the half-space domain for the
case in 4.2.

Figure 6: Convergence history for the case in
4.2.
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Table 1: Pulsating frequencies and amplitudes for the case in 4.2.

Normal velocity
amplitude (Vj, j = 1 ∼ 5)

Corresponding angular
frequency (ω j, j = 1 ∼ 5)

V1 = 1 ω1 = 2π × 20
V2 = 1 ω2 = 2π × 40
V3 = 1 ω3 = 2π × 60
V4 = 1 ω4 = 2π × 80
V5 = 1 ω5 = 2π × 100

to be robustly convergent, with only 13 loops needed to reached an error under
10−4 (Pa). Because the pulsating frequencies of the obstacle are from f to 5 f , the
amplitudes and phase angles of the radiated pressure, D(F)q and θ(F)q, vanish for
q 6= 1 ∼ 5. The amplitudes of the first harmonic, D(F)1 (Pa), computed by the
present method on Faces 1 and 2, are almost the same, as shown in Figure 7. As
the elements are closer to the infinite plane, the radiated amplitudes are stronger
due to the positive image. The values on Face 5, as plotted in Figure 8, show the
contours to be symmetrical with respect to the central point, because the obstacle
is symmetrical with respect to that point.

Face 1 Face 2

Figure 7: D(F)1 (Pa) on Faces 1 and 2 for the case in 4.2.

The amplitudes of the fifth harmonic, D(F)5 (Pa), computed by the present method
on Faces 1, 2 and 5 are shown in Figures 9 and 10, respectively. The distributions
are similar to those shown in Figures 7 and 8. However, the values of D(F)5 are
larger than those of D(F)1 because the source term in Equation (11) is a function
of the angular frequency, ω .
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Figure 8: D(F)1 (Pa) on Face 5 for the case in 4.2.

4.3 Stability test

The stability of the present method is tested using the same obstacle as shown in
Figure 5, and the pulsating conditions listed in Table 1 are applied.

The ratio of the maximum side length of the elements to the minima wave length,
lmax/λ , is kept as 0.0208; however, the number of time steps over the longest pe-
riod is changed. The convergence histories with different time steps, as plotted in
Figure 11, reveal that more than 10 time steps are required for the present method
to prevent numerical divergence.

Face 1 Face 2

Figure 9: D(F)5 (Pa) on Faces 1 and 2 for the case in 4.2.

In order to detect the influence of the grid size in the marching stability, the size
of the obstacle is scaled to adjust to the ratio of lmax/λ . Figure 12 shows the
convergence histories for different ratios of lmax/λ ; meanwhile, the number of time
steps is kept at 20. It is noted that the ratio of lmax/λ should be less than 0.027 in
order to attain robust convergence.
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Figure 10: D(F)5 (Pa) on Face 5 for the case in 4.2.

0

250

500

750

1000

1250

1500

1750

2000

2250

M
ax

.|P
r,

n
+

1
-P

r,
n
|

Number of computing loops

Time step=10; lmax/λ=0.0208

Time step=8; lmax/λ=0.0208

Figure 11: Convergence histories for the case in 4.3.

0

200

400

600

800

1000

1200

1400

1600

M
ax

.|P
r,

n
+

1
-P

r,
n

|

Number of computing loops

lmax/λ=0.03; Time step=20

lmax/λ=0.027; Time step=20

Figure 12: Convergence histories for the case in 4.3.



Applying a Step Approach Method in Solving the Multi-Frequency Radiation 71

5 Conclusions

A step approach method derived in the time domain was developed for the time-
harmonic radiating problem of an arbitrarily complex obstacle pulsating with mul-
tiple frequencies.

During the marching process, the boundary integral equation is expressed in form-
s relative to the retarded time, which makes the iteration process easier, and the
radiated pressure on each element is updated by the source term (i.e. boundary
condition) and the dipole term. The source term is known and associated with the
vibration of the obstacle. The time interpolations in the dipole term are replaced
by the Fourier series to reduce the numerical error. The initial radiated pressure on
each element is set as zero.

The radiated pressure from a sphere pulsating with a monopole frequency in an
infinite acoustic domain is solved, and when compared with the analytical solution
is shown to be in good agreement. Then, a complex-shaped radiator composed of a
cube and a pyramid in half-space is treated as the computing sample. The pulsating
frequency imposed is multi-frequency. It is shown that a robust convergence can
be obtained by means of the present method. With the present method, more than
10 time steps over the longest period are suggested, and the ratio of the maximum
side length of the elements to the minima wave length, lmax/λ , is required to be
less than 0.027.
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